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Disconnect and OPT(f,¢) = mingern {f(z) : ¢(z) < 0}

Gap between science, formulated problem, and algorithmic
solution

“Solving OPT(f,c) results in overfitting.”

<

<

“Solution to OPT(f,c) must be post-processed.”

<

“What is OPT'(f,c)? | just have an algorithm that gives me the
solution.”

<

“I can't solve the science, but | can solve OPT(f,c)."

<

“l don’t know how to solve OPT'(f,c) on a (large) cluster.”
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Disconnect and OPT(f,¢) = mingern {f(z) : ¢(z) < 0}

Gap between science, formulated problem, and algorithmic
solution

¢ “Solving OPT(f, c) results in overfitting.”
< “Solution to OPT(f,c) must be post-processed.”

© “What is OPT(f,c)? | just have an algorithm that gives me the
solution.”

¢ Y| can't solve the science, but | can solve OPT'(f,c).”

¢ “I don’t know how to solve OPT(f,c) on a (large) cluster.”

I will not close this gap!

© Initial examples on (nonlinear) continuous-discrete-mixed numerical/math
optimization for data analysis (many [,better] others)

< Experimental data
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Multi-Dim. Imaging in X-ray Fluorescence Microscopy

Science challenges in Nano-medicine and Theranostics

¢ Design new treatment and drugs for targeted drug delivery
¢ Combine therapy and diagnostics by targeting nanoparticles at cancer
¢ Extract efficiency score from multiple sources of data (instruments)

¢ X-ray, fluorescent, and visible light images
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Manually Finding Cells is Difficult*

Average MCA Trace Per Pixel
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Manually Finding Cells is Difficult*

red blood cells
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Cells is Difficult*

algae cells
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Cells is Difficult*

yeast cells
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Challenges and Goals

Accurate statistics/recognition of hundreds of cells and elemental distributions
within regions of interest

1. Lack of manual annotations

2. Nonuniformity of cells/noise/background

A first task: Data reduction

¢ Raw energy channel maps — elemental maps
< People only look at a handful of “elements” rather than 2000 channels
Xe,p number of photons arriving at location p, range of energies around e

X non-negative energy channel x pixel matrix (think: 10% x 107)
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"
2D (Channel-Pixel) Optimization Approaches (1)

Unconstrained low-rank approximation

2
min{HX - WHTH W eR™* He R’“X"}
F

¢ k < min(m,n) known

~ k
o X = W;H!
i=1

K3

¢ W = channel basis

<

H = pixel basis
Solved by SVD (unknown W and
H)

¢ Wy, H1 non-negative
¢ W;, H; mixed signs for ¢ > 1

<
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2D (Channel-Pixel) Optimization Approaches (1)

Unconstrained low-rank approximation

2
min{HX - WHTH W eR™* He R’“X"}
F

¢ k < min(m,n) known

- k
°© X =Y W;H
i=1

K3

¢ W = channel basis

<

H = pixel basis
Solved by SVD (unknown W and
H)

¢ Wy, H1 non-negative
¢ W;, H; mixed signs for ¢ > 1 0 200 400 600 800 1000

<
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2D (Channel-Pixel) Optimization Approaches (I1)

Constrained approximation

2
min{HX - WHTH W eR™* HeR" W >0,H> 0}
F
Non-negative matrix factorization
(NMF)
¢ W = channel basis
¢ H = pixel basis

¢ Preserve structure and
approximation

¢ Multiplicative update algorithms

(XH)i

¢ Wi~ Wi W(HTH));
Txy. .
¢ Hy,« Hj,—r g

WTWIHT),
¢ Other formulations (nnz(W) < )

g; o
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2D (Channel-Pixel) Optimization Approaches (I1)

2
min{HX - WHTH W eR™* HeR™ W >0,H> 0}
F
Non-negative matrix factorization
(NMF)
¢ W = channel basis
¢ H = pixel basis 1

¢ Preserve structure and Cu
approximation |

¢ Multiplicative update algorithms L

(XH)ij Zn
¢ Wi, WUW ‘
SUGE TRE. |
WTWHT), o

¢ Other formulations (nnz(W) < 0)

¢ Hji < Hjs

CScADS 12 7 B



Revealing Latent Structure Through NMF

¢ Non-negative output compatible with intuitive psychological and
physiological evidence

¢ Reconstruction through additive combination of nonnegative W; ; yields™
sparse, parts-based representation

Natural language processing
¢ Sparsity helps! Bag-of-words

¢ Latent Dirichlet allocation,
semantic role labeling, K-L
divergence,. ..

Face recognition /image clustering

¢ Reveal noses, lips, eyes, ...
¢ [Lee & Seung, Nature 1999]
DNA microarray
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No Silver Bullet

Challenges/Drawbacks of NMF

¢ Unique parts-based representation only under specific conditions (e.g.,
separable complete factorial family [Donoho et al. 2003]).

< Initialization directly impacts the quality of its output

¢ Challenging objective functions (nonlinear, nonconvex, . ..)
¢ Many local minima

¢ Expert/modeler needs to specify goals

¢ Sparse features?

¢ Accurate approximation?

¢ Labeled/semi-supervised data?

¢ Features corresponding to elements?
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\
Incorporating The Science: Basis Initialization
¢ Gaussian distributions describing reference elements via an “element
signature”

¢ Gaussians at Ko,, Ka,, Kg, for elements of interest
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Incorporating The Science: Basis Initialization

¢ Gaussian distributions describing reference elements via an “element
signature”

¢ Gaussians at Ko,, Ka,, Kg, for elements of interest
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Weight Image Hg Associated With S Basis

Previous fitting Square initialization Gaussian initialization
(iter=1000) (iter=100)

1 hour 1.5 minutes 10 seconds
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Multi-Channel Images Corresponding to Chemical Elements
Ca Cl Cu Fe
K P S TFY
Zn

s

s s

+ Sufficient for many users/groups

— Initial step to ultimate cell identification/classification goals
— Neglects spatial attributes of pixels
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|dentifying Cells in Images

¢ Cells have different sizes and shapes

© Images are noisy, potentially large (O(107) pixels)

Zn map with more than 500 cells
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Graph Partitioning Approaches

¢ Build an undirected graph G = (V, E)
from the image

¢ v €V corresponds to a pixel or a
small region
¢ eyuv € E connects u and v with
weight Wy,
¢ Connectivity: connect local pixels
(k-nearest neighbors or r-neighborhood)

¢ Wy, large for pixels within a group,
small for pixels in different groups

Goal: Partition the graph into disjoint partitions

CScADS 12
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Graph Partitioning Approaches

¢ Build an undirected graph G = (V, E)
from the image

¢ v €V corresponds to a pixel or a
small region

¢ ey, € E connects u and v with
weight Wy
< Connectivity: connect local pixels
(k-nearest neighbors or r-neighborhood)

¢ Wy, large for pixels within a group,
small for pixels in different groups

Goal: Partition the graph into disjoint partitions
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\
Discrete Optimization and 2-way Graph Partitioning

Minimum weight cut

min{C’ut(AA > ww i AUA=V, ANA=0, A#£0, A;éfb}

uEA,vEA

+ Efficient combinatorial algorithms exist

— Often favors unbalanced cuts
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\
Discrete Optimization and 2-way Graph Partitioning

Minimum weight cut

min{C’ut(AA > ww i AUA=V, ANA=0, A#£0, A;éfb}

uEA,vEA

+ Efficient combinatorial algorithms exist

— Often favors unbalanced cuts

To obtain balanced cuts

RatioCut(A, A) = C¥lAA) | Cul(4, 4)

Al 4]
NormalizedCut(A, A) = CZZE‘(‘Z;“) CUtE(Ii;l)

— Minimizing these objectives is hard
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Spectral Relaxations

1 ificA,

) = 1,7 _
Cut(A,A) = 52" Lz, where z; = { 0 otherwice.

~ i) ifie A,
RatioCut(A, A) = Sy where z; = |/'4| ;
2Tz —1a otherwise.
vol(A)
— T
NormalizedCut(A, A) = jT—f)Zza where z; = o

_ Jwol(A)
vol(A)

L =D —W; W = adjacency matrix; D;; = Zj Wi

CScADS 12

ifi € A,

otherwise
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Spectral Relaxations

1 ifieA,
0 otherwise.
{ Al e e A,

—TA otherwise.

Cut(A,A) = 32" Lz, where z; = {

RatioCut(A, A) = 2 L where z; =

2Tz

_ vl ifie A
NormalizedCut(A, A) = z Lz where z; = vol(4) ’

2TDz’ vol(A) :
—4/ ol () otherwise
L =D —W; W = adjacency matrix; Dii =}, wi;

Relax z € {0,1} to have real values

< Solve for the eigenvector associated with the 2nd smallest eigenvalue of

RatioCut Lz = Az
NormalizedCut (generalized eigenproblem) Lz = ADz
e eigenvector y of the normalized graph Laplacian
L=1—-D"Y2WD72 then take z = D™/?y

[Luxburg, “A tutorial on spectral clustering,” 2007]
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Recursive (k-Way) Segmentation Results

Small Images:

Original image

k-means

Normalized cut

CScADS 12
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Multi-level Graph Partitioning

For big images (10°+ pixels), solve an approximation of spectral graph
partitioning

¢ Coarsen graph to desired level, then partition graph

¢ Iteratively refine the cuts in finer levels

1 R ¢ -

Coarse step: use big Laplacian of Gaussian filter
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S

Multi-level Graph Partitioning

For big images (10°+ pixels), solve an approximation of spectral graph
partitioning

¢ Coarsen graph to desired level, then partition graph

¢ Iteratively refine the cuts in finer levels

Fine step: use small Laplacian of Gaussian filter
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Merging Oversegmented Regions

Merge small/disconnected regions into larger regions

1. Based on edges/boundary between two regions using

¢ Gradient map or Canny edge detector
¢ Image space instead of graph weights
¢ Heuristics (Greedy, max-matching, ...)

2. Using content-based measures

CScADS 12
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Cell Content-Based Optimization

(Mixed-Integer?) Nonlinear Optimization

< Allow for overlapped cells

¢ Nonuniform sizes, shapes
¢ Relatively consistent content

¢ Identify cells numbers/types/boundaries

Inojn {Z (fc,t,shape(e) + Afc,t,content (0)) : fc,t,content (0) S Ct}

c,t

0 parameterize cell curves (e.g., wavelets)
A balancing objectives (optional)

C; hard bounds on content for type ¢

Ag CScADS 12
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Steps Toward Cell Delineation

¢ Nonuniform background/noise

Y CScADS 12 23



Steps Toward Cell Delineation

Y CScADS 12

Nonuniform background/noise
Background estimation is local

Hierarchical statistical test
identifies number of cells of
each type within relaxed regions
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Steps Toward Cell Delineation

s Y CScADS 12

Nonuniform background/noise
Background estimation is local

Hierarchical statistical test
identifies number of cells of
each type within relaxed regions

Cells overlap (additive
contributions)

Cellular content preserved
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Automating Performance Tuning

. . . c *
Given semantically equivalent codes .g ©
C1,Ca, ..., minimize “run time" T S|
subject to “energy consumption” s 8 *
o
O
~— « |
o ©
Esg
o
c
S5 o
C s 20 25 30 35 40 45 50

Run time (s) on BG/P

min {f(l’) : (ZIT(j,ZITI, .’L‘B) € QC x Qr X QB}

x multidimensional parameterization (compiler type, compiler flags,
unroll /tiling factors, internal tolerances, ...)

) search domain (feasible transformation, no errors)

f quantifiable performance objective (requires a run/model)

av CScADS 12 2% O



Optimization for Automatic Tuning of HPC Codes

Evaluation of f requires: transforming source, compilation, (repeated?)
execution, checking for correctness

Time [CPU ms]
Bo bomow s oo

Challenges:
- Evaluating f(Q2) prohibitively

expensive (10'7)
- f noisy

— Same problems for 1/0O tuning? <«

CScADS 12

- Discrete x unrelaxable
- V. f unavailable/nonexistent

- Many distinct/local solutions
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Goal: Fast Optimizations in Short Search Times

gemver; |D| = 1.41 x 1023; 100 evaluations

b A A Y = == = — g  —B= MSBS

e i —— mNM
-o- GA

" -%- SA

ol | -&- RS

—_—— e = = = = — A= — —A

2.0

——— ¢ —— 9— — @

Best mean run time found (s)
2.1

1.9

1.8

0 1000 2000 3000 4000 5000
Search CPU Time (s)

[Balaprakash et al. VECPAR '12]
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Closing Thoughts & Acknowledgments

Lingering Gaps (Science, Algorithms, Visualization, Data

Stack)

< Problem formulation is crucial
¢ Algorithm-Data-Storage interface crucial

¢ Resource allocation (viz cluster, in situ, ...) drives selection of
optimization tools

° C. Jacobsen, S. Leyffer, S. Vogt, S. Wang, J. Ward, +
Argonne others

oRATORY

BB e

AUTOTUNING P. Balaprakash, P. Hovland, B. Norris, and others

Always collecting problems: — www.mcs.anl.gov/~wild
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