Data Models & their Influence On...

Tim Tautges
Argonne National Lab

CSCADS Workshop
July 31, 2012

What is a Data Model?

What is a data model?
— Inlanguage, a data model is analogous to the words used to tell your story
— In code, the data structures used in composing algorithms
— Inalibrary, the data types used to communicate with the library

= Here, I'm concerned with libraries

= Why s alibrary’s data model important?
— Strongly affects usability of the library
— Determines what can be expressed through the library’s API

= Characteristics of a good data model

— Balanced between concreteness and abstractness
e Too concrete: code gets too verbose
e Too abstract: code difficult to understand

— Abstractions cover current & future needs

= |nlibrary design, once you’ve determined scope and data model, API should fall
out naturally

\ |
Examples of Data Models (& their problems)

= Exodusll
— Format for storing FEA mesh, analysis results
— Node, Element, Element Block, Sideset, Nodeset, variable, timestep
— Element block represents both material and fundamental element
— No mechanism for defining other groupings of elements, e.g. proc decomposition, AMR
tree, etc.
= CGNS
— Fundamental element types TRI3, TRI6, HEX8, HEX20, etc.

— Basic operation: get all hex elements
e Get hex8, get hex20, get hex27

ITAPS Data Model

= Entities
— Vertex, Edge, Tri, Quad, (Pentagon?), (Hexagon?), Polygon, Tet, Pyramid, Prism, Knife,
Hex, Polyhedron

= Sets (collections of entities & sets, parent/child links)
— BC groups, materials, proc partitions, kdtree nodes, ...

= Interface (OOP, owns data)

= Tags (annotation of data on other 3)
— Fine-grained (entities): vertex-based temperature, element-based heat generation rate
— Coarse-grained (sets, interface): BC type, proc rank, provenance

v QVDual

File Help Window Display

Actor‘

p-Sheet 3

b Sheet 4

B Sheet 5

k) Saeet Geometric model

p-Sheet 7

p- Sheet 8 topology

b Sheet @

& Volume 1 A

- Surface 1 <

Parallel Partition e Vertex-based

Curve 7

Curve § displacements
- Surface 11

6 p-Surface 12

Mesh-Oriented datABase (MOAB)

= Library for representing, manipulating structured, unstructured mesh models

Supported mesh types:
— FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)
— Polygons/polyhedra
— Structured mesh
= Optimized for memory usage first, speed second
= |mplemented in C++, but uses array-based storage model
— Avoids C++ object-based allocation/deallocation
— Allows access in contiguous arrays of data
= Mostly an ITAPS-like data model
— Entity, set, tag, interface
= Mesh I/O from/to various formats
— HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus
= Main parts:
— Core representation
— Tool classes (skinner, kdtree, OBBtree, ParallelComm, ...)
— Tools (mbsize, mbconvert, mbzoltan, mbcoupler, ...)

MOAB Entity Storage

Entity Handle:

» Unsigned long type

* Bitmask

N~

« Sorts by dimension, 4
type e

EntitySequences:

~
28-or 60-bit ID

« Represent used portions of handle space

- Have pointer to SequenceData

. Have start and end handle values
. Arranged in binary tree by start handle

SequenceData:

- Represent allocated
portions of handle space

. Have start and end handle

« Coordinates or Connectivity)

« Dense Tag Data

b

\

Range:
» Container of
handles

| sl-el | | s2-e2

» Constant-size if
contiguous handles

Cache most recently
. accessed
* EntitySequence

Typically one
EntitySequence for an
entire SequenceData

| .

Connectivity array

Dense tag #1

Dense tag #2

A

\ 4
v

Influence on Computation...

Mesh acts as a vehicle for much other simulation data
= Pursuing various efforts to use MOAB as a simulation data backplane, e.g.

Stand-Alone Stand-Alone
Driver Driver

Coupled Multi-Physics Driver

— NEAMS/CESAR

Physics
Model A

Physics
Model C

Physics
Model A

Mesh
Adaptor

Mesh
Adaptor

Requires:

— Reading/initializing mesh from MOAB
— Pushing simulation results down into MOAB

Under certain conditions, MOAB can share field data directly with application, as
contiguous-memory arrays

— But, requires app and MOAB to use the same local ordering
— In practice, apps come with their own expectations about ordering
— Will require local reordering in MOAB (will also be useful for on-node shared memory)

Influence on 1/0...

= Current HLL for I/O interact in terms of 1D or multi-D arrays

— Translation from various grid-based data structures can be non-trivial amount of code,
even for common ones (“7 dwarves”), e.g. unstructured, structured AMR, particle, etc.

= Need HLL's that communicate at a higher level of abstraction
= Damsel project: present a HLL for I/O in terms of grid and grid-based data
— Reduce the “impedance mismatch” between apps and I/0O library

— Minimize data copies between app & storage
— Enable other operations on data in-flight, e.g. compression, query

Influence on Data Analysis...

Assertion: many important pieces of an integrated data analysis capability are
either available as components of original simulation codes, or are being made
available as components; i.e. analysis and simulation are converging in the tools
they use

— Data /O, representation, access

— Numerical operators (max/min, gradient)

— Others (MS complex, streamlines, etc.)

This is a Good Thing in terms of both code reuse and accuracy

Using well-thought-out data model makes that easier, since components are more
flexible & have more headroom

Influence on Visualization...

= |f|can viz the data model, | can viz the data
= For example:

Moving toward:

Common set/tag conventions for: Common handling for:
Geometric model, Boundary conditions, + Picking, drawing, filtering,
Processor partitions, ... GUI form interactions, ...

= Moving towards that as part of mesh generation SBIR with Kitware; should have
VTK-based entity sets by end of Aug

= Then it becomes a question of how best to abstract any given data
— E.g. spectral element mesh/data

Going Forward...

= Even if we accomplish this component-based vision, some difficult questions
remain
— What to do about overlaps between existing components/libraries
e E.g.in CESAR, between MOAB, DIY, GLEAN

— Are there any critical component prototypes missing, such that everyone will have to
wait for that before they have a good integrated solution?

e Materials? Discretization? Fields?

— Can we develop benchmarks for pieces that can be composed into a full benchmark
too?

