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HPCToolkit Performance Tools
• Work at binary level for language independence

— unmodified, fully optimized codes w/ binary-only libraries 

• Asynchronous-sampling-based measurement
— minimize overhead and distortion; avoid blind spots
— compact data: well-suited for large-scale parallelism

• Collect and correlate multiple performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”
— ‘third-party’ metrics: if thread x affects y, then blame x 

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— avoid overwhelming with the details
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HPCToolkit Workflow

• Measure execution unobtrusively
— hpcrun: launch unmodified dynamically linked applications
— hpclink: link hpcrun into statically linked applications
— collect call path profiles for sample-sources of interest
— on-the-fly analysis: pinpoint idleness (work-stealing, locking)
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• Sample timer or hardware counter overflows

• Gather calling context using stack unwinding

Measure and attribute costs in their calling context

Call Path Profiling

4

Call path sample  Calling Context Tree (CCT)

Overhead proportional to sampling frequency... 
...not call frequency

instruction  pointer

return address

return address

return address

“main”

sample point
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HPCToolkit Workflow

• Analyze binary to recover program structure
— extract loop nesting & identify procedure inlining
— map transformed loops and procedures to source
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HPCToolkit Workflow

• Scalably combine multiple large-scale profiles
— integrate dynamic call paths with static source structure
— attribute measurements to source code

• Post-mortem analysis:
— statistical summary metrics; load imbalance analysis
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Scalably* Combining A Large-Scale Profile

7* Yes, I know ‘scalably’ is not a word — but it should be.
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Scalably Computing Statistics
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Details: PFLOTRAN @ 8K cores, JaguarPF
• hpcrun generates a (binary) file per-thread

— size of output: 7.2 GB (0.9 MB/process)
— overhead: 3% (230 smpl/sec)

• relative to unmonitored execution of 15.3 minutes 
— todo:

• use parallel I/O (e.g., SIONlib)
• apply sampling at multiple levels

• hpcprof-mpi
— size of data: 3.6 GB
— execution times:

— filters ‘uninteresting’ CCT paths
•  filter CCT node n if for all (additive) metrics m and all threads t:

 –       (I: inclusive)

— todo: exploit sparsity of thread-level metric database
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24 cores: 13.0 minutes
48 cores: 8.0 minutes
96 cores: 5.5 minutes

�

t∈threads

mI(n, t) < .001%
�

t∈threads

mI(root, t)
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HPCToolkit Workflow

• Presentation
— support top-down analysis with interactive viewer
— show context-sensitive metrics in three views
— generate plots of context-sensitive thread-level values
— analyze results anytime, anywhere
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B(x) = Wmax(x) + Cmin(x)− [Wµ(x) + Cmin(x)] = Wmax(x)−Wµ(x)

Analyzing Load Imbalance Post-Mortem
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(a) Actual Execution of x (b) Ideal Execution of x
            (same algorithm)

Wmax(x) Wµ(x) Cmin(x)
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Given a synchronized procedure x, compute imbalance waste, B(x)

(time of actual exe) (time of ideal exe) (imbalance waste)



• Cannot use prior equation to compute imbalance waste
— e.g.:                                   time of actual execution

• May be fine that procedure x is imbalanced!
— E.g.: each process performs different amount of work for x...

• ...but is balanced at a x’s caller

What If Procedure Is Not Synchronized?
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• Cannot apply prior equation to left (a), but could to right (b)

• Challenge: compute imbalance waste in its calling context 
— For what contexts can we compute imbalance waste?
— Can we identify waste more precisely than using differences in 

communication time?

Imbalanced vs. Balanced Procedures 
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(a) Execution of x (b) Execution of x’s Caller
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Blame-Shift Idleness in Call Path Profiles
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1. Identify idleness (exposed waiting): All imbalance is 
manifested in idleness (e.g., MPI_Cray_Progress_Wait)

2. Identify balance points 
(procedures or loops):
A balance point cannot 
contribute to imbalance

3. Blame-shift idleness (effect) 
on closest ancestor balance 
point (nearer to cause)

4. Scatter plots of thread-level CCT metrics help expose patterns. 
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Demo: Load Imbalance

PFLOTRAN: modeling multi-scale, multiphase, multi-component 
subsurface reactive flows

Example use: modeling sequestration of CO2 
in deep geologic formations, where resolving 
density-driven fingering patterns is necessary 
to accurately describe the rate of dissipation 

of the CO2 plume

Text and figures courtesy of PFLOTRAN Team 

Strong scaling 
study on Cray XT
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PFLOTRAN

2. Notice top two 
call sites...

3. Plot the per-process 
values:

Early finishers...

...become early 
arrivers at Allreduce

1. Drill down ‘hot path’ 
to loop (a balance point)

8K cores, Cray XT5 



The End
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