
Scalable Identification of
Load Imbalance in Parallel Executions

Using Call Path Profiles

Nathan Tallent
Laksono Adhianto, John Mellor-Crummey

Mike Fagan, Mark Krentel
Rice University

CScADS Workshop
August 2, 2010

hpctoolkit.org

http://hpctoolkit.org
http://hpctoolkit.org

2

HPCToolkit Performance Tools
• Work at binary level for language independence

— unmodified, fully optimized codes w/ binary-only libraries

• Asynchronous-sampling-based measurement
— minimize overhead and distortion; avoid blind spots
— compact data: well-suited for large-scale parallelism

• Collect and correlate multiple performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”
— ‘third-party’ metrics: if thread x affects y, then blame x

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— avoid overwhelming with the details

app.
source

optimized
binary

compile & link
(full optimization) call path

profile

profile
execution
[hpcrun/
hpclink]

binary
analysis

[hpcstruct]

analysis &
attribution to source

[hpcprof/mpi]
database

presentation
[hpcviewer]

program
structure

HPCToolkit Workflow

• Measure execution unobtrusively
— hpcrun: launch unmodified dynamically linked applications
— hpclink: link hpcrun into statically linked applications
— collect call path profiles for sample-sources of interest
— on-the-fly analysis: pinpoint idleness (work-stealing, locking)

3

• Sample timer or hardware counter overflows

• Gather calling context using stack unwinding

Measure and attribute costs in their calling context

Call Path Profiling

4

Call path sample Calling Context Tree (CCT)

Overhead proportional to sampling frequency...
...not call frequency

instruction pointer

return address

return address

return address

“main”

sample point

app.
source

optimized
binary

compile & link
(full optimization) call path

profile

profile
execution
[hpcrun/
hpclink]

binary
analysis

[hpcstruct]

analysis &
attribution to source

[hpcprof/mpi]
database

presentation
[hpcviewer]

program
structure

HPCToolkit Workflow

• Analyze binary to recover program structure
— extract loop nesting & identify procedure inlining
— map transformed loops and procedures to source

5

app.
source

optimized
binary

compile & link
(full optimization) call path

profile

profile
execution
[hpcrun/
hpclink]

binary
analysis

[hpcstruct]

analysis &
attribution to source

[hpcprof/mpi]
database

presentation
[hpcviewer]

program
structure

HPCToolkit Workflow

• Scalably combine multiple large-scale profiles
— integrate dynamic call paths with static source structure
— attribute measurements to source code

• Post-mortem analysis:
— statistical summary metrics; load imbalance analysis

6

Scalably* Combining A Large-Scale Profile

7* Yes, I know ‘scalably’ is not a word — but it should be.

p1

p2

…
 …

pP

R
ed

uc
e

B
ro

ad
ca

st

canonical CCT = CCTi ∪

…
 …

 []∑μσ
CCT metricsi → statistics

[]m1

align metricsi with canonical
CCT to form database

[]

[]m2

[]mP

[]m1

[]m2

[]
[]mn

[]∑μσ
database

CCTi

O(CCTi) O(mi)

constant space†

† SPMD apps

(+ symbolic info)

Scalably Computing Statistics

8

p1

p2

…
 …

pP

∑
 R

ed
uc

e

Simple example: Given x1, …, xn, compute arithmetic mean µ

Combine P
accumulator
sets into one

[x
1,

x 2
,

…
 …

 …
 x

n-
1,

x n
]

Finalize: apply non-
commutative & non-

associative operators
Accumulate inputs:
Apply commutative &
associative operations
(order doesn’t matter)

a1 ⇐ a1 + x1,i

One set of k
accumulators
per process

aP ⇐ aP + xP,i

µ = a / na = ∑ai = ∑xi

G
ro

up
:

Details: PFLOTRAN @ 8K cores, JaguarPF
• hpcrun generates a (binary) file per-thread

— size of output: 7.2 GB (0.9 MB/process)
— overhead: 3% (230 smpl/sec)

• relative to unmonitored execution of 15.3 minutes
— todo:

• use parallel I/O (e.g., SIONlib)
• apply sampling at multiple levels

• hpcprof-mpi
— size of data: 3.6 GB
— execution times:

— filters ‘uninteresting’ CCT paths
• filter CCT node n if for all (additive) metrics m and all threads t:

 – (I: inclusive)

— todo: exploit sparsity of thread-level metric database
9

24 cores: 13.0 minutes
48 cores: 8.0 minutes
96 cores: 5.5 minutes

�

t∈threads

mI(n, t) < .001%
�

t∈threads

mI(root, t)

app.
source

optimized
binary

compile & link
(full optimization) call path

profile

profile
execution
[hpcrun/
hpclink]

binary
analysis

[hpcstruct]

analysis &
attribution to source

[hpcprof/mpi]
database

presentation
[hpcviewer]

program
structure

HPCToolkit Workflow

• Presentation
— support top-down analysis with interactive viewer
— show context-sensitive metrics in three views
— generate plots of context-sensitive thread-level values
— analyze results anytime, anywhere

10

B(x) = Wmax(x) + Cmin(x)− [Wµ(x) + Cmin(x)] = Wmax(x)−Wµ(x)

Analyzing Load Imbalance Post-Mortem

11

(a) Actual Execution of x (b) Ideal Execution of x
 (same algorithm)

Wmax(x) Wµ(x) Cmin(x)

p1

p2

p3

p4

commwork

commwork

work

work

comm

work

work

work

work (Im
ba

la
nc

e
w

as
te

)

Cmin(x)

Given a synchronized procedure x, compute imbalance waste, B(x)

(time of actual exe) (time of ideal exe) (imbalance waste)

• Cannot use prior equation to compute imbalance waste
— e.g.: time of actual execution

• May be fine that procedure x is imbalanced!
— E.g.: each process performs different amount of work for x...

• ...but is balanced at a x’s caller

What If Procedure Is Not Synchronized?

12

p1

p2

p3

p4

commwork

commwork

work

work

comm

Wmax(x) Cmin(x)

Wmax(x) + Cmin(x) �=

• Cannot apply prior equation to left (a), but could to right (b)

• Challenge: compute imbalance waste in its calling context
— For what contexts can we compute imbalance waste?
— Can we identify waste more precisely than using differences in

communication time?

Imbalanced vs. Balanced Procedures

13

(a) Execution of x (b) Execution of x’s Caller

p1

p2

p3

p4

commwork

commwork

work

work

comm

xx

xx

x x y

y

y

x

Blame-Shift Idleness in Call Path Profiles

14

1. Identify idleness (exposed waiting): All imbalance is
manifested in idleness (e.g., MPI_Cray_Progress_Wait)

2. Identify balance points
(procedures or loops):
A balance point cannot
contribute to imbalance

3. Blame-shift idleness (effect)
on closest ancestor balance
point (nearer to cause)

4. Scatter plots of thread-level CCT metrics help expose patterns.

15

Demo: Load Imbalance

PFLOTRAN: modeling multi-scale, multiphase, multi-component
subsurface reactive flows

Example use: modeling sequestration of CO2
in deep geologic formations, where resolving
density-driven fingering patterns is necessary
to accurately describe the rate of dissipation

of the CO2 plume

Text and figures courtesy of PFLOTRAN Team

Strong scaling
study on Cray XT

16

PFLOTRAN

2. Notice top two
call sites...

3. Plot the per-process
values:

Early finishers...

...become early
arrivers at Allreduce

1. Drill down ‘hot path’
to loop (a balance point)

8K cores, Cray XT5

The End

17

