Scalable Identification of

Load Imbalance in Parallel Executions

2

RICE

Using Call Path Profiles

Nathan Tallent
Laksono Adhianto, John Mellor-Crummey
Mike Fagan, Mark Krentel

Rice University

CScADS Workshop
August 2, 2010

hpctoolkit.org

http://hpctoolkit.org
http://hpctoolkit.org

HPCToolkit Performance Tools

* Work at binary level for language independence
— unmodified, fully optimized codes w/ binary-only libraries

Asynchronous-sampling-based measurement
— minimize overhead and distortion; avoid blind spots
— compact data: well-suited for large-scale parallelism

Collect and correlate multiple performance metrics

— diagnosis requires more than one species of metric

— derived metrics: “unused bandwidth” rather than “cycles”
— ‘third-party’ metrics: if thread x affects y, then blame x

Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

Support top-down performance analysis
— avoid overwhelming with the details

HPCToolkit Workflow

compile & link profile

(full optimization) execution call path
profile

[hpcrun/

app. yptimized hpclink]
source yinarv _—

* Measure execution unobtrusively

— hpcrun: launch unmodified dynamically linked applications
— hpclink: link hpcrun into statically linked applications

— collect call path profiles for sample-sources of interest

— on-the-fly analysis: pinpoint idleness (work-stealing, locking)

presentation _ an_alysis &
e database attribution to source
[hpcprof/mpi]

program
structure

Call Path Profiling

Measure and attribute costs in their calling context

e Sample timer or hardware counter overflows

e Gather calling context using stack unwinding

Call path sample Calling Context Tree (CCT)

@ return address
‘ return address

‘ return address

‘ instruction pointer

.
&

Overhead proportional to sampling frequency...
...not call frequency

sample point

HPCToolkit Workflow

compile & link profile

(full optimization) execution call path
profile

[hpcrun/

app. yptimized hpclink]
source yinarv

 Analyze binary to recover program structure
— extract loop nesting & identify procedure inlining
— map transformed loops and procedures to source

program
structure

presentation _ an_alysis &
e database attribution to source
[hpcprof/mpi]

HPCToolkit Workflow

compile & link profile

(full optimization) execution call path
profile

[hpcrun/

app. yptimized hpclink]
source yinarv

program
structure

e Scalably combine multiple large-scale profiles
— integrate dynamic call paths with static source structure

— attribute measurements to source code
e Post-mortem analysis:

— statistical summary metrics; load imbalance analysis

presentation _ an_alysis &
e database attribution to source
[hpcprof/mpi]

Scalably* Combining A Large-Scale Profile

CCT, canonical CCT = | J CCT;

. \&[mil (+ symbolic info)
A

constant spacef

ALl

0(CCT))

Broadcast

align metrics; with canonical
CCT metriCSi — statistics CCT to form database

*Yes, | know ‘scalably’ is not a word — but it should be. T SPMD apps 7

Simple example: Given xy, ..

Scalably Computing Statistics

Xn-1, Xn]

[X1,X2,

Group:

a; < aj+x
s, (A1 ant Xy
2 R N
P \
One set of k
accumulators
per process
\ ---------------------------
< ap+ X
oy pP-..a..Pa.l? B.I el fomaam

“

ccumulate inputs:
Apply commutative &
associative operations

(order doesn’t matter)

Combine P
accumulator
sets into one

., Xn, compute arithmetic mean p

> Xi u=al/n

Finalize: apply non-
commutative & non-
associative operators

Details: PFLOTRAN @ 8K cores, JaguarPF

 hpcrun generates a (binary) file per-thread
— size of output: 7.2 GB (0.9 MB/process)

— overhead: 3% (230 smpl/sec)
relative to unmonitored execution of 15.3 minutes
— todo:

use parallel 1/O (e.g., SIONIib)
apply sampling at multiple levels

* hpcprof-mpi
— size of data: 3.6 GB 24 cores: 13.0 minutes

— execution times: ———> |48 cores: 8.0 minutes
96 cores: 5.5 minutes

— filters ‘uninteresting’ CCT paths
« filter CCT node = if for all (additive) metrics m and all threads t:
— Z my(n,t) < .001% Z m;(root, t) (I: inclusive)

tEthreads tEthreads
— todo: exploit sparsity of thread-level metric database

HPCToolkit Workflow

compile & link profile
(full optimization) execution call path

[hpcrun/ profile

app. yotimized hpclink]
source i

* Presentation
— support top-down analysis with interactive viewer
— show context-sensitive metrics in three views
— generate plots of context-sensitive thread-level values
— analyze results anytime, anywhere

presentation analysis &
e database attribution to source
[hpcprof/mpi]

program
structure

Analyzing Load Imbalance Post-Mortem

Given a synchronized procedure x, compute imbalance waste, B(z)

(a) Actual Execution of x (b) Ideal Execution of x

work

work

work

work

i}

7!

(same algorithm)

(Imbalance waste)

WmaX(ZE) Cmin(x)

Wmax(x) + Cmin(m) —

(time of actual exe)

(W) + Crnin (2)]| = Winax ()

—Wy(z)

(time of ideal exe) (imbalance waste)

11

What If Procedure Is Not Synchronized?

work T >

work >

f

Wmax(a:) Cmin<$)

e Cannot use prior equation to compute imbalance waste
— €.9.: ! Whax() + Crmin(z)|# time of actual execution

 May be fine that procedure x is imbalanced!

— E.g.: each process performs different amount of work for x...
...but is balanced at a x’s caller

Imbalanced vs. Balanced Procedures

e Cannot apply prior equation to left (a), but could to right (b)

(a) Execution of x (b) Execution of x’s Caller

work comm

work comm

work

 Challenge: compute imbalance waste in its calling context
— For what contexts can we compute imbalance waste?

— Can we identify waste more precisely than using differences in
communication time?

13

Blame-Shift Idleness in Call Path Profiles

1. lIdentify idleness (exposed waiting): All imbalance is
manifested in idleness (e.g., MPI_Cray Progress Wait)

2. ldentify balance points
(procedures or loops):
A balance point cannot
contribute to imbalance

3. Blame-shift idleness (effect)
on closest ancestor balance
point (nearer to cause)

4. Scatter plots of thread-level CCT metrics help expose patterns.

14

Demo: Load Imbalance

PFLOTRAN: modeling multi-scale, multiphase, multi-component
subsurface reactive flows

Example use: modeling sequestration of CO

in deep geologic formations, where resolving

density-driven fingering patterns is necessary

to accurately describe the rate of dissipation
of the CO2 plume

MPI_Comm_dup
" MP_Algsther

" MP_Fle_open

o chone Strong scaling
B e_read_t study on Cray XT

| MP_Alreduce (Sync)

%of total time

u MPI_Alreduce
. Mathiole_SeqBAU L

8 MatSolve_SeqBAU_1_NaturaiOrdering

1024 2048 4056 B192 16384 27580

Fresesies Goves Text and figures courtesy of PFLOTRAN Team 15

e limbalance (H® TOT_CYC:Sum (1)

PFLOTRAN £ pflotran 5.28e+15 1.85e+16 100 %
¥ [timestepper_module_stepperrun_ 5.17e+15| 1.82e+16 98.3%

¥ loop at timestepper.F90: 384 5.17e+15 1.82e+1lé6 98.2%

v ' 2.22e+15 1.33e+16 72.0%

8K COI’ES, Cray XT5 & t|mestep?er_moduIe_steppersteptransportdt_ e e

¥ loop at timestepper.F90: 1230 2.22e+15 1l.33e+l6 72.0%

¥ loop at timestepper.F90: 1254 2.22e+15| 1.32e+16 71.3%

¥ [snessolve_ 2.22e+15 1.30e+16 70.4%

. v 2.22e+15 1.30e+16 70.4%

1. Drill down ‘hot path’ SrE=n ° =

| bal int ¥ [P SNESSolve_LS 2.22e+15 1.30e+16 70.4%
to oop (a alance poin) ¥| loop atIs.c: 181 2.15e+15| 1.27e+16 68.8%
> SNES_KSPSolve 1.19e+15 6.44e+15]34.8%

2. Notice top two H 2 SNESComputeJacob| 6.2le+l4 4.07e+15[22.0%
II lt ' "‘””’.-”ﬂ - - - -] ‘ !
cail sites... 89 ierr =|SNESComputelacobian(snes,X,&snes->jacobian,&snes->jacobian_pre,8
190 ierr = KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre,flg)
191 ierr =|SNES_KSPSolve({snes,snes->ksp,F,Y);CHKERRQ(ierr); E

T

3. Plot the per-process

values:

Early finishers...

SNESComputeJacobian: TOT_CYC (I)

500,000,000,000 | il SRy g

8 490,000,000,000

...become early
arrivers at Allreduce

g 480,000,000,000 —
470,000,000,000 - - .
460,000,000,000 4 : : : .S — ne
0 1,000 2,000 3,000 4000 | 5000 6000 7000 8000
Process.Fhreads
SNES_KSPSolve: TOT_CYC (I)
moor e Ll
825,000,000,000 E .
.
ﬂ | L = | nd
= 800,000,000,000 a ¥,
3 iﬂﬁ“ﬁé‘ r&'—'ﬁﬂ'ﬁi
775,000,000,000| g el Lﬁ b "Te
J_A
0 1,000 2,000 3,000 4000 5000 6000 7,000 1@600

The End

17

