
1

PETSc and its
Ongoing Research and

D l tDevelopment

PETSc Team

Presented by Hong Zhang

1

Presented by Hong Zhang
CScADS Workshop on Libraries and Algorithms for Petascale

Applications, Snowbird Utah
Aug. 1, 2007

Outline

• Overview of PETSc• Overview of PETSc
– Linear solver interface: KSP
– Nonlinear solver interface: SNES
– Profiling and debugging

2

• Ongoing research and developments

2

Non-LANS
Team and Active Developers

1991 1993 1995 1996 2000 2001 2003 2006

How did PETSc Originate?

PETSc was developed as a Platform for
ExperimentationExperimentation

We want to experiment with different
• Models
• Discretizations
• Solvers
• Algorithms (which blur these boundaries)

3

Successfully transitioned from basic research
to common community tool

• Applications of PETSc
i l i (20)• Nano-simulations (20)

• Biology/Medical(28)
• Cardiology
• Imaging and Surgery
• Fusion (10)
• Geosciences (20)
• Environmental/Subsurface Flow (26)
• Computational Fluid Dynamics (49)

5

Computational Fluid Dynamics (49)
• Wave propagation and the Helmholz equation (12)
• Optimization (7)
• Other Application Areas (68)
• Software packages that use or interface to PETSc (30)
• Software engineering (30)
• Algorithm analysis and design (48)

Who Uses PETSc?

• Computational ScientistsComputational Scientists
– PyLith (TECTON), Underworld, Columbia group

• Algorithm Developers
– Iterative methods and Preconditioning researchers

• Package Developers

6

g p
– SIPs, SLEPc, TAO, MagPar, StGermain, Dealll

4

The Role of PETSc

Developing parallel, nontrivial PDE solvers
th t d li hi h f i till diffi ltthat deliver high performance is still difficult
and requires months (or even years) of
concentrated effort.

PETSc is a tool that can ease these difficulties
d d th d l t ti b t it i t

7

and reduce the development time, but it is not
a black-box PDE solver, nor a silver bullet.
-Barry Smith

Features

• Many (parallel) vector/array operations• Many (parallel) vector/array operations
• Numerous (parallel) matrix formats and operations
• Numerous linear solvers
• Nonlinear solvers
• Limited ODE integrators

8

• Limited parallel grid/data management
• Common interface for most DOE solver software

5

PETSc Application Codes

Structure of PETSc

Matrices, Vectors, Indices Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

9

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc Structure

Interfaced Packages
1. LU (Sequential)

• SuperLU (Demmel and Li, LBNL)
• ESSL (IBM)
• Matlab

LUSOL (f MINOS Mi h l S d St f d)• LUSOL (from MINOS - Michael Saunders, Stanford)
• LAPACK
• PLAPACK (van de Geijn, UT Austin)
• UMFPACK (Timothy A. Davis)

2. Parallel LU
• SuperLU_DIST (Demmel and Li, LBNL)
• SPOOLES (Ashcroft, Boeing, funded by ARPA)
• MUMPS (European)

10

MUMPS (European)
• PLAPACK (van de Geijn, UT Austin)

3. Parallel Cholesky
• DSCPACK (Raghavan, Penn. State)
• SPOOLES (Ashcroft, Boeing, funded by ARPA)
• PLAPACK (van de Geijn, UT Austin)

6

Interfaced Packages
4. XYTlib – parallel direct solver (Fischer and Tufo, ANL)
5. SPAI – Sparse approximate inverse (parallel)5. SPAI Sparse approximate inverse (parallel)

• Parasails (Chow, part of Hypre, LLNL)
• SPAI 3.0 (Grote/Barnard)

6. Algebraic multigrid
• Parallel BoomerAMG (part of Hypre, LLNL)
• ML (part of Trilinos, SNL)

7. Parallel ICC(0) – BlockSolve95 (Jones and Plassman, ANL)

11

8. Parallel ILU
• BlockSolve95 (Jones and Plassman, ANL)
• PILUT (part of Hypre, LLNL)
• EUCLID (Hysom – also part of Hypre, ODU/LLNL)

9. Sequential ILUDT (SPARSEKIT2- Y. Saad, U of MN)

Interfaced Packages
10. Parititioning

• Parmetis• Parmetis
• Chaco
• Jostle
• Party
• Scotch

11. ODE integrators

12

• Sundials (LLNL)
12. Eigenvalue solvers

• BLOPEX (developed by Andrew Knyazev)

7

Child Packages of PETSc

• SIPs - Shift-and-Invert Parallel SpectralSIPs Shift and Invert Parallel Spectral
Transformations

• SLEPc - scalable eigenvalue/eigenvector solver
packages.

• TAO - scalable optimization algorithms
• veltisto (“optimum”)- for problems with

13

(p) p
constraints which are time-independent pdes.

All have PETSc’s style of programming

What Can We Handle?
• PETSc has run problem with 500 million unknowns

http://www scconference org/sc2004/schedule/pdfs/pap111 pdfhttp://www.scconference.org/sc2004/schedule/pdfs/pap111.pdf

• PETSc has run on over 6,000 processors efficiently
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P776.ps.Z

• PETSc applications have run at 2 Teraflops
LANL PFLOTRAN code

14

LANL PFLOTRAN code

• PETSc also runs on your laptop

• Only a handful of our users ever go over 64 processors

8

The PETSc Programming Model
• Distributed memory, “shared-nothing”

• Requires only a standard compiler
• Access to data on remote machines through MPI

• Hide within objects the details of the
communication

15

• User orchestrates communication at a higher
abstract level than direct MPI calls

PETSc Structure

Getting Started

PetscInitialize();
ObjCreate(MPI_comm,&obj);
ObjSetType(obj,);
ObjSetFromOptions(obj,);

ObjSolve(obj,);
ObjGetxxx(obj,);

16

ObjGetxxx(obj,);

ObjDestroy(obj);
PetscFinalize()

Integration

9

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers (SNES)

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers (TS)

PETSc Numerical Components

Compressed Blocked Compressed Block

g

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others

Preconditioners (PC)

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Krylov Subspace Methods (KSP)

Matrices (Mat)

17

p
Sparse Row

(AIJ)

p
Sparse Row

(BAIJ)
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other
Index Sets (IS)

Vectors (Vec)

Distributed Arrays(DA)

Matrix-free

Linear Solver Interface: KSP
Main Routine

PETSc

Solve
Ax = b PC

Linear Solvers (KSP)

18

Application
Initialization Evaluation of A and b Post-

Processing

PETSc codeUser code
solvers:
linearbeginner

10

• -ksp type [cg,gmres,bcgs,tfqmr,…]

Setting Solver Options at Runtime

p_ yp [g,g , g , q ,]
• -pc_type [lu,ilu,jacobi,sor,asm,…]

• -ksp_max_it <max_iters>
• -ksp_gmres_restart <restart>
• -pc_asm_overlap <overlap>

1

2

19

• -pc_asm_type [basic,restrict,interpolate,none]
• etc ...

solvers:
linearbeginner

1
intermediate

2

Recursion: Specifying Solvers for
Schwarz Preconditioner Blocks

• Specify KSP solvers and options with “-sub” prefix• Specify KSP solvers and options with -sub prefix,
e.g.,
– Full or incomplete factorization

-sub_pc_type lu
-sub_pc_type ilu -sub_pc_ilu_levels <levels>

Can also use inner Krylov iterations e g

20

– Can also use inner Krylov iterations, e.g.,
-sub_ksp_type gmres -sub_ksp_rtol <rtol>
-sub_ksp_max_it <maxit>

solvers: linear:
preconditionersbeginner

11

Summary of Proposed 3D Time Advance

0 1 0 1 1 1 1 1 1 1() 0n n n nB U D A U B U C U Dε+ + + ++ + + + + =1 1() 0j j j j j j j j j jB U D A U B U C U Dε + −+ + + + + =
1n

jU +

0 1 1 1, , ,j j j jB A B C
is vector of all unknown velocities on plane j at new time

0 1,j jD D
are 2D sparse matrices at plane j

are 2D vectors at plane j

0

21

11 0 0 1 1 1 1
1 1()i i i i

j j j j j j j j j jU B D A U B U C U Dε
−+

+ −⎡ ⎤ ⎡ ⎤= − + + + +⎣ ⎦ ⎣ ⎦

Possible iteration scheme. Use SuperLU to factor the simultaneously

Note that matrices only need to be factored once per timestep0
jB

0
jB

Main Routine

Flow of Control for PDE Solution

PETSc
Linear Solvers (KSP)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

22

PETSc codeUser code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC

PETSc Structure

12

Nonlinear Solver Interface: SNES

Goal: For problems arising from PDEs,
support the general solution of F(u) = 0support the general solution of F(u) = 0

User provides:
– Code to evaluate F(u)
– Code to evaluate Jacobian of F(u) (optional)

• or use sparse finite difference approximation
t ti diff ti ti

23

• or use automatic differentiation
– AD support via collaboration with P. Hovland and B. Norris
– Coming in next PETSc release via automated interface to

ADIFOR and ADIC (see http://www.mcs.anl.gov/autodiff)

solvers:
nonlinear

SNES: Review of Basic Usage
• SNESCreate() - Create SNES context()
• SNESSetFunction() - Set function eval.

routine
• SNESSetJacobian() - Set Jacobian eval.

routine
• SNESSetFromOptions() - Set runtime solver options

for [SNES,SLES, KSP,PC]
• SNESSolve() - Run nonlinear solver

24

SNESSolve() Run nonlinear solver
• SNESView() - View solver options

actually used at runtime
(alternative: -snes_view)

• SNESDestroy() - Destroy solver
solvers:
nonlinear

13

Uniform access to all linear and
nonlinear solvers

• -ksp_type [cg,gmres,bcgs,tfqmr,…]
• -pc_type [lu,ilu,jacobi,sor,asm,…]
• -snes_type [ls,…]

• -snes_line_search <line search method>
sles ls <parameters>

1

25

• -sles_ls <parameters>
• -snes_convergence <tolerance>
• etc...

solvers:
nonlinear

2

PETSc Programming Aids
• Correctness Debugging

– Automatic generation of tracebacks

– Detecting memory corruption and leaks

– Optional user-defined error handlers

• Performance Profiling

26

g
– Integrated profiling using -log_summary
– Profiling by stages of an application
– User-defined events

Integration

14

Ongoing Research and Developments
• Framework for unstructured meshes and functions defined

over them

• Framework for multi-model algebraic system

• Bypassing the sparse matrix memory bandwidth bottleneck
– Large number of processors (nproc =1k, 10k,…)
– Peta-scale performance

• Parallel Fast Poisson Solver

27

• More TS methods
• …

Framework for Meshes and Functions
Defined over Them

• The PETSc DA class is a topology and discretization interface.
– Structured grid interfaceStructured grid interface

• Fixed simple topology
– Supports stencils, communication, reordering

• Limited idea of operators

• The PETSc Mesh class is a topology interface

28

– Unstructured grid interface
• Arbitrary topology and element shape

– Supports partitioning, distribution, and global orders

15

• The PETSc DM class is a hierarchy interface.
– Supports multigrid

• DMMG combines it with the MG preconditionerDMMG combines it with the MG preconditioner
– Abstracts the logic of multilevel methods

• The PETSc Section class is a function interface
– Functions over unstructured grids

• Arbitrary layout of degrees of freedom

29

• Arbitrary layout of degrees of freedom
– Supports distribution and assembly

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s, lm[], ln[], *da)
S ifi i di itwrap: Specifies periodicity

DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, …

type: Specifies stencil
DA_STENCIL_BOX, DA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction

30

s: The stencil width
lm/ln: Alternative array of local sizes

16

Distributed Arrays
Data layout and ghost values

Proc 10

Proc 0 Proc 1

Proc 10

Proc 0 Proc 1

31

Box-type
stencil

Star-type
stencil

data layout:
distributed arrays

Ghost Values
Local node Ghost node

32data layout

To evaluate a local function f(x) , each process requires
• its local portion of the vector x
• its ghost values – bordering portions of x owned by neighboring processes.

17

A DA is more than a Mesh

A DA contains
topology, geometry, and an implicit Q1 discretization

It is used as a template to create
• Vectors (functions)
• Matrices (linear operator)

33

Creating the Mesh

• Generic object
– MeshCreate()
– MeshSetMesh()

• File input
– MeshCreatePCICE()
– MeshCreatePyLith()

• Generation
– MeshGenerate()
– MeshRefine()
– ALE: :MeshBuilder::createSquareBoundary

34

• Representation
– ALE::SieveBuilder::buildTopology()
– ALE::SieveBuilder::buildCoordinates()

• Partitioning and distribution
– MeshDistribute()
– MeshDistributeByFace()

18

Parallel Sieves

• Sieves use names, not numberings
N b i b t t d d d– Numberings can be constructed on demand

• Overlaps relate names on different processes
– An overlap can be encoded by a Sieve

• Distribution of a Section pushes forward along the Overlap
– Sieves are distributed as “cone” sections

35

Sections associate data to submeshes

• Name comes from section of a fiber bundle
– Generalizes linear algebra paradigm

• Define restrict(), update()
• Define complete()
• Assembly routines take a Sieve and several Sections

– This is called a Bundle

36

This is called a Bundle

19

Section Types
Section can contain arbitrary values
• C++ interface is templated over value type
• C interface has two value types• C interface has two value types

– SectionReal
– SectionInt

Section can have arbitrary layout
• C++ interface can place unknowns on any Mesh entity (Sieve point)

– Mesh::setupField() parametrized by Discretization and BoundaryCondition

37

• C interface has default layouts
– MeshGetVertexSectionReal()
– MeshGetCellSectionReal()

Section Assembly

First we do local operations:
– Loop over cells– Loop over cells
– Compute cell geometry
– Integrate each basis function to produce an element vector
– Call SectionUpdateAdd()

Then we do global operations:
– SectionComplete() exchanges data across overlap

38

SectionComplete() exchanges data across overlap
• C just adds nonlocal values (C++ is flexible)

– C++ also allows completion over arbitrary overlap

20

Framework for
Multi-model Algebraic System

~petsc/src/snes/examples/tutorials/ex31.c, ex32.c

39

A model "multi-physics" solver based on the Vincent Mousseau's reactor core pilot
code:

Framework for Multi-model Algebraic System
~petsc/src/snes/examples/tutorials/ex31.c

code:
There are three grids

DA1

DA2

DA3

Fluid

40

Thermal conduction

(cladding and core)

Fission (core)

21

/* Create the DMComposite object to manage the three grids/physics. */
DMCompositeCreate(app.comm,&app.pack);
DACreate1d(app.comm,DA_XPERIODIC,app.nxv,6,3,0,&da1);
DMCompositeAddDA(app.pack,da1);
DACreate2d(app.comm,DA_YPERIODIC,DA_STENCIL_STAR,…,&da2);
DMCompositeAddDA(app.pack,da2);
DAC 2d(DA XYPERIODIC DA STENCIL STAR &d 3)DACreate2d(app.comm,DA_XYPERIODIC,DA_STENCIL_STAR,…,&da3);
DMCompositeAddDA(app.pack,da3);

/* Create the solver object and attach the grid/physics info */
DMMGCreate(app.comm,1,0,&dmmg);
DMMGSetDM(dmmg,(DM)app.pack);
DMMGSetSNES(dmmg,FormFunction,0);

41

/* Solve the nonlinear system */
DMMGSolve(dmmg);

/* Free work space */
DMCompositeDestroy(app.pack);
DMMGDestroy(dmmg);

/* Unwraps the input vector and passes its local ghosted pieces into the user function */
FormFunction(SNES snes,Vec X,Vec F,void *ctx)
…
DMCompositeGetEntries(dm,&da1,&da2,&da3);
DAGetLocalInfo(da1,&info1);

/* Get local vectors to hold ghosted parts of X;
then fill in the ghosted vectors from the unghosted global vector X */

DMCompositeGetLocalVectors(dm,&X1,&X2,&X3);
DMCompositeScatter(dm,X,X1,X2,X3);

/* Access subvectors in F - not ghosted and directly access the memory locations in F */
DMCompositeGetAccess(dm,F,&F1,&F2,&F3);

42

/* Evaluate local user provided function */
FormFunctionLocalFluid(&info1,x1,f1);
FormFunctionLocalThermal(&info2,x2,f2);
FormFunctionLocalFuel(&info3,x3,f3);
…

22

• Newton multigrid provides

Bypassing the Sparse Matrix Memory
Bandwidth Bottleneck

Newton-multigrid provides
– good nonlinear solver
– easy utilization of software libraries
– low computational efficiency

• Multigrid-Newton provides
– good nonlinear solver

43

good nonlinear solver
– lower memory usage
– potential for high computational efficiency
– requires “code generation/in-lining”

• Parallel Fast Poisson Solver

• More TS methods

• …

44

23

How will we solve numerical applications
in 20 years?

• Not with the algorithms we use today?

• Not with the software (development) we use
today?

45

y

How Can We Help?
• Provide documentation:Provide documentation:

– http://www.mcs.anl.gov/petsc
• Quickly answer questions
• Help install
• Guide large scale flexible code development

46

• Answer email at petsc-maint@mcs.anl.gov

