PETSc and its
Ongoing Research and
Development

PETSc Team

Presented by Hong Zhang

CScADS Workshop on Libraries and Algorithms for Petascale
Applications, Snowbird Utah

Aug. 1, 2007

Outline

e Overview of PETSc
— Linear solver interface: KSP
— Nonlinear solver interface: SNES
— Profiling and debugging

» Ongoing research and developments

Team and Active Developers
Non-LANS

1991 1993 1995 1996 2000 2001 2003 2006

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different

* Models

 Discretizations

« Solvers

» Algorithms (which blur these boundaries)

Successfully transitioned from basic research
to common community tool

Applications of PETSc
Nano-simulations (20)
Biology/Medical(28)
e Cardiology
* Imaging and Surgery
* Fusion (10)
* Geosciences (20)
* Environmental/Subsurface Flow (26)
* Computational Fluid Dynamics (49)
Wave propagation and the Helmholz equation (12)
Optimization (7)
Other Application Areas (68)
Software packages that use or interface to PETSc (30)
Software engineering (30)
Algorithm analysis and design (48) 5

Who Uses PETSc?

« Computational Scientists

— PyLith (TECTON), Underworld, Columbia group
 Algorithm Developers

— Iterative methods and Preconditioning researchers
» Package Developers

— SIPs, SLEPc, TAO, MagPar, StGermain, Dealll

The Role of PETSc

Developing parallel, nontrivial PDE solvers
that deliver high performance is still difficult
and requires months (or even years) of
concentrated effort.

PETSc is a tool that can ease these difficulties
and reduce the development time, but it is not
a black-box PDE solver, nor a silver bullet.

-Barry Smith

Features

Many (parallel) vector/array operations

Numerous (parallel) matrix formats and operations
Numerous linear solvers

Nonlinear solvers

Limited ODE integrators

Limited parallel grid/data management

Common interface for most DOE solver software

Structure of PETSc

PETSc Structure

Interfaced Packages

1. LU (Sequential)
SuperLU (Demmel and Li, LBNL)
ESSL (IBM)
Matlab
LUSOL (from MINOS - Michael Saunders, Stanford)
LAPACK
PLAPACK (van de Geijn, UT Austin)
UMFPACK (Timothy A. Davis)
2. Parallel LU
SuperLU_DIST (Demmel and Li, LBNL)
SPOOLES (Ashcroft, Boeing, funded by ARPA)
MUMPS (European)
PLAPACK (van de Geijn, UT Austin)
3. Parallel Cholesky
DSCPACK (Raghavan, Penn. State)
e SPOOLES (Ashcroft, Boeing, funded by ARPA)
e PLAPACK (van de Geijn, UT Austin)

10

Interfaced Packages

>

XYTlib — parallel direct solver (Fischer and Tufo, ANL)

SPAI — Sparse approximate inverse (parallel)

» Parasails (Chow, part of Hypre, LLNL)

e SPAI 3.0 (Grote/Barnard)

Algebraic multigrid

* Parallel BoomerAMG (part of Hypre, LLNL)

e ML (part of Trilinos, SNL)

Parallel ICC(0) — BlockSolve95 (Jones and Plassman, ANL)
Parallel ILU

¢ BlockSolve95 (Jones and Plassman, ANL)

e PILUT (part of Hypre, LLNL)

e EUCLID (Hysom - also part of Hypre, ODU/LLNL)
Sequential ILUDT (SPARSEKIT2- Y. Saad, U of MN)

o

o

o ~

©

11

Interfaced Packages

10. Parititioning

e Parmetis
 Chaco

e Jostle
 Party

e Scotch

11. ODE integrators
» Sundials (LLNL)
12. Eigenvalue solvers
* BLOPEX (developed by Andrew Knyazev)

12

Child Packages of PETSc

 SIPs - Shift-and-Invert Parallel Spectral
Transformations

» SLEPCc - scalable eigenvalue/eigenvector solver
packages.

e TAO - scalable optimization algorithms

* veltisto (“optimum”)- for problems with
constraints which are time-independent pdes.

All have PETSc’s style of programming

13

What Can We Handle?

« PETSc has run problem with 500 million unknowns
http://www.scconference.org/sc2004/schedule/pdfs/papl1l.pdf

* PETSc has run on over 6,000 processors efficiently
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P776.ps.Z

* PETSc applications have run at 2 Teraflops
LANL PFLOTRAN code

» PETSc also runs on your laptop

 Only a handful of our users ever go over 64 processors

14

The PETSc Programming Model

 Distributed memory, “shared-nothing”
» Requires only a standard compiler
* Access to data on remote machines through MPI

» Hide within objects the details of the
communication

» User orchestrates communication at a higher
abstract level than direct MPI calls

PETSc Structure

Getting Started

Petsclnitialize();
ObjCreate(MPI_comm,&obj);
ObjSetType(obj,);
ObjSetFromOptions(obj,);

ObjSolve(oby,);
ObjGetxxx(obj,);

ObjDestroy(obj);
PetscFinalize()

Integration

PETSc Numerical Components

Nonlinear Solvers (SNES)

Time Steppers (TS)

Newton-based Methods
Other

Line Search | Trust Region

Euler Euler

Backward [Pseudo Time

Stepping

Other

Krylov Subspace Methods (KSP)

GMRES | CG ‘ CGS ‘Bi-CG-STAB TFQMR ‘Richardson|chebychev| Other

Preconditioners (PC)
Additi Block . LU
Schwarty | Jacobi ‘ Jacobi Ly Icc ‘ (Sequential only) | Others
| Matrices (Mat) |
Compressed | Blocked Compressed Block
Sparse Row Sparse Row Diagonal Dense Matrix-free | Other
(A1) (BAIJ) (BDIAG)
[Distributed Arrays(DA)] Index Sets (15)
Indices | Block Indices | Stride Other
Vectors (\Vec)
17
Linear Solvers (KSP)
< User code <> PETSc code
solvers:

Setting Solver Options at Runtime

» -ksp_type [cg,gmres,bcgs,tfgmr,...]
e -pc_type [lu,ilu,jacobi,sor,asm,...] A\

-ksp_max_it <max_iters> @
-ksp_gmres_restart <restart>
-pc_asm_overlap <overlap>

-pc_asm_type [basic,restrict,interpolate,none]
etc ...

A @ solvers:

| beginner | intermediate | linear

Recursion: Specifying Solvers for
Schwarz Preconditioner Blocks

» Specify KSP solvers and options with “-sub” prefix,

e.g.,

— Full or incomplete factorization
-sub_pc_type lu
-sub_pc_typeilu -sub_pc ilu_levels <levels>

— Can also use inner Krylov iterations, e.g.,
-sub_ksp _type gmres -sub_ksp_rtol <rtol>
-sub_ksp_max_it <maxit>

- solvers: linear:
beginner preconditioners

10

Summary of Proposed 3D Time Advance

0y | n+1 0 1 n+l 1 n+l 1 n+l 1y _
BiU!™ +Dj +e(AUL +BU +CU +D;)=0
U ;Hl is vector of all unknown velocities on plane j at new time
0 Al pl 1
Bj) Aj1 Bj, Cj are 2D sparse matrices at plane j

D?, D} are 2D vectors at plane

Possible iteration scheme. Use SuperLU to factor the B? simultaneously
j+l

Uit =B] D +&(AU!, +BIU +CIUL, +DY)]

Note that B? matrices only need to be factored once per timestep

Flow of Control for PDE Solution

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

PC

< User code < PETSc code

PETSc Structure

11

Nonlinear Solver Interface: SNES

Goal: For problems arising from PDEs,
support the general solution of F(u) =0

User provides:

— Code to evaluate F(u)

— Code to evaluate Jacobian of F(u) (optional)
* or use sparse finite difference approximation
* or use automatic differentiation

— AD support via collaboration with P. Hovland and B. Norris

— Coming in next PETSc release via automated interface to
ADIFOR and ADIC (see http://www.mcs.anl.gov/autodiff)

solvers:
nonlinear

SNES: Review of Basic Usage

SNESCreate() - Create SNES context

SNESSetFunction() - Set function eval.

routine

SNESSetJacobian() - Set Jacobian eval.

routine

SNESSetFromOptions() - Set runtime solver options
for [SNES,SLES, KSP,PC]

SNESSolve() - Run nonlinear solver

SNESView() - View solver options

actually used at runtime
(alternative: -snes_view)

SNESDestroy() - Destroy solver

solvers:
nonlinear

12

Uniform access to all linear and
nonlinear solvers

» -ksp_type [cg,gmres,bcgs,tfgmr,...]
e -pc_type [lu,ilu,jacobi,sor,asm,...] N
* -snes_type [ls,...]

-snes_line_search <line search method>
-sles_Is <parameters> Ol
-snes_convergence <tolerance>

etc...

solvers:
nonlinear

PETSc Programming Aids

 Correctness Debugging
— Automatic generation of tracebacks
— Detecting memory corruption and leaks
— Optional user-defined error handlers
» Performance Profiling
— Integrated profiling using -log_summary
— Profiling by stages of an application
— User-defined events

Integration

13

Ongoing Research and Developments

* Framework for unstructured meshes and functions defined
over them

» Framework for multi-model algebraic system

» Bypassing the sparse matrix memory bandwidth bottleneck
— Large number of processors (nproc =1k, 10Kk,...)
— Peta-scale performance

» Parallel Fast Poisson Solver
¢ More TS methods

27

Framework for Meshes and Functions
Defined over Them

* The PETSc DA class is a topology and discretization interface.

— Structured grid interface
* Fixed simple topology

— Supports stencils, communication, reordering
* Limited idea of operators

» The PETSc Mesh class is a topology interface
— Unstructured grid interface
* Arbitrary topology and element shape
— Supports partitioning, distribution, and global orders

28

14

* The PETSc DM class is a hierarchy interface.
— Supports multigrid
* DMMG combines it with the MG preconditioner
— Abstracts the logic of multilevel methods

» The PETSc Section class is a function interface
— Functions over unstructured grids
* Arbitrary layout of degrees of freedom
— Supports distribution and assembly

29

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s, Im[], In[], *da)
wrap: Specifies periodicity
DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, ...

type: Specifies stencil
DA_STENCIL_BOX, DA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
s: The stencil width

Im/In: Alternative array of local sizes

30

15

Distributed Arrays

Data layout and ghost values

Box-type _ . Star-type
stencil stencil

data layout:
distributed arrays

Ghost Values

® Local node O Ghost node

To evaluate a local function f(x) , each process requires
« its local portion of the vector x
« its ghost values — bordering portions of x owned by neighboring processes.

data layout

16

A DA is more than a Mesh

A DA contains
topology, geometry, and an implicit Q1 discretization

It is used as a template to create

» Vectors (functions)
» Matrices (linear operator)

33

Creating the Mesh

« Generic object
— MeshCreate()
— MeshSetMesh()
* File input
— MeshCreatePCICE()
— MeshCreatePyL.ith()
e Generation
— MeshGenerate()
— MeshRefine()
— ALE: :MeshBuilder::createSquareBoundary
* Representation
— ALE::SieveBuilder::buildTopology()
— ALE::SieveBuilder::buildCoordinates()
« Partitioning and distribution
— MeshDistribute()

— MeshDistributeByFace()
34

17

Parallel Sieves

* Sieves use names, not numberings
— Numberings can be constructed on demand

» Overlaps relate names on different processes
— An overlap can be encoded by a Sieve

 Distribution of a Section pushes forward along the Overlap
— Sieves are distributed as “cone” sections

35

Sections associate data to submeshes

Name comes from section of a fiber bundle

— Generalizes linear algebra paradigm

Define restrict(), update()

Define complete()

Assembly routines take a Sieve and several Sections
— This is called a Bundle

36

18

Section Types

Section can contain arbitrary values
» C++ interface is templated over value type
» C interface has two value types
— SectionReal
— Sectionint
Section can have arbitrary layout

» C++ interface can place unknowns on any Mesh entity (Sieve point)
— Mesh::setupField() parametrized by Discretization and BoundaryCondition

» C interface has default layouts
— MeshGetVertexSectionReal()
— MeshGetCellSectionReal()

37

Section Assembly

First we do local operations:
— Loop over cells
— Compute cell geometry
— Integrate each basis function to produce an element vector
— Call SectionUpdateAdd()

Then we do global operations:

— SectionComplete() exchanges data across overlap
 C just adds nonlocal values (C++ is flexible)

— C++ also allows completion over arbitrary overlap

38

19

Framework for
Multi-model Algebraic System

~petsc/src/snes/examples/tutorials/ex31.c, ex32.c

39

Framework for Multi-model Algebraic System
~petsc/src/snes/examples/tutorials/ex31.c

A model "multi-physics" solver based on the Vincent Mousseau's reactor core pilot
code:

There are three grids
DAl
Fluid DA2

DA3

Thermal conduction Fission (core)

(cladding and core)

40

20

/* Create the DMComposite object to manage the three grids/physics. */
DMCompositeCreate(app.comm,&app.pack);
DACreateld(app.comm,DA_XPERIODIC,app.nxv,6,3,0,&dal);
DMCompositeAddDA (app.pack,dal);
DACreate2d(app.comm,DA_YPERIODIC,DA_STENCIL_STAR,...,&da2);
DMCompositeAddDA (app.pack,da2);
DACreate2d(app.comm,DA_XYPERIODIC,DA_STENCIL_STAR,...,&da3);
DMCompositeAddDA (app.pack,da3);

/* Create the solver object and attach the grid/physics info */
DMMGCreate(app.comm,1,0,&dmmg);
DMMGSetDM(dmmg,(DM)app.pack);
DMMGSetSNES(dmmg,FormFunction,0);

/* Solve the nonlinear system */
DMMGSolve(dmmg);

* Free work space */
DMCompositeDestroy(app.pack);
DMMGDestroy(dmmg);
41

/* Unwraps the input vector and passes its local ghosted pieces into the user function */
FormFunction(SNES snes,Vec X,Vec F,void *ctx)

DMCompositeGetEntries(dm,&dal,&da2,&da3);
DAGetLocallnfo(dal,&infol);

/* Get local vectors to hold ghosted parts of X;

then fill in the ghosted vectors from the unghosted global vector X */
DMCompositeGetLocalVectors(dm,&X1,&X2,&X3);
DMCompositeScatter(dm,X,X1,X2,X3);

/* Access subvectors in F - not ghosted and directly access the memory locations in F */
DMCompositeGetAccess(dm,F,&F1,&F2,&F3);

/* Evaluate local user provided function */
FormFunctionLocalFluid(&infol,x1,f1);
FormFunctionLocal Thermal(&info2,x2,f2);
FormFunctionLocalFuel(&info3,x3,f3);

42

21

Bypassing the Sparse Matrix Memory

Bandwidth Bottleneck

® Newton-multigrid provides

good nonlinear solver
easy utilization of software libraries
low computational efficiency

® Multigrid-Newton provides

good nonlinear solver

lower memory usage

potential for high computational efficiency
requires “code generation/in-lining”

43

o Parallel Fast Poisson Solver

* More TS methods

44

22

How will we solve numerical applications
in 20 years?

* Not with the algorithms we use today?

* Not with the software (development) we use
today?

45

How Can We Help?

Provide documentation:

— http://www.mcs.anl.gov/petsc

Quickly answer questions

Help install

Guide large scale flexible code development
Answer email at petsc-maint@mcs.anl.gov

46

23

