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Outline

» Background
— Simulation of nano materials and devices
— Challenges of future architectures

* Electronic structure calculations
— Density Functional Theory (DFT)

— Potentials, Basis selection, etc

CS/Math Challenges

Iterative eigensolvers

— Preconditioners

Kernels optimization

Research on new or improved algorithms

Conclusions
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Electronic properties of
nano-structures

* Semiconductor Quantum dots (QDs)

— Tiny crystals ranging from a few hundred to
few thousand atoms in size; made by humans
At these small sizes electronic properties
critically depend on shape and size
= electronic properties can be tuned
= enables remarkable applications

Total electron charge density of
a quantum dot of gallium arsenide,
containing just 465 atoms.

The dependence is quantum mechanical
in nature and can be modelled

- can not be done on macroscopic scales
- has to be at atomic and subatomic level (nanoscale)

il =
Quantum dots of the same material
but different sizes have different band

Quantum wires (QWs) and devices geps andemit diferentcolos
— their conducting properties are affected by build-in nano-materials
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Nano Materials Simulations

*  Many-body quantum mechanical (QM) first-principles approaches
(e.g. Quantum Monte Carlo) 30-200 atoms

Single particle first-principles (Density Functional Theory) 103

swoje

» Empirical and Semiempirical methods 10°

»  Continuum methods 107
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« Method classification based on: Use of empirically or experimentally derived results
YES & empirical or semi-empirical methods
NO = ab initio (very accurate; most predictive power; but scales as O(N3><<"7))
« Major petascale computing challenges:
« Algorithms with reduced scaling; architecture aware (next ...)
« Highly parallelizable (100s of 1,000s of cores)
- typical basis functions here (plane-wave basis) have global support
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Challenges of Future Architectures

» Parallel computing — not just for HPC architectures but for simple desktops

— Ina few years desktops expected to have 32 cores per multicore processor chip and
128 hardware threads per chip

* Gap between processor and memory speed continue to grow (exponentially)

— Processor speed improves 59%, memory bandwidth 23%, latency 5.5%
.(Z Many familiar and widely used algorithms and libraries have to be rewritten
to be able to exploit the power of these new generation architectures

» Petaflop by 2010: DARPA's HPCS program in phase 3, supporting
— Cray with the Cascade system (with Chapel HPL) / adaptive supercomputing

« parallelism trough various processor technologies: scalar, vector,
multithreading and hardware accelerators (FPGA or ClearSpeed co-processors)

— IBM with PERCS system (with X10 HPL) / larger SMPs with more memory
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Electronic structure calculations

« Density functional theory

Many-body Schrodinger equation (exact but exponential scaling)
. Nuclei fixed, generating external potential

{_Z%Viz + Z 1 + Z Z W(r,.n) = E¥(r,.5,) (system dependent, non-trivial)

L = | FIr-R | . N is number of electrons

Kohn Sham Equation: The many body problem of interacting
electrons is reduced to non-interacting electrons (single particle
problem) with the same electron density and a different effective
potential (cubic scaling).

oo p(r) Vier ts effects of the Coulomb interacti
S vERN dr' + LV (N=Ew (r « Vyc represents effects of the Coulomb interactions
¢ 2 | I'fl"\ Z|:| I’le | XC}WI( ) 'V/'( ) between electrons

2 2
p(r) :Zl l//|(r) | :| "P(rp-er )l . % is the density (of the original many-body systenf
i

Vyc is not known except special cases @ use approximation, e.g. Local Density Approximation (LDA)
where V. depends only on <&
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Selfconsistent calculation

N electrons
N wave functions

— {—%vz AV P (0) = Egry (1)

I lowest N
eigenfunctions
{l//i } i=1,..,N « Requires diagonalization and/or orthogonalization
a « Scales as O(N?) and may be prohibitively high
N « Work on new algorithms with reduced scaling
p(l’) = Z‘ v, (I’) ‘2 (the need to know more physics and interact with physicists)
i « There are for example O(N) algorithms to find directly
ﬂ» the total energy
V(r,p)
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Computational framework

Structure
Global shape, atomic scale features
Hamiltonian Inverse Band Structure
EPM or charge patching method Simulated ann.. Evolutionary search
* * Interior eigenvalue problem
Schroedinger Equation * subspace diagonalization:
Folded-Spectrum Method linear combination of Fig. 9. Flowchart
/ \‘ bulk states (LCBB) describing the structure
- — of our computational
Electronic Excitations Transpor[ approach to nanostructure
Coulomb and Exch: integrals, CT
oulomb and Exchange integrals, Landauer formula, Hopping theow.
* diagonalization of CI Hamiltonian
for low excited states

* Generalized Poisson Equation (for
electric field needed in CI for the many-body problem

O Compans Live Dvparmnm

Basis selection

» Plane-waves, grid functions, or Gaussian orbitals

* Plane-waves: y, (r)= D Cj(kpe'"
9.19/<Eeu
— Good approximation properties

— Can be preconditioned easily (and efficiently) as the kinetic energy (the laplacian) is diagonal in
Fourier space, the potential is diagonal in real space

— Usually codes are in Fourier space and go back and forth to real with FFTs

— Concern may be scalability of FFT on 100s of 1,000s of processors as it requires global
communication

» Grid functions: e.g. finite elements, grids, or wavelets
— Domain decomposition techniques can guarantee scalability for large enough problems
— Interesting as they enable algebraically based preconditioners as well
— Including multigrid/multiscale

* e.g. real-space multigrid methods (RMG) by J. Bernholc et al (NCSU)
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Libraries

» Use state-of-the-art libraries whenever possible, extend if our particular
problems present opportunities for improvement

*  We use the Nanoscience Problem Solving Environment (NanoPSE) package
— Integrate various nano-codes (developed over ~12 years)

— Its design goal: provide a software context for collaboration

— Features easy install; runs on many platforms, etc.

* LAPACK, ScaLAPACK, BLAS
« PRIMME package (A. Stathopoulos and J. McCombs)
« P ARPACK (R. Lehoucq, K. Maschhoff, D. Sorensen, C. Yang)
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FFT

88 Ato ] 0.93 | 62% 28 |51%]| 32 25% 51 | 64% 75 47%
dse 9] 085 [ 57% | 198 [45% | 26 [47%]| 3.0 [24%]| 5. 62%

Qua 073 | 49% [7005 [21% [ 24 [44% [iinieey 4. 55% \\\\\\\\\\\\\\
Do 2| 0.60 | 40% 18 [32% Einiiniey 3 46% Ry

- * Load Balance Sphere by giving columns to different procs.
* 3D FFT done via 3 sets of 1D FFTs and 2 transposes
* Flops/Comms ~ logN
* Many FFTs done at the same time to avoid latency issues
* Only non-zero elements communicated/calculated
* Much faster than vendor supplied 3D-FFT

(from A. Canning (LBNL), work on PARATEC)

lﬂ.@ﬁ'
(a1 FVECOMPUITING W Slide 12 /30




Interior Eigenvalue Problem Formulation

» Solve a single particle Schrodinger-type equation

with periodic boundary conditions

* Physical interpretation
— The Hamiltonian H represents the total energy
» Laplacian A corresponds to kinetic energy of the electrons

* Vs the potential energy; describes the atomic configuration of the systems;
precomputed or from experiment

— Real eigenvalue ¢, is discrete energy level of electron (occupied or not)
— Complex eigenvector V; is probability distribution for spacial location of electron
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Interior Eigenvalue Problem Formulation

» Basis functions (Bloch theorem about the eigenstates of
Hamiltonian H with periodic potential V)

Va(n) = Y Clke

9,191<Ecy

» Leads to a discrete eigenvalue problem
HY,=E;¥;, where H is Hermitian
*  Properties of H
— Complex Hermitian indefinite
— Implicitly defined by M-V product (uses 3D FFT)
— Eigenvalues with higher multiplicities (to be expected of up to 4)
» Find a few (4-10) interior eigenvalues closest to a given point E ¢

‘ BM B B ‘

T — T — i

Valence band (VB) Band/Energy gap Conduction band (CB)
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[terative eigensolvers

» Based on local projections, e.g.
Solving Ax = ©x in R" iteratively:
* at iteration i extract an approximate X; from a subspace V = span[v,, ..., v ] of
R" * impose Galerkin constraints:
©x — Ax [ subspace W = span[w,...,w,] of R" i.e.
wAX = Ow'x, for V. w €W=span[w,,....w, ]

»  This procedure is also known as Rayleigh-Ritz

* In Matrix notations: Let V=[v,, ..., v ], W=[w.,w_]
*Findy ER™ st.  x,=Vy  solves
WTAVY= &@WTVWy (with LAPACK)

Need special attention on petascale

. . . . . chitectures as it has “sequential” part
+  The choice for V and W is crucial and determines various method§ " " ! quential” p

— Setting various parameters is non trivial

Spectral transformations
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* Folded spectrum * Shift and invert Convergence stagnation comp.
AXx=Ax — AX=2x — the valence band on a
A-E_JPx=px A-E D' x=pux, E #A
(A-Epefl) 15 (A-Erd) H ref 1,523 atoms CdSe QD
clustering of eigenvalues need to invert (inner iteration)  (with folded spectrum)
. . . Xi+l - Xi
« Convergence of it smallest eigenstate of CG depends on the ratio —_—
Xmax - Xmin




[terative eigensolvers

» We studied several eigensolvers on our problems
— Preconditioned conjugate gradient (PCG) from PESCAN, part of NanoPSE
~ Block PCG (BEPCG)
— Implicitly restarted Arnoldi/Lanczos from P_ ARPACK

— Generalized Davidson (GD) with restart and Jacobi-Davidson with QMR as inner solver
(JDQMR) from PRIMME

— Locally optimal block preconditioned conjugate gradient (LOBPCG); own implementation
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* Have been successfully used in the field
*  PCG extended to a subspace method

— Band-by-band inner-outer iteration

do i=1,niter
[X] = state by state CG-type minimization of the
Rayleigh functional (with deflation)
[X, A] = Rayleigh-Ritz on span{X}
enddo

PCG eigensolver

do i = 1, niter
om = 1, numEvals
orthonormalize Xim) to X{1 :m — 1)
ax = A X(m)
de j =1,nline
Alm) = X(m) - ax
if (|lax — Alm) X(m)||]> < ol .or.

j == nline) exit
ry41 = (I = X(m) X(m)") ax
4= Dtirh

Ty Py
dji1=—Prj+id
dj1 = (I — X{mA(=)" )dj41
7= |ﬂ,1l:||21
24 dyyqax

=05 |atanyrm—s &1k 4,.,'
Xim) = cosif) Xim) + sin(#) v dj41

ax = cos(#) ax + sin(#) v A dj4y
enddo

enddo

[X, A] = Rayleigh — Ritz on span{X}
enddo
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Blocking

*  PCG extended to a subspace method
— Band-by-band inner-outer iteration
» Of concern here is that the band-by-band computation uses only a fraction of the peak
performance of current computer architectures
— It is possible instead of the band-by-band updates for the eigenstates to organize the
computation so that a block of eigenstates is 'simultaneously' updated (next)
» Results in performing Rayleigh-Ritz (RR) on larger subspaces
— Can be implemented in terms of BLAS 3 operations
— Can block communications and reduce latency overhead in distributed
computing
— Larger subspaces lead to accelerated convergence (in terms of RR iterations)
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Block PCG: BEPCG and LOBPCG
Band-by-band PCG BEPCG

1 do i=1,niter bD) = R = A I

2 dom =1 numEvals for i §

’ R . . 2 for i =0 to s rers

3 orthonormalize X(m) to X(1:m 1) . Ri=PR

4 ax =4 Xm) & Dl =R -BPDEL iy,

[ P : -+ T N

5 do j = 1.nline s D= (1= XXT) Dy

6 Alm) = X(m) - ax & Onthonormalize ;4

7 if ([Jax = Afm) X(=)||2 < tol .or. % [Ev. Bz, Aia] = Rayleigh-Ritz [Xi, Digi]

i == nline) exi 8 Nigr = XNeEy + Dy 2
j==nline| exit 9 Dy = D Er
8 tj+1 = (I - X(m) X(m)") ax e Ry = Ge_Active Residuals (AX. Xy, diga)
9 4= :z,-_-?rl., 11z el for
!'J -?rJ

10 ditp=-Prj+04;
11 dyr = (1= Xmp(m)*jdy4y LOBPCG
12 7= gl t

) 0= | J“"? 24 dyyq-ax do i=1,niter
13 =05 |atany =g S| [RI=P(AX- 2X)

14 A(m) = cos(t) X(m) + sin(f) 7 djyy [X, 2] = Rayleigh-Ritz on span{X, X, ,, R}
15 ax = cos(ff) ax + sin(#) v A dj41 Enddo

IE enddo Of interest is

17 Endd? i X * if the 3" vector in LOBPCG improve convergence

{fj df" 'x- = Rayle1gh —Ritz on spa.n{ x} Vs using 2 (current approximate and search direction) as in BEPCG
. enddo * if not, will BEPCG yield improved reliability and performance

Slide 20/ 30




Some results/conclusions on eigensolvers

* GD+k (Olsen) turned to be very reliable and at the same time up to 5 times faster than
the commonly used PCG

* PCQG still useful as it requires very small amount of memory and is robust

*  LOBPCG wasn't competitive with the preconditioner used (competitive without
preconditioning)

« IRL was very fast for some problems but in general unreliable when used with
memory comparable with the others (improved filtering may help, blocking);
does not support multiple start vectors and preconditioning

» Need to explore other spectral transformations, e.g. Harmonic Ritz values

« For more substantial speedups, improved reliability, and robustness we need better
preconditioners

lﬂ. ﬁ' IG
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A bulk band (BB) preconditioner

* A preconditioner based on physical intuition,
example of collaboration with physicists

+ Use a subset of the eigenstates of the crystal Hamiltonian
(denoted as bulk band space Sgj)

* A numerical motivation:

SJ_
Vi = v, iy o 30
Ly w) 1S small( 2°-39)
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The space Sgg

» Subset of the eigenstates of the crystal
Hamiltonian

* Subspace of the basis functions y (1) space
(i.e. sparse in the plane wave basis)

» Of relatively small dimension
(“inexpensive” to compute)

| TENNESSHE Slide 23 /30
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The operator Hgg

* Hgg = the Hamiltonian stemming from the
bulk problem

» The eigenvectors (in Sgp) and corresponding
eigenvalues are “easy” to compute
=> H-1;; can be applied efficiently on yeSgy

* Prolongation/restriction between spaces S/Sgg
can be efficiently implemented

W Slide 24 /30
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BB preconditioner

* Let Q the prolongation (basis embedding) from Syg to S and
QT the corresponding restriction (projection) from S to Sgp

» The BB preconditioner
PR=wQHs1QTR+DIR

W= 7\‘ma){1 (QHBB>1 QT H)

E2
d' = 2
I (05q|2 +V0 - Eref )2 + Ek2
(q; 1s diagonal term for the Laplacian, V,, the average
potential, and E, the average kinetic energy of y,)
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Numerical results

Number of Outer lterations, 200 inner Number of Outer Iterations, 200 inner

PCG Convergence History for the Valence Band PCG Convergence History for the Valence Band
(144,493 dofs; Diagonal vs BB preconditioner) (282,000 dofs; Diagonal vs BB preconditioner)
0.01 S oo - - - - -
0.001
001
€ 00001 E b
= z
§ 1e-05 ‘:‘; 0.0001
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Real space methods

* Grid functions: e.g. finite elements, grids, or wavelets
— Domain decomposition techniques can guarantee scalability for large enough problems
— Interesting as they enable algebraically based preconditioners as well

— Including multigrid/multiscale
* e.g. real-space multigrid methods (RMG) by J. Bernholc et al (NCSU)

Concerns/challenges regarding scalability on petascale machines

. Tuning 'coarse' level operations as they have reduced computation-to-communication ratio
* in multiscale methods and in additive Schwarz type preconditioners
. Load balancing in additive Schwarz type preconditioners

| TENNESSHE Slide 27/30
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Mixed precision iterative refinement

*  We have demonstrated (in a couple of papers) computational speedup in solving Ax = b (with DP accuracy) by

X T X +@ (b-Ax)

Computed and applied in SP,

where P can be the triangular inverses of the LU factorization of A or the rest in DP

another iterative solver (e.g. GMRES)

Cholesky Solve == Cell Broadband Engine AMD Opteron 246 Generalized Minimal Residual
200 . . . - 28 . - o :
[C | Single prac. sj e
\.c.-wf--_..;‘.«.»_;------m E 2 I Mixed prec. sul| | sP-oPTe-DF
150 o § :
&
215 1 .
“ b1 g
g‘ 100 2 3
3 o Full-single s, 4
= Mixed-precision| : 1
Peak-double 2
S0 b4
gos osl
w
0
1000 2000 3000 4000 1 2 3 4 5 6 7 8 9§ 10 BT 25K 7o FE T
problam size Matrix . Systom szn
A random dense T Matrix market, sparse Elasticity, adaptive, K(A) = 10° .. 10°
0(10%) 0(10%)

Dongarra / Buttari / Kurzak / Luszczek / Langou / Langou / Tomov
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Mixed precision iterative refinement

*  We have demonstrated (in a couple of papers) computational speedup in solving Ax = b (with DP accuracy) by

x.,, =x HB._(b-Ax.)
Computed and applied in SP,
where P can be the triangular inverses of the LU factorization of A or the rest in DP

another iterative solver (e.g. GMRES)

«  Efficiency of the technique depends on k(A)

«  Exploit that subdomain/coarse level matrices are of reduced condition number (compared to global matrix) to
efficiently apply the mixed precision technique

IcL |
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Conclusions

» Nano-technology simulations truly need petascale computing
* Development of efficient tools need multidisciplinary team

* Close collaboration with physicists

— e.g. for input on developing application specific preconditioners

— Algorithms of reduced scaling

* Challenges of petascale computing and nano-technology

— Complex problems (no single tool can offer complete solution)

— We are deeply involved in several initiatives that aim to address them
« Iterative linear solvers, eigensolvers, and preconditioners
» Kernels optimization

* Use of accelerators such as FPGAs, GPU, Cell
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