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ISC07: 06/28/07 — Algorithms for Petascale
Computers — Are we ready?

* Focus attention on application developers need
— (reason | am here)

* To know if we have the good algorithms in hand, we
first need to speculate on what a petascale machine
will look like.

— The algorithm/library community needs input from the
hardware community.

* We will probably need some help from kernel
developers, scheduling community, compiler/language
community.




Summary of 2006-2007 in Dense Linear Algebra

* 2007: Two new algorithms in software available in LAPACK

— MRRR (Multiple Relatively Robust Representation)
* Symmetric Tridiagonal Eigenvalue Problem
* 0O(n?) instead of O(n3)
— THQR (Aggressive early deflation )
* Hessenberg Eigenvalue Problem
* 5-10x faster

(to come soon in ScaLAPACK)

* 05-07: New algorithms based on 2D partitionning:
— UTexas (van de Geijn): SYRK, CHOL (multicore), LU, QR (out-of-core)
— UTennessee (Dongarra): CHOL (multicore)
— HPC2N (Kagstrém)/IBM (Gustavson): Chol (Distributed)
— UCBerkeley (Demmel)/INRIA(Grigori): LU/QR (distributed)
— UCDenver (Langou): LU/QR (distributed)
A 3 revolution for dense linear algebra?

A new generation of algorithms?

Algorithms follow hardware evolution along time.

LINPACK (80’s)

(Vector operations)

LAPACK (90’s)

(Blocking, cache friendly)

Rely on
- Level-1 BLAS operations

Rely on
- Level-3 BLAS operations




A new generation of algorithms?

Algorithms follow hardware evolution along time.

LINPACK (80’s)
(Vector operations)

Rely on
- Level-1 BLAS operations

LAPACK (90’s) Rely on

(Blocking, cache friendly) - Level-3 BLAS operations
New Algorithms (00’s) Rely on

(multicore friendly) - a DAG/scheduler

- block data layout
- some extra kernels

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

What will a petascale machine looks like.

(keep in mind that | am a math guy ... )

Possible petascale machine

1. Number of cores per nodes 10— 100 cores

2. Performance per nodes 100 — 1,000 GFLOPs/sec
3. Number of nodes 1000-10,000 nodes

4. Latency inter-nodes 1 psec

5. Bandwidth inter-nodes 10 Gb/sec

6. Memory per nodes 10 GB




What will a petascale machine looks like.

(aka what | learned during this conference.)

Possible petascale machine

1. Number of cores per nodes 10— 100 cores

2. Performance per nodes 100 — 1,000 GFLOPs/sec
3. Number of nodes 1000-10,000 nodes

4. Latency inter-nodes 1 psec

5. Bandwidth inter-nodes 10 Gb/sec

6. Memory per nodes 10 GB

* Partl: First rule in linear algebra: Have an efficient DGEMM
— Motivation in
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes
* Part ll: Algorithms for multicore and latency avoiding algorithms for LU, QR ...
— Motivation in:
1. Number of cores per node 2. performance per node 4. Latency inter-nodes
* Part lll: Algorithms for fault tolerance

— Motivation in:
1. Number of cores per node 3. number of nodes

What will a petascale machine looks like.

(aka what | learned during this conference.)

Possible petascale machine

1. Number of cores per nodes 10— 100 cores

3. Number of nodes 1000-10,000 nodes

4. Latency inter-nodes 1 psec

e Part I: First rule in linear algebra: Have an efficient DGEMM

— Motivation in
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes




First rule in linear algebra: Have an
efficient DGEMM

e All the dense linear algebra operations rely on
an efficient DGEMM (matrix Matrix Multiply)

* This is by far the easiest operation O(n3) in
Dense Linear Algebra.

— So if we can not implement DGEMM correctly
(peak performance), we will not be able to do
much for the others operations.

Blocking communication Nonblocking communication.

2n’ 2n’
n perf = n
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erf =
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* yisthe time for one operation,
* Bisthe time to send one entry.

* various algorithms/models depending in the Bdcast algorithm used
(Pipeline=SUMMA, tree=PUMMA, etc.).




Time for computation = # of ops * ( time for one op ) / (# of proc)

Model.

# of operations

Blocking commu Nonblocking communication.

perf =

f 2log<( ) ﬂ)

Time for communication = 2 * Bdcast on sqrt(p) processors of [n? / sgrt(p)] numbers

N

Time with blocking = time comp + time comm
Time with nonblocking = max( time comp , time comm)

y is the time for one operation,
B is the time to send one entry.

various algorithms/models depending in the Bdcast algorithm used
(Pipeline=SUMMA, tree=PUMMA, etc.).

Blocking communication Nonblocking communication.

3 3
perf = 2n perf = 2n

\/— max(zpy 2log(\/7)\/,

* n3 operations for n> communication.

 The model works fine, next slides present
result from Alfredo Buttari, Jakub Kurzak, and
Jack Dongarra from Utennessee.




Alfredo Buttari, Jakub Kurzak, and Jack Dongarra. Limitations of the playstation 3 for high
performance cluster computing. Technical Report UT-CS-07-597, Innovative Computing
Laboratory,_University of Tennessee Knoxville, April 2007.

Performance model.

Take for instance, the TN cluster of four PS3:
Bandwidth = 600 Mb/sec (with GigaBit Ethernet)
Flop rate = 149.85 GFLOPs/sec (theoretical peak is 153.6 GFLOPs/sec)

SUMMA on a 2x2 ps3 grid - 6 SPE
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To get 90% of efficiency with nonblocking operations, one need to work on matrices of size 14,848.
To get 90% of efficiency with blocking operations, one need to work on matrices of size 146,949.

Really worse using nonblocking communication.

Alfredo Buttari, Jakub Kurzak, and Jack Dongarra. Limitations of the playstation 3 for high
performance cluster computing. Technical Report UT-CS-07-597, Innovative Computing

O u ps see Laboratory, University of Tennessee Knoxville, April 2007.

Memory for PS3 is 256 MB.

SUMMA on a 2x2 ps3 grid - 6 SPE
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There is no way to hide the n2 term (communication) by the n3 term (computation). n can not
get big enough. Actucally, it is the computation that are hidden by the communication.
Dense Linear Algebra is stucked. There is nothing to be done.




Three ways to complain

* The network is too slow (complain to GigE)
* There is not enough memory on the nodes (complain to Sony)
* The nodes are too fast (complain to IBM)

Three Solutions

Instead of 600 Mb/sec — 258 MB — 6 SPEs :

Increase the memory of the | Increase the bandwidth of | Decrease the

nodes the network computational power of the
nodes

SUMMA on a 2x2 ps3 grid - 6 SPE SUMMA on a 2x2 ps3 grid - 6 SPE SUMMA on a 2x2 ps3 grid - 1 SPE
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Lessons from the story.

* This story tells us that we have to be careful when choosing the triplet:
2. performance per node
5. bandwidth inter-nodes
6. memory per nodes

Come back to our petascale machine.

To perform at 99.9% of the peak on a cluster with 1 TFLOPs/sec per node (nonblock)

1 TFLOP/sec 10 Gb/sec 1GB (n=13,000, t=5ms )
1 TFLOP/sec 5 Gb/sec 4GB ( n=26,000, t=20ms )
1 TFLOP/sec 2.5 Gb/sec 16GB ( n=52,000, t=80ms )

* The first line was in our spec of the petascale machine. This should more or less
work then. So we assume MM is OK, and we can move forward to more
challenging algorithms. (latency bounded for example, high granularity, ...)

* Cf. H.T Kung. Memory Requirement for Balanced Computer Architectures. 13th
International Symposium on Computer Architectures. 1986. pp. 49—54.




What will a petascale machine looks like.

Possible petascale machine

1. Number of cores per nodes 10— 100 cores

2. Performance per nodes 100 — 1,000 GFLOPs/sec

3. Number of nodes 1000-10,000 nodes

4. Latency inter-nodes 1 psec

5. Bandwidth inter-nodes 10 Gb/sec
6. Memory per nodes 10 GB

* Part I: First rule in linear algebra: Have an efficient DGEMM
— Motivation in
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes
* Part Il: Algorithm for multicore / latency avoiding algorithm for LU, QR ...
— Motivation in:
1. Number of cores per node 2. performance per node 4. Latency inter-nodes
e Part lll: Algorithm for fault tolerance

— Motivation in:
1. Number of cores per node 3. number of nodes

What will a petascale machine looks like.

Possible petascale machine

1. Number of cores per nodes | 10— 100 cores
2. Performance per nodes 100 — 1,000 GFLOPs/sec

3. Number of nodes 1000-10,000 nodes
5. Bandwidth inter-nodes 10 Gb/sec
6. Memory per nodes 10 GB

* PartI: First rule in linear algebra: Have an efficient DGEMM
— Motivation in
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes
* Part ll: Algorithm for multicore / latency avoiding algorithm for LU, QR ...
— Motivation in:
1. Number of cores per node 2. performance per node 4. Latency inter-nodes
e Part lll: Algorithm for fault tolerance

— Motivation in:
1. Number of cores per node 3. number of nodes




Blocked LU and QR algorithms (LAPACK)

LAPACK block LU (right-looking): dgetrf

LAPACK block QR (right-looking): dgeqrf

R
s dgetf2 dgeqf2 + dlarft
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Blocked LU and QR algorithms (LAPACK)

LAPACK block LU (right-looking): dgetrf

Panel

dgetf2

i

Latency bounded:
more than nb AllReduce for n*nb? ops

Update of the

dtrsm (+ dswp)

/O —a\E@

remaining submatrix [factorization

dgemm

- -

CPU - bandwidth bounded:
the bulk of the computation: n*n*nb ops
highly paralleliable, efficient and saclable.




Parallelization of LU and QR.

Parallelize the update: dgemm
* Easy and done in any reasonable software. I
* This is the 2/3n3 term in the FLOPs count. - . -I

* Can be done efficiently with LAPACK+multithreaded BLAS

dgetf2

iy
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Parallelization of LU and QR.

Parallelize the update: dgemm
* Easy and done in any reasonable software. [
* This is the 2/3n3 term in the FLOPs count. - . -I

* Can be done efficiently with LAPACK+multithreaded BLAS

Parallelize the panel factorization: dgetf2
* Not an option in multicore context (p < 16)
* See e.g. ScaLAPACK or HPL but still by far the slowest and the I lu(

bottleneck of the computation.

Hide the panel factorization: dgetf2
* Lookahead (see e.g. High Performance LINPACK)
* Dynamic Scheduling I lu(




Hiding the panel factorization with
dynamic scheduling.

Time

Courtesy from Alfredo Buttari, UTennessee

What about strong scalability?




What about strong scalability?

N =1536
NB = 64

procs = 16

——
— S et

Courtesy from Jakub Kurzak, UTennessee

We can not hide the panel factorization in the MM, actually
it is the MMs that are hidden by the panel factorizations!

What about strong scalability?

N =1536
NB = 64

procs = 16
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What about strong scalability?

N=1536 We can not hide the panel factorization (n?) with the MM(n3) , actually
NB = 64 it is the MMs that are hidden by the panel factorizations!
procs = 16
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A new generation of algorithms?

Algorithms follow hardware evolution along time.

LINPACK (80’s)
(Vector operations)

Rely on
- Level-1 BLAS operations

LAPACK (90’s)
(Blocking, cache friendly)

Rely on
- Level-3 BLAS operations

New Algorithms (00’s) Rely on

(multicore friendly) - a DAG/scheduler

- block data layout

- some extra kernels

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.




On multicore machines.

* See Alfredo’s previous talk.

Reduce Algorithms: Introduction

The QR factorization of a long and skinny matrix with its data partitioned
vertically across several processors arises in a wide range of applications.

Input: Output:
Ais block distributed by rows Q is block distributed by rows
R is global

I‘




b)

c)

Example of applications: in block iterative methods.

in iterative methods with multiple right-hand sides (block iterative methods:)

1)  Trilinos (Sandia National Lab.) through Belos (R. Lehoucq, H. Thornquist, U.
Hetmaniuk).

2)  BlockGMRES, BlockGCR, BlockCG, BlockQMR, ...

in iterative methods with a single right-hand side

1) s-step methods for linear systems of equations (e.g. A. Chronopoulos),

2)  LGMRES (Jessup, Baker, Dennis, U. Colorado at Boulder) implemented in PETSc,
3)  Recent work from M. Hoemmen and J. Demmel (U. California at Berkeley).

in iterative eigenvalue solvers,

1)  PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),

2)  HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

3)  Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U.
Hetmaniuk),

4)  PRIMME (A. Stathopoulos, Coll. William & Mary ),
5)  And also TRLAN, BLZPACK, IRBLEIGS.

31

Reduce Algorithms: Introduction

Example of applications:

a)

b)

in block iterative methods (iterative methods with multiple right-hand sides or
iterative eigenvalue solvers),

in dense large and more square QR factorization where they are used as the panel
factorization step, or more simply

in linear least squares problems which the number of equations is extremely larger
than the number of unknowns.

32




Reduce Algorithms: Introduction

Example of applications:

a) inblock iterative methods (iterative methods with multiple right-hand sides or
iterative eigenvalue solvers),

b) indense large and more square QR factorization where they are used as the panel
factorization step, or more simply

c) inlinear least squares problems which the number of equations is extremely larger
than the number of unknowns.

The main characteristics of those three examples are that
a) thereis only one column of processors involved but several processor rows,
b) all the data is known from the beginning,

¢) and the matrix is dense.
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Reduce Algorithms: Introduction

Example of applications:

a) inblock iterative methods (iterative methods with multiple right-hand sides or
iterative eigenvalue solvers),

b) indense large and more square QR factorization where they are used as the panel
factorization step, or more simply

c) inlinear least squares problems which the number of equations is extremely larger
than the number of unknowns.

The main characteristics of those three examples are that

a) there is only one column of processors involved but several processor rows,
b) all the data is known from the beginning,

¢) and the matrix is dense.

Various methods already exist to perform the QR factorization of such matrices:
a) Gram-Schmidt (mgs(row),cgs),

b) Householder (qr2, qrf),

c) or CholeskyQR.

We present a new method:

Allreduce Householder (rhh_qgr3, rhh_qrf).

34




The CholeskyQR Algorithm

zk-.-l

SYRK: C:=ATA (mn2)
CHOL: R:=chol(C) (n3/3)

R4 +—chol (
TRSM: Q:=A\R (mn2)

-

35

Bibligraphy

* A. Stathopoulos and K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM Journal on Scientific
Computing, 23(6):2165-2182, 2002.

* Popularized by iterative eigensolver libraries:
1)  PETSc (Argonne National Lab.) through BLOPEX (A. Knyazev, UCDHSC),
2)  HYPRE (Lawrence Livermore National Lab.) through BLOPEX,

3)  Trilinos (Sandia National Lab.) through Anasazi (R. Lehoucq, H. Thornquist, U.
Hetmaniuk),

4) PRIMME (A. Stathopoulos, Coll. William & Mary ).




Parallel distributed CholeskyQR

The CholeskyQR method in the parallel distributed context can be described as follows:

1: SYRK:

2: MPI_Reduce:
3: CHOL:

4: MP|_Bdcast

5: TRSM:

C:=AA (mn3)
C:=sum,o C (on proc 0)
R:=chol(C) (n3/3)

Broadcast the R factor on proc 0
to all the other processors

Q:=A\R (mn2)

This method is extremely fast. For two reasons:
1. first, there is only one or two communications phase,

second, the local computations are performed with fast operations.

Another advantage of this method is that the resulting code is exactly four lines,

so the method is simple and relies heavily on other libraries.

Despite all those advantages,

this method is highly unstable.

2.

3.

4.

' a~—|

2.

3-4. N <«—chol (

E<—H+H+NG

117
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In this experiment, we fix

the problem: m=100,000

Efficient enough?

and n=50.
20.48 o
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2. ‘4—‘ +! +&+‘
3-4. | < chol ( '

5. I<—I \“

Simple enough?

int choleskyqgr_A_vO(int mloc, int n, double *A, int Ida, double *R, int Idr,
MPI_Comm mpi_comm){

int info;

cblas_dsyrk( CblasColMajor, CblasUpper, CblasTrans, n, mloc,
1.0e+00, A, Ida, 0e+00, R, Idr );

MPI_Allreduce( MPI_IN_PLACE, R, n*n, MPI_DOUBLE, MPI_SUM, mpi_comm );

lapack_dpotrf( lapack_upper, n, R, Idr, &info );

cblas_dtrsm( CblasColMajor, CblasRight, CblasUpper, CblasNoTrans, CblasNonUnit,
mloc, n, 1.0e+00, R, Idr, A, Ida);

return 0;

(And OK, you might want to add an MPI user defined datatype to send only the upper part of R)
39

m=100, n=50

Stable enough?
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Reduce Algorithms

The gather-scatter variant of our algorithm can be ‘ ar (
i 1. i N+—
summarized as follows:
1. perform local QR factorization of the matrix A
2. gather the p R factors on processor 0
3. perform a QR factorization of all the R put the p-3-4. Q R‘4_qr (R
ones on top of the others, the R factor Q R
obtained is the R factor
Q R
4. scatter the the Q factors from processor 0 to
all the processors Q Ry
5. multiply locally the two Q factors *
5. Q
together, done. I - M
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Reduce Algorithms

* This is the scatter-gather version of our algorithm.

* This variant is not very efficient for two reasons:

— first the communication phases 2 and 4 are highly involving
processor 0 ;

— second the cost of step 3 is p/3*n3, so can get prohibitive for
large p.

* Note that the CholeskyQR algorithm can also be
implemented in a scatter-gather way but reduce-
broadcast. This leads naturally to the algorithm presented
below where a reduce-broadcast version of the previous
algorithm is described. This will be our final algorithm.
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On two processes
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On two processes

QR

—_

/

QR )g( ,N\)__;ngz)g( %’N)) }
|
Apply ( 2 to n )g *
‘1) 0, m)
A y J
’Q(Ig Iu\? ‘
I\ y )
On two processes
QR ( )g( ,NN)";QR(§:) g( %,ﬂ’) } — Qb
7
Apply ( a2 to )g *
‘1) 0, ml)
. / + )
f/ )

time




a
o
2 (

On two processes

R( )g( N\)_ngz)g(g,m’) }(
___T
Apply ( Nto In gm)
‘1) 0, E)
é L

Apply (

)

tom)-—>

0,

\

| O
/

\

QRIQIN\?

Apply (

to E’)

10

The big picture ....

processes
> (I | | [T | | | | =

P | O | P | e | = -J
2)\ 24\ ZJL 24\ 2)\ 2

<
IN

50




The big picture ....
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The big picture ....
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Latency but also possibility of fast
panel factorization.

QR factorization and construction of T

*  DGEQRS3 is the recursive

. m = 10,000
algorithm (see Elmroth and Perf in MFLOP/sec (Times in sec)
GUStaVSOﬂ, 2000), DGEQRF and n DGEQR3 DGEQRF DGEQR2
DGEQR2 are the LAPACK 50 173.6  (0.29) 650 (0.77) 646  (0.77)
routines.
100 2405  (0.83) 62.6  (3.17) 653  (3.04)
* Times include QR and DLARFT. 150  277.9 (1.60) 816 (5.46) 642  (6.94)
e Run on Pentium III. 200 3125  (253) 1113 (7.09) 65.9 (11.98)
/

300 /

250 /

) —DGEQR3
——DGEQRF

/ _.| —DGEQR2
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m=1000,000, the x axis is n ‘0




When only R is wanted

QR (
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time

When only R is wanted: The

MPI_Allreduce

In the case where only R is wanted, instead of constructing our own tree, one can simply use
MPI_Allreduce with a user defined operation. The operation we give to MPI is basically the
Algorithm 2. It performs the operation:

QR (g )— R

This binary operation is associative and this is all MPI needs to use a user-defined operation on
a user-defined datatype. Moreover, if we change the signs of the elements of R so that the

diagonal of R holds positive elements then the binary operation Rfactor becomes

commutative.

The code becomes two lines:

lapack_dgeqrf( mloc, n, A, Ida, tau, &dlwork, lwork, &info );
MPI_Allreduce( MPI_IN_PLACE, A, 1, MPI_UPPER,
LILA_MPIOP_QR_UPPER, mpi_comm);
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Does it work?

*  The experiments are performed on the beowulf cluster at the University of Colorado at Denver. The
cluster is made of 35 bi-pro Pentium 11l (900MHz) connected with Dolphin interconnect.

*  Number of operations is taken as 2mn? for all the methods
*  The block size used in ScaLAPACK is 32.

¢  The code is written in C, use MPI (mpich-2.1), LAPACK (3.1.1), BLAS (goto-1.10), the LAPACK Cwrappers
(http://icl.cs.utk.edu/~delmas/lapwrapmw.htm ) and the BLAS C wrappers
(http://www.netlib.org/blas/blast-forum/cblas.tgz)

e The codes has been tested in various configuration and have never failed to produce a correct
answer, releasing those codes is in the agenda

VAN

Gwany Number of operations is taken as 2mn? for all the methods

_ FLOPs (total) for R only FLOPs (total) for Q and R

CholeskyQR mn2+ n3/3 2mn2+ n3/3
Gram-Schmidt 2mn? 2mn?

Householder 2mn2-2/3n3 4mn2-4/3n3

Allreduce HH (2mn2-2/3n3)+2/3 n3p (4mn2-4/3n3)+4/3 n3p
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Q and R: Strong scalability
3

* Inthis experiment, we fix the 120
problem: m=100,000 and n=50. \
Then we increase the number of 190 — N
processors. o \ \ ——cholqr
% 80 —=rhh_qr3
* Once more the algorithm 3 \\ ——cgs
rhh_qr3 is the second behind = i
CholeskyQR. Note that rhh_qr3  Q mes(row)
is incondionnally stable while the < ——rhh_qrf
stability of CholeskyQR depends 40 - ——axf
on the square of the condition 1
number of the initial matrix. 20 — —q12

1 2 4 8 16 32
MFLOP/sec/proc # procs
procs
1 Qo2

1200  (4.17) 1341 (3.73) 735 (6.81) 51.9 (9.64) 391 (12.78) 343 (14.60)
2 467.3  (0.54) 1008 (2.48) 78.9 (3.17) 39.0 (6.41) 31.2 (8.02) 223 (11.21) 202 (12.53)
4 466.4  (0.27) 97.9 (1.28) 713 (1.75) 38.7 (3.23) 31.0 (4.03) 222 (5.63) 18.8 (6.66)
8 4340  (0.14) 95.9 (0.65) 67.4 (0.93) 36.7 (1.70) 34.0 (1.84) 20.8 (3.01) 17.7 (3.54)
16 3592 (0.09) 1038 (0.30) 54.2 (0.58) 316 (0.99) 27.8 (1.12) 183 (1.71) 16.3 (1.91)

32 1978  (0.08) 84.9 (0.18) 41.9 (0.37) 29.0 (0.54) 333 (0.47) 15.8 (0.99) 145 (1.08)




Q and R: Weak scalability with respect to m

e We fix the local size to be mloc=100,000 150
and n=50. When we increase the number 140 \
of processors, the global m grows Sg A\
proportionally. 9110 N, —cholqr

9_100 \k'\—\._ ——rhh ar3
90 — -

e rhh_gr3is the Allreduce algorithm with § 80 \ ——egs
recursive panel factorization, rhh_qrf is o 70 \\_.__.____*_‘ NP
the same with LAPACK Householder QR. S 60 mes(row)
We see the obvious benefit of using S ig i E - ——rhh_gqrf
recursion. See as well (6). qr2 and qrf 30 NN\ —o-qrf
correspond to the ScaLAPACK 20 —A—w ——q12
Householder QR factorization routines. lg

1 2 4 8 16 32 od

# of rhh_qgrf
procs

@ - 1212 (413) 1357  (369) 702  (7.13) 519  (9.64) 398  (12.56) 351  (14.23)
2 466.9  (1.07) 1023  (489) 844  (593) 356  (14.04) 277  (1806) 209  (23.87) 202  (24.80)
4 4541  (1.10) 967  (5.17) 672  (7.44) 414  (12.09) 323  (1548) 206  (24.28) 183  (27.29)
8 4587  (1.09) 962  (5.20) 671  (7.46) 332  (15.06) 283  (17.67) 205  (24.43) 178  (28.07)
16 4513 (111) 948  (527) 672  (7.45) 333  (15.04)  27.4  (1822) 200 (2495 172  (29.10)
32 4421 (113) 946  (529) 628  (7.97) 325  (1538) 265  (1884) 198  (2527) 169  (29.61)
64 4149  (121) 930  (538) 628  (7.96) 323  (1546) 270  (1853) 194  (2579) 166  (30.13)

Q and R: Weak scalability with respect to n

*  We fix the global size 200 o
m=100,000 and then we n3 effect
increase n as sqrt(p) so that o
the workload mn2 per g_lbﬁ —*cholqr
processor remains constant. 3 -=-1hh_qr3

glﬂﬂ e

* Due to better performancein  Q \_ mgs(row)
the local factorization or E ——rhh_quf
SYRK, CholeskyQR, rhh_g3 and _ )
rhh_qgrf exhibit increasing S0 KM N ot
performance at the beginning \ v il M * 4 —ar2
until the n® comes into play ‘ ‘ o

MFLOP/sec/proc -

150) 2071

4(100) 8(141) 16(200) 32(283) 64(400)

#procs(n)

procs

1 Cao07) Cuoz)) 1208  (414) 1340 (373) 697  (7.17) 517  (968) 396  (1263)  39.9 (14.31)
2 5102 (099) 1260  (400) 786  (641) 401  (1256) 324  (1571) 254  (1988) 190 (26.56)
4 5411 (092) 1494  (335) 756  (662) 391  (1278) 311  (1607) 255  (1959) 189 (26.48)
8 5402 (092) 1738  (286) 723 (687) 385  (12.89) 436  (1141) 278  (17.85) 202 (24.58)
16 5015  (1.00) 1952  (256) 668  (7.48) 384  (1302) 513 (975 289  (1729) 193 (25.87)
32 3792 (132) 1774 (282) 598  (837) 362  (1384) 614  (815) 295 (1695  19.3 (25.92)
64 2664  (183) 839  (596) 323  (1546) 361  (1384) 529  (9.46) 282  (17.74) 184 (27.13)




R only: Strong scalability

) ) 150
* Inthis experiment, we fix the 140 \\\
problem: m=100,000 and n=50. Then 130 N /-\
we increase the number of o 120 \ —~— \
o 110 —cholqr
processors. S 100 \ \
S 9 \ W —=—r1hh_qr3
b 80 \\ \\, ——Cgs
= 70
S a0 N —~ mgs(row)
-
3 50 AN \\ ——rhh_qrf
;g - —o—qrf
20 ~e | |—qr2
10
0 T T T T T T

1 2 4. 8 16 32 o4
MFLOP/sec/proc # procs

147.6 (3.38) 139.309 (3.58) 73.5 (6.81) 69.049 (7.24) 69.108 (7.23) 68.782 (7.27)

2 1067.856  (0.23)  123.424  (2.02)  78.649  (3.17) 39.0 (6.41)  41.837  (5.97) 38008 (6.57) 40.782  (6.13)
4 1034.203 (0.12) 116774 (1.07) 71101  (1.76) 38.7 (3.23) 39295 (3.18) 36263  (3.44)  36.046  (3.47)
8 876.724  (0.07)  119.856  (0.52)  66.513  (0.94) 36.7 (1.70) 37397  (1.67) 35313  (1.77)  34.081  (1.83)
16 619.02  (0.05) 129.808 (0.24)  53.352  (0.59) 316 (0.99) 33581  (0.93) 31339  (0.99) 31.697  (0.98)
32 468332  (0.03) 95607  (0.16) 42276  (0.37) 29.0 (0.54) 37226  (0.42) 25695  (0.60) 25971  (0.60)
64 195.885  (0.04)  77.084  (0.10) 2589  (0.30) 22.8 (0.34) 36126  (0.22) 17.746  (0.44)  17.725  (0.44)

R only: Weak scalability with respect to m

We fix the local size to be mloc=100,000 150 ~
and n=50. When we increase the number 140 N
of processors, the global m grows Sg e
proportionally. 9110 \ T e —cholgr
Q-l gg \ ==—rhh_qr3
U
Bl o o
8 60 \ — . mgs(row)
g 20 A\ ——rhh_qrf
;g _h =o—qrf
20 ——qr2
10
0 T T T T T T

1 2 4 8 16 32 o4

MFLOP/sec/proc # procs

# of rhh_qgrf
procs
@ - 1454  (343) 1382  (361) 702  (713) 706  (7.07) 687  (726) 691  (7.22)

2 10483  (0.47) 1243 (4.02) 70.3 (7.12) 356  (14.04) 431  (11.59) 358 (1395 363 (13.76)
4 10440  (0.47) 1165  (4.29) 82.0 (6.09) 414 (12.09) 358  (13.94) 363  (13.74) 347  (14.40)
8 9939  (0.50) 1162 (4.30) 66.3 (7.53) 332  (15.06) 351  (1421) 355  (14.05 338  (14.75)
16 9187  (0.54) 1152 (4.33) 64.1 (7.79) 333 (15.04) 340  (1466) 334  (1494) 330  (15.11)
32 950.7  (0.52) 1129  (4.42) 63.6 (7.85) 325  (1538) 334 (1495 333  (15.01) 329  (15.19)

64 764.6 (0.65) 1123 (4.45) 62.7 (7.96) 323 (15.46) 34.0 (14.66) 326 (15.33) 323 (15.46)




Q and R: Strong scalability

In this experiment, we fix the problem: m=1,000,000 and n=50.
Then we increase the number of processors.

Blue Gene L
frost.ncar.edu

800
700 —_—
8 600 T
5 500
% —+—ReduceHH (QR3)
o 400 -=-ReduceHH (QRF)
|
S 300 __—a———= ScaLAPACK QRF
e —<ScalAPACK QR2
200
100
O | T T
32 64 128 256

# of processors

Conclusions

We have described a new method for the Householder QR factorization of skinny matrices. The
method is named Allreduce Householder and has four advantages:

there is only one synchronization point in the algorithm,
the method harvests most of efficiency of the computing unit by large local operations,

the method is stable,

Sl S

and finally the method is elegant in particular in the case where only R is needed.

Allreduce algorithms have been depicted here with Householder QR factorization. However it
can be applied to anything for example Gram-Schmidt or LU.

Current development is in writing a 2D block cyclic QR factorization and LU factorization based
on those ideas.
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What will a petascale machine looks like.

(aka what | learned during this conference.)

Possible petascale machine

1. Number of cores per nodes | 10 — 100 cores
2. Performance per nodes 100 — 1,000 GFLOPs/sec

3. Number of nodes 1000-10,000 nodes
5. Bandwidth inter-nodes 10 Gb/sec
6. Memory per nodes 10 GB

* Partl: First rule in linear algebra: Have an efficient DGEMM
— Motivation in
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes
* Part ll: Algorithm for multicore / latency avoiding algorithm for LU, QR ...
— Motivation in:
1. Number of cores per node 2. performance per node 4. Latency inter-nodes
e Part lll: Algorithm for fault tolerance

— Motivation in:
1. Number of cores per node 3. number of nodes

What will a petascale machine looks like.

(aka what | learned during this conference.)

Possible petascale machine

1. Number of cores per nodes | 10— 100 cores

2. Performance per nodes 100 — 1,000 GFLOPs/sec
3. Number of nodes
4. Latency inter-nodes 1 psec

5. Bandwidth inter-nodes 10 Gb/sec

6. Memory per nodes 10 GB

* PartI: First rule in linear algebra: Have an efficient DGEMM
— Motivation in
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes
* Part Il: Algorithm for multicore / latency avoiding algorithm for LU, QR ...
— Motivation in:
1. Number of cores per node 2. performance per node 4. Latency inter-nodes
e Part lll: Algorithm for fault tolerance

— Motivation in:
1. Number of cores per node 3. number of nodes




Experiments on MM

e Goal:
— Write a FT-PDGEMM (Fault Tolerant matrix Matrix

Multiply)
— '

* Testing:
— Perform FT-PDGEMM in a loop and check results
with residual checking

TR

on top of this add on automatic process killer.

ABFT-BLAS: a Parallel Fault Tolerant
library BLAS based on ABFT techniques

* Constructed on top of FT-MPI.
* Provides users a fault-tolerant environment:

— Detect failures
— Recover data automatically

— Enables the user to stack computational routines
the one on top of the others

— Goal: research library for conducting experiments
on fault tolerance

* Provides us with an automatic process killer




EXAMPLE CODE

intrc;

struct Vector v;

struct Matrix a;

struct Dataworld worldmpi;
struct Global_ddata normv;
struct Global_idata nbr_iter;

rc = MPI_Init(&argc, &argv);
rc = init_world(&worldmpi, p, q, rc);
rc = get_info_on_grid(&worldmpi, &me,
&myrow, &mycol, &nprow, &npcol);

rc = allocate_vector(&v, POS_ROW, 0, nb_n, &worldmpi, "v");

rc = allocate_matrix(&a, m, n, nb_m, nb_n, &worldmpi, "a");
rc = allocate_dglobal(&normy, 1, &worldmpi);
rc = allocate_iglobal(&nbr_iter, 1, &worldmpi);

if (lworldmpi.recovering)

{

... here goes the user code to initialize objects ...
rc = make_checksum_matrix(&a, &worldmpi);

rc = make_checksum_vector(&v, &worldmpi);

}

if (worldmpi.user_state == 0)

{

rc = ftdnrm2(&worldmpi, &v, normv.data);
worldmpi.user_state = 1;

}

if (worldmpi.user_state == 1)

{

... here goes any call to the ABFT-BLAS numerical routines ...

worldmpi.user_state = 2;

}

free_vector(&v);
free_matrix(&a);
free_dglobal(&normv);
free_iglobal(&nbr_iter);
exit(0);

Diskless checkpointing

H

4 processors available




Diskless checkpointing

n 4 processors available

A\

P
(\
p p p p Add a 5t one and perform a
a T e M ¢ checksum (MPI_Reduce)
\
(

I\

ﬂ Ready for the computations
 —

Diskless checkpointing

4 processors available

Add a 5" one and perform a
checksum (MPI_Reduce)

A\

Ready for the computations

N\

Lost a processor

A




Diskless checkpointing

. H 4 processors available

Add a 5t one and perform a
checksum (MPI_Reduce)

Ready for the computations

Lost a processor

Recover the processor (FT-MPI)
Recover the data (MPl_Reduce)

Ready for the computations

Diskless checkpointing (remarks)

* You can use either floating-point arithmetic or
binary arithmetic for the checksum

* Multiple failures supported through Reed-
Solomon algorithm, optimal algorithm in the
sense that, to support p simultaneous
failures, only need to add p processes.




Time for a MPI_Reduce (using
MVAPICH) on Infiniband on

jacquard.nersc.gov
2.5
5 . . /
g 1.5 —--122.0 MB
& . . -=-68.7 MB
=] o—"
1 30.5 MB
=<7.6 MB
05
0
64 81 100 121 256

# of processors

ABFT = Algorithm Based Fault Tolerance.

* K. Huang, J. Abraham, "Algorithm-Based Fault Tolerance for Matrix
Operations," |IEEE Trans. on Comp. (Spec. Issue Reliable & Fault-
Tolerant Comp.), C-33, 1984, pp. 518-528.

* |If checkpoints are performed in floating-point arithmetic then we
can exploit the linearity of the mathematical relations on the object
to maintain the checksums
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ABFT concept in an example

nt to perform z = x+y.
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ABFT concept in an example

We want to perform z = x+y.
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ABFT concept in an example

We want to perform z = x+y.

B
H
B
B
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Proc 1 Proc 2 Proc 3 Proc 4 Proc c
| J \ J | J | J L J

ABFT concept in an example

We want to perform z = x+y.

lcheckYJ | checkXI
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ABFT concept in an example

We want to perform z = x+y.
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ABFT concept in an example

We want to perform z = x+y.
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Proc 1 Proc 2 Proc 3 Proc 4 Proc c
U J \_ J & J \ J \ J

No overhead to compute the checksum of Z.

Same idea apply to the operation A x + vy




ABFT summary.

* Relies on floating-point arithmetic checksums
* Exploit the checksum processors

* Algorithms exist for any linear operations:
— AXPY, SCAL, (BLAS1)
— GEMV (BLAS2)
— GEMM (BLAS3)
— LU, QR, Cholesky (LAPACK)
— FFT

An example with modified Gram-Schmidt.

A nonsingular m x 3

III r11=||Q1||2
Q,=Q;/ry
III r,=Q" Q
Q,=0Q,-Q;ry
rp=11Q, 11,
Q,=Q,/ry
I]HH r13:Q1TQ3
Q;=Q3-Q;ry3
r=Q," Qg
Q;=Q3-Q,ry;

rs=11Qs1l,
Q;=Q3/r33

A=QR QQ=1;




PDGEMM.

PDGEMM :

For k = 1:nb:n,

I

End For

2n® n
—y+2(n+2p-3)(—7p)
o 7ol Jr 7

ABFT-PDGEMM.

ABFT-PDGEMM :

For k = 1:nb:n,

I
EEmn Ea ]

End For

* The algorithm maintains the consistency of
the checkpoints of the matrix C naturally.

2iy+2(n+2\/;—3)(iﬂ) 2n(n+ nloc) 7+2(n+2\/;_3)((n+nloc)ﬁ)
P Jp e




jacquard.nersc.gov

* Processor type Opteron 2.2 GHz

* Processor theoretical peak 4.4 GFlops/sec

* Number of application processors 712

» System theoretical peak (computational nodes) 3.13 TFlops/sec
* Number of shared-memory application nodes 356

* Processors per node 2

* Physical memory per node 6 GBytes

* Usable memory per node 3-5 GBytes

e Switch Interconnect InfiniBand

e Switch MPI Unidrectional Latency 4.5 usec

* Switch MPI Unidirectional Bandwidth (peak) 620 MB/s
* Global shared disk GPFS Usable disk space 30 TBytes

* Batch system PBS Pro

Mvapich vs FTMPI

4 4
35 | p——p—g——y | 3.5
S 3 — S 3 i
< Z
S 2.5 325
2 2 e -
P 4000 P
S . ~=-3000 2 e
O ' o -
2000
1 1
~-1000
0.5 0.5
O T T T T O T T T T T
64 81 100 121 256 454 64 81 100 121 256 454

# of processors # of processors




FT-PDGEMM -- nloc=4,000

3.5 1600
— o —
3 4/7 1409
55 1200
(@)
e o 1000
S 2 ——FT off &
Q & 800
2] [a W
E 1.5 -=FT on o
Q FT on,1 fault G 600
G 1
© 400 -
0.5 200 -
0 T O T T 1
64 81 100 121 256 484 64 81 100121256484
# of processors # of processors
3.5
ﬁ * .
3 7
o 2.5
o
o
5 2 —Model SUMMA
(]
2 15 / —Model ABFT
g 1.
) / ¢ Measured SUMMA
L
o 1 / m Measured ABFT
0.5
0 T 1 T 1 1 1 1111 17T 17T 17 1T 17 1T 17 1T 17 1T T T T T T T T T71
< o o <
o o (o]
i < 8

# of processors




Strong scalability
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ABFT represents the only known alternative to address fault tolerance in strong scalability




GFLOPs/sec/proc

Strong scalability

—nloc = 60,000 SUMMA
- = nloc = 60,000 ABFT
——nloc = 40,000 SUMMA
- = nloc = 30,000 ABFT
——nloc = 30,000 SUMMA
- = nloc =30,000 ABFT
——nloc = 20,000 SUMMA
- = nloc = 20,000 ABFT

——nloc = 10,000 SUMMA
L L nloc = 10,000 ABFT
< o o <
o o N
— < 8

# of processors

ABFT represents the only known alternative to address fault tolerance in strong scalability

ABFT advantages:

* Independent of the Surface (n?) / volume (n3).

— Important for n/n operations (e.g. FFT)
— Important for MM with small n

* Independent of failure rate

— No need to guess parameters

* Fits nicely in the algorithm

— No need for explicit synchronization for example




LU factorization:

Starting from the encoding:




For j=1:nb:n,

- \
(1) [ = I___I (4 B-C Pn

(z) D (5)=|:|
S |-o =0
-(1)=I:IPN

10 QU

Conclusions




If a petascale machine looks like.

Possible petascale machine

1. Number of cores per nodes 10— 100 cores

2. Performance per nodes 100 — 1,000 GFLOPs/sec
3. Number of nodes 1000-10,000 nodes

4. Latency inter-nodes 1 psec

5. Bandwidth inter-nodes 10 Gb/sec

6. Memory per nodes 10 GB

We will be able to have a fairly efficient DGEMM (which a sine-qua-non condition for having
any DLA operation efficient.)

Third generation of dense linear algebra algorithm coming to handle multicore, out-of-core
and parallel distributed. Algorithms done in a year or so. A major software to appear in two-
to-three years.

Require support from compiler / language / scheduling to help in the constructing the
framework. In particular for parallel distributed machines. (Some collaborations already on

going.)

Some work on fault-tolerance mature if fault tolerance needed.




