
8/9/2007

1

Application of Machine Learning for
Solver Selection

Sanjukta Bhowmick
Department of Applied Physics and Applied Mathematics, Columbia

University
Mathematics and Computer Science DivisionMathematics and Computer Science Division

Argonne National Laboratory

In collaboration with
Victor Eijkhout (TACC), Yoav Freund (UCSD),Erika Fuentes (University of

Tennessee) and David Keyes (Columbia University)

Motivation:
Extensive Use of Linear Solvers

• The execution time in many PDE-based simulations is dominated by the time
to solve linear systems Ax=bto solve linear systems Ax=b
– MHD codes M3D, Nimrod, AORSA in U.S. DOE
– Aerodynamics code TRANAIR at Boeing

• Different simulations/applications may have different solution requirements:
– robustness, accuracy, fast execution time , low memory requirement ,

parallel scaling,…..

Th li l ti ti (i t t t l i l ti ti) b d d if l• The linear solution time (in turn total simulation time) can be reduced if solvers
are chosen to match problem attributes

• Automating solver selection and composition is one of the challenges in
scientific computing

8/9/2007

2

Motivation:
Difficulty of Method Selection

• There exists a vast range of choices for tuning linear solvers
– Solvers: direct (order), iterative (tolerance, restart value),

multilevel/multigrid (number of levels, cycles)
Preconditioner loop: method type fill parameters overlap parameters– Preconditioner loop: method type, fill parameters, overlap parameters,
number of levels, coarsening type, etc.

• Given methods {A, B, C} it is not hard to find problems arising naturally from
PDE discretizations {x, y, z}, such that :
– On x, A > B > C
– On y, B > C > A
– On z, C > A > B “>” is an order relation for better

performancep

“The impossibility of finding the best linear solver for a given problem…is
widely appreciated.” Towards Polyalgorithmic Linear System Solvers for
Nonlinear Elliptic Problems (SIAM Journal of Scientific Computing)

Opportunity For Solver Tuning

Example of
performance variations
of differently tuned
Krylov solvers over a
sequence of about 85
systems

Vertical axis is log of
runtime improvements

Opportunity is
potentially orders of
magnitude

8/9/2007

3

Using Multiple Solvers

Adapt1: (1) 1st order: BCGS / BJacobi with ILU(0)
(25) 1st order: FGMRES(30) / BJacobi with ILU(0)
(28) 2nd order: BCGS / Bjacobi with ILU(0)
(66) 2nd order: FGMRES(30) / BJacobi with ILU(0)
(80) 2nd order: FGMRES(30) / BJacobi with ILU(1)

Adapt2: (1) 1st order: GMRES(30) / Bjacobi with SOR
(2) 1st order: BCGS / BJacobi with ILU(0)
(25) 1st order: FGMRES(30) / BJacobi with ILU(0)
(28) 2nd order: BCGS / Bjacobi with ILU(0)
(66) 2nd order: FGMRES(30) / BJacobi with ILU(0)
(80) 2nd order: FGMRES(30) / BJacobi with ILU(1)

Simulation of Petsc-Fun3d code

Multisolver Research

• Performance of several preconditioned Krylov iterations and stationary methods in
nonlinear elliptic PDEs [Ern et. al. 1994]

• Polyalgorithmic parallel linear system solution [Barret et al. 1996]

• Linear System analyzer [Bramley et. al. 2000]

• Multimethod Solvers (Composites and Adaptive) [B. et al. 2003]

• SALSA – Self-Adapting Large-scale Software Architecture [Dongarra, Eijkhout et. al.
2003]2003]

• Support Vector Machines for predicting precondtioners [Xue et. al. 2005]

• Neural networks for predicting precondtioners [Holloway et. al. 2007]

8/9/2007

4

Applying Machine Learning

• Machine Learning has been used to harvest large datasets to associate features of an event
with outcomes

– medical diagnoses, retail purchases, hand-written characters, etc.

M li i l d d lif i f d d• Many applications are solved over code lifetime of decades
– We can obtain a vast amount of information about the systems and corresponding solvers
– This information (mountains of performance data) can give us pointers for selecting solvers for

future runs

• Machine learning methods are used for selecting a method based on problem features
– application parameters, matrix condition number or sparsity pattern, symmetry, etc.

• A “trained” classifier can reliably decide how to respond to such features in subsequent
encounters

– Input: Database of matrix characteristics X performance with candidate solvers
– Output: Mechanism to predict a set of suitable solvers for a given matrix

8/9/2007

5

Applying Machine Learning
Linear Systems BLinear Systems A

Matrix Properties Matrix PropertiesPetsc

Anamod Anamod

Performance
Parameters

List of Solvers

Database A
(seen)

Database B
(unseen)

Combine Combine
(Perl script) (Perl script)

MLJava

Training Set 2/3
Testing Set 1/3

Prediction Rules
(Classifiers)

Set of Suitable Solvers

(Machine Learning Tool)
MLJava

MLJava

Alternating Decision Trees
• An alternating decision tree is a mapping from instances to real numbers which is defined in

terms of a set of base rules

+0.5
+0.5

a<4.5
Y N

Decision node:
If(precondition) then

If(condition)

-0.7

a<4.5

b>1

-0.7

+0.2

-0.6+0.3

b>0a<4.5

+0.2

Decision Tree
Instance: a=b=0.5
Classification= 1

Y
Y

Y

N

-1+1

b>1 +1
Y N

N N

()
then output p1

Else output p2
Else output 0

-0.2+0.4

-0.1-0.2+0.4 +0.1

a<1b>1
Classification= -1

General Alternating Tree
Instance: a=b=0.5

Classification= sign(.5+.3-.7-.2-.1)= -1

Alternating Tree
Instance: a=b=0.5

Classification= sign(.5-.7-.2)= -1

Y

YY

N

NN

8/9/2007

6

Boosting Algorithm: AdaBoost
• Boosting refers to a general and provably effective method of producing a very

accurate prediction by combining rough and moderately inaccurate rules of
thumb---A Short Introduction to Boosting

• AdaBoost implements the boosting algorithm as follows;• AdaBoost implements the boosting algorithm as follows;
– Given database (x1,y1),….,(xm,ym) where xi ∈ X and yi ∈ Y={-1,+1}
– Initialize distribution D1(i)=1/m
– For iterations t = 1,…,T

• Train weak learner using distribution Dt

• Get weak hypothesis ht: X→{-1,+1}
• Update distribution Dt+1(i) giving more weight to wrongly classified entries

– Final hypothesis H(x) is formed by combining the all the ht

• Applying Boosting to ADTrees:Applying Boosting to ADTrees:
– Alternating decision trees can be defined as a sum of base rules
– It is easy to apply boosting to ADTrees setting base rules as weak learners
– MLJava implements AdaBoost on ADTrees

Accuracy:ROC Curves
• ROC (Receiver Operator Characteristic) curves give the accuracy

of the classifier.
•

The closer the curve follows the left-hand border and then the top border
the more accurate the test.
The x=y line represents random guessing; anything below it is worse than
random guesses

8/9/2007

7

Implementation Issues
• From a binary classification, to a set of solvers

– A solver is good if performance metric is better than a default solver by a given
threshold; else it is bad

• Incorporating multiple conditionsp g p
– Create a classifier for each condition
– The final result is the intersection or union of the predicted results for each

condition

• Linear systems formed during nonlinear solution
– Original Implementation: Solve nonlinear system for each candidate solver

fixed to be the linear solution method
– Linear systems corresponding to each nonlinear iteration are widely varying;

di ti i ht b i tpredictions might be inaccurate
– Revised Implementation

• Fix one default linear solver for the entire simulation
• Store the linear systems
• Create database by solving the stored set of linear systems

Driven Cavity Flow with Pseudo-transient Continuation
(Petsc SNES example ex27)

• Problem Parameters:
– Lid Velocity: 5 10 15 20 25
– Grashof Numbers: 100 500 1000

• Solvers• Solvers
– KSP: bcgs, tfqmr, fgmres(5,30,60), gmres(5,30,60)
– Preconditioner: asm0
– Subdomain Preconditioner: ilu0,ilu1,ilu2,lu,jacobi,none

• Machine Learning Parameters
– Default Solver: gmres30 with ilu0
– Performance Metric: linear solution time
– Threshold1: 1.5 times better than default
– Threshold2: 2.0 times better than default
– Unseen Dataset: LidVelocity 10, 20 (8736 entries)
– Seen DataSet :Lid Velocity 5,15,25

• Training Set (10458 entries)
• Testing Set (5255 entries)

8/9/2007

8

Results: ROC Curves

Results: Performance

8/9/2007

9

Results: Most Prominent Feature
(Nonlinear Residual Norm)

Linear Systems from M3D code
(w3.pppl.gov/~jchen)

• Matrix Properties:
– Number of Non-zeros (of the order 10): 7.6 12.6 13.1 18.5 24.2
– Matrix groups m1,m2,m3,m4,m8,m12,m15,m17

• Solvers
– Direct Methods: SuperLU, Spooles
– Iterative Methods : bcgs, tfqmr, fgmres(5,30,60), gmres(5,30,60)
– Preconditioners:

• Domain Decomposition: asm0,asm1,asm2
• Subdomain Preconditioner: ilu0,ilu1,ilu2, ilu3, icc0, icc1, icc2, icc3,

lu,jacobi,sor,none
• Algebraic Multigrid (Hypre): parasails,boomeramg,euclid,pilut

• Machine Learning Parameters• Machine Learning Parameters
– Classifier 1

• Performance Metric : Convergence
– Classifier 2
– Performance Metric: linear solution time

• Default Solver: gmres30 with asm0 and ilu0
• Threshold: 1.5 times better than default

8/9/2007

10

Solver Predictions

• M1:
– Predicted Solver: gmres(60), fgmres(30,60) with

BoomerAMGBoomerAMG
– 2/5 false predictions for both unseen matrices

• M2, M3, M4, M12
– Predicted Solver: gmres(5), bcgs, tfqmr, with BoomerAMG

• M15, M17
– Predicted solver gmres(30) with Jacobi
– No solvers predicted for 24K matrices

Diverse database hampers predictions

Results: Most Prominent Feature
(Condition Number)

8/9/2007

11

Grouping by Prominent Feature

• Matrices were grouped by most prominent feature
– Group 1 (m1)

• Seen Dataset: nnz 7.6,13.1,18.5
– Training Set (524 entries)

Testing Set (298 entries)– Testing Set (298 entries)
• Unseen Dataset: nnz 24.6 (matrix 1),12.6 (matrix 2) (700 entries)

- Group 2 (m2, m3 , m4, m12)
• Seen Dataset: nnz 7.6,13.1,18.5

– Training Set (1644 entries)
– Testing Set (870 entries)

• Unseen Dataset: nnz 12.6, 24.6 (1788 entries)

– Group 3 (m8, m15, m17) p (, ,)
• Seen Dataset: nnz 7.6,18.5

– Training Set (1144 entries)
– Testing Set (596 entries)

• Unseen Dataset: nnz 12.6, 24.6 (3342 entries)

Results: ROC Curves for
Convergence

8/9/2007

12

Results: ROC curves for time

Results: Performance
Group 1

False Positives: Unseen Matrix1 gmres30-boomeramg--diverged

8/9/2007

13

Results: Performance
Group 2

Results: Performance
Group 3

8/9/2007

14

Feature Selection
• Computing linear system features is expensive

• Presence of corelated features

• Presence of zero variance features

• An inefficient set of features results in lower accuracy• An inefficient set of features results in lower accuracy

• Identify important features using : weaker classifiers, genetic algorithms,
principle component analysis, etc.

• Feature selection can highlight which matrix characteristics are necessary for
solver selection

• An efficient set of features can nullify the choice of different machine learning
methodsmethods

Summary
• We can use machine learning tools to build a software that detects a suitable

set of linear solvers for a given system

• Once unseen data has been classified, the information can be fed into the
seen data, creating a richer dataset

• Machine learning tools can be used to highlight important matrix
characteristics that determine solver selection.

• Not confined to linear solvers but applicable to other multi method problems
as well

• In the spirit of the multimethod approach techniques beyond machine
learning can also be used.

• WANTED---more applications!!!

8/9/2007

15

Acknowledgements
• Thanks toThanks to

– Jin Chen (PPPL) for providing the linear systems from M3D
code

– Raphael Pelossof (Columbia University) for providing codes
to draw ROC curves

– NSF and NGS grants for “Self-Adapting Linear Solver
Architecture”

PETSc-FUN3D
• 3D compressible Euler (used in

this work; also supports
incompressible Navier Stokes)incompressible Navier-Stokes)

• Fully implicit, steady-state
• Developed by D. Kaushik et al.
• Based on FUN3D (developed by

W.K. Anderson, NASA Langley)
– Tetrahedral, vertex-centered

unstructured mesh
– Discretization: 1st or 2nd order

Roe for convection and Galerkin
for diffusion

• Pseudo-transient continuation
– backward Euler for nonlinear

continuation toward steady-state
solution

– Switched Evolution/relaxation
(SER) approach of Van Leer
and Mulder

• Newton-Krylov nonlinear solver
– Matrix-Free (2nd order FD)
– Preconditioner (1st order analytical)

• Won Gordon Bell prize at SC99;
ongoing enhancements and
performance tuning

