
1

Development of Sparse Direct Solvers
and Eigensolvers in TOPSand Eigensolvers in TOPS

Sherry Li
Lawrence Berkeley National Laboratory

CScADS Workshop on Libraries and Algorithms for Petascale Applications
Snowbird, Utah,

July 30th – August 2nd, 2007

People
• TOPS participants:

– Jim Demmel, UC Berkeley
– Laura Grigori, INRIA, France
– Parry Husbands, LBNLy
– Sherry Li, LBNL
– Esmond Ng, LBNL
– Jason Riedy, UC Berkeley
– Chao Yang, LBNL

• Collaborators:
– Zhaojun Bai, UC Davis

Weiguo Gao Fudan Univ China

2

– Weiguo Gao, Fudan Univ. China
– Ming Gu, UC Berkeley
– Osni Marques, LBNL
– Panayot Vassilevski, LLNL
– Jianlin Xia, UCLA

2

Outline of This Talk
• Sparse direct linear solvers

– Parallelizing symbolic analysis for SuperLU
– Linear-complexity factorizations

• Sparse eigensolvers
– Algebraic substructuring method (ASEIG)
– An Expert Eigensolver Toolbox (EigAdept)

3

Available sparse codes
• Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
– LLT (s.p.d.), LDLT (symmetric indefinite), LU

(nonsymmetric), QR (least squares)
– Sequential, shared-memory, distributed-memory, out-of-

core
• Distributed-memory solvers: usually MPI-based

– SuperLU_DIST [Li, Demmel, Grigori]
• Accessible from PETSc, Trilinos

MUMPS PasTiX WSMP

4

– MUMPS, PasTiX, WSMP, . . .

3

SuperLU_DIST major steps:
(parallelization perspectives)
• Static numerical pivoting: improve diagonal dominance

– Currently use MC64 (HSL);
– Being parallelized [J Riedy]Being parallelized [J. Riedy]

• Sparsity-preserving ordering
– Can use ParMeTis

• Symbolic factorization: determine pattern of {L\U}
– Being parallelized [L. Grigori]

• Numerics: factorization, triangular solves, iterative
refinement (s all dominate total time)

5

refinement (usually dominate total time)
– Parallelized a while ago; Need to improve load balance,

latency-hiding

Examples
Name Codes Type N |A| / N Fill-ratio

matrix181 M3D-C1 Real 589,698 161 9.3
(Fusion)

matrix211 M3D-C1
(Fusion)

Real 801,378 161 9.8

cc_linear2 NIMROD
(Fusion)

Complex 259,203 109 7.5

dds15 Omega3P Real 834,575 16 40.2

6

(Accelerator)

• Sparsity-preserving ordering: MeTis applied to structure of A’+A

4

Performance on IBM Power5 (1.9 GHz)

7

• 161 Gflops factorization rate for matrix121

Parallelizing symbolic factorization
• Serial algorithm is fast (usually < 10% total time) but

requires entire structure of A, limiting memory scalability
• Parallel approach

– Use graph partitioning to reorder/partition matrix.
• ParMetis on structure of A + A’

– Exploit parallelism given by this partition (coarse level) and
by a block cyclic distribution (fine level)

8

5

Max. memory (MB) of parallel symbolic
Matrix181 P = 8 P = 256

LU fill (millions) 1094.2 1445.3

symbolic Sequential
Parallel

365.5
18.0

365.5
8.1

Ratio Seq./Par. 20 45

Entire solver Old
New

1445.1
1262.8

377.2
84.3

dds15 P = 8 P = 256

LU fill (millions) 528.9 583.7

symbolic Sequntial 295.8 295.8

9

y q
Parallel
Ratio Seq./Par.

27.2
11

10.8
27

Entire solver Old
New

1061.9
817.0

341.3
113.1

Open problem: improve quality of parallel orderings.

Linear-complexity sparse factorization
• In the spirit of fast multipole, but for matrix inversion
• Model problem: discretized system Ax = b from certain

PDEs, e.g., 5-point stencil on k x k grid, n = k2

• Nested dissection ordering gave optimal complexity using
exact elimination [Hoffman/Martin/Ross]

– Factorization cost: O(n3/2) (3D: O(n2))

10

6

Linear-complexity sparse factorization

⎟
⎞

⎜
⎛ VWWUVWUVUD TTT

• Exploit low-rank structure -- represented by semi-separable matrices
(… think about SVD)

• Example: semi-separable matrix with 4 x 4 blocks

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

≅

4342341234

43323123

43232212

4321321211

DUVUWVUWWV
VUDUVUWV

VWUVUDUV
VWWUVWUVUD

A

TTTT

TTTT

TTT

)(and)(433
2

21
4323221

TTTTT VWV
U
WU

VWWVWVU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

First and second off-diagonal blocks of A are

11

T
jjiii VWWWU 121 −++ L(i,j) block entry is

D, U, W, and V are matrices of dimension k
A is n x n, uses O(n k) memory, good for k<< n

Examples: banded matrices and their inverses

Results of fast solvers

• Fast dense SS-Cholesky
– Speedup over LAPACK

DPOTRF

• Fast sparse multifrontal solver:
Represent separator submatrices as
SS structures, and perform SS-
Cholesky for the separators.

• Complexity for model problems
2D: O(p k2), p is related to tolerance

(i.e., numerical rank)
3D: O(c(p) k3), c(p) is a polynomial

Multifrontal solvers on SGI Altix

12

2D Mesh 255 1023 4095

MF 0.22 8.7 383.6

Fast MF 0.24 6.1 113.4

Great potential as preconditioners !

7

Outline of This Talk
••• Sparse direct linear solversSparse direct linear solversSparse direct linear solvers

––– Parallelizing symbolic analysis for SuperLUParallelizing symbolic analysis for SuperLUParallelizing symbolic analysis for SuperLU
––– LinearLinearLinear---complexity factorizationscomplexity factorizationscomplexity factorizations

• Sparse eigensolvers
– Algebraic sub-structuring method (ASEIG)
– An Expert Eigensolver Toolbox (EigAdept)

13

Eigenvalue problem
xMxKxMxK σσσ θλ =⎯→⎯=

• Motivated by the EVP from accelerator SciDAC

MKK σσ −= where,

• Motivated by the EVP from accelerator SciDAC
– Small eigenvalues (tightly clustered) out of a large-

eigenvalue dominated eigenspetrum: many small nonzero
eigenvalues desired

– Large null space in the stiffness matrix K
– Requires high accuracy for eigenpairs
– Need to be solved many times in shape optimization loop

14
courtesy of SLAC

8

Substructuring methods
• Substructuring dates back to the 1960s, e.g., CMS
• Holds great promoise for solving extremely large scale

problems, e.g., AMLS
– Industrial strength code in structural engineering

(Bennighof, Kaplan, Lehoucq)
• Compute vibration modes
• Perform frequency response analysis

• Open questions as the techniques extended for broad
applications:

15

– Arbitrary eigenmodes
– High frequency response analysis
– Accuracy
– Performance

Substructure partition
• Single-level

⎟
⎟
⎞

⎜
⎜
⎛

=⎟
⎟
⎞

⎜
⎜
⎛

= 2322

1311

2322

1311

MM
MM

MKK
KK

K σσ

σσ

σ

• Multi-level (nested dissection)

⎟⎟
⎟

⎠
⎜⎜
⎜

⎝
⎟⎟
⎟

⎠
⎜⎜
⎜

⎝ 333231

2322

333231

2322 ,
MMM
MMM

KKK
KKK

σσσ

16

separator

substructure

9

Substructure reduction
• Block elimination matrix L (Craig-Bampton form)

⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

==
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

== −−−−
2322

1311
1

22

11
1

ˆˆˆ
ˆ
ˆ

ˆ,
ˆ

ˆ MM
MM

MLLMK
K

LKLK TT

σ

σ

σ

σσ

• Local modes

•

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ 33323133 MMMK σ

3

2

1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

S
S

S
Sm

)ˆ,ˆ(

),(

),(

3333

2222

1111

MK

MK

MK σ

σ

σ

←

←

←

}{span on projection)ˆ,ˆ(mSMK −σ

⎟
⎞

⎜
⎛⎟

⎞
⎜
⎛ m̂mkσ

17

• Projected eigenvalue problem

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

==

333231

2322

1311

33

22

11

ˆˆˆ
ˆˆ,

ˆ
ˆ

mmm
mm
mm

SMSM
k

k
k

SKSK m
T
mmm

T
mm

σ

σσσ

σσ ΘΦ=Φ mm MK

Implementation and performance evaluation

• Major operations:
1. transformations and projection
2. projected eigenvalue problem

• Cost:
1. flops: more than a single sparse Cholesky factorization
2. storage: Block Cholesky factors + projected matrices + ...
But no triangular solvers, no (re)-orthogonalization

• ASEIG
1. interleave steps 1-4 computations

18

p p
2. develop an in-core implementation
3. recompute some intermediate matrix blocks instead of

storing (semi-implicit representation)
50% of memory saving with ≈ 15% recompute time

10

Case study: accelerator structure
• A 6-cell DDS realistic structure

– N = 65K, nnz = 1.5M
• 4-level AS, nproj ≈ 3K

19

• Many eigenvalues are wanted, O(103)
• SIL reqiures multiple shifts (factorizations)

EigAdept: an expert eigensolver toolbox
• Motivated by nano-science, accelerator SciDACs ...

• Many eigenvalue libraries have been developedy g p
– Serial
– Parallel

• No unified software framework
• A large number of parameters associated with each

algorithm
• Different architectures/applications need different

20

Different architectures/applications need different
configurations

• Difficult to choose the “optimal” algorithm for a
particular application

11

EigAdept: goals
1. Uniform interface

– Easy to use
– Hide unnecessary information

2. Intelligent engine
– Guide user through the various numerical libraries
– Help user to achieve the best performance for the target

application

21

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Eds.
Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide. SIAM, Philadelphia, 2000.

EigAdept: Architecture
User Interface

Data Analyzer

solver, preconditioner

query

update

Intelligent Engine

y

Knowledge Base
decision tree

parameters

22

Library Collection

PETSc SuperLU

ARPACK

MUMPS

PRIMME BLZPACK AMLSScaLAPACK

12

EigAdept: infrastructure
C++ class hierarchy

EigAdept LINSolver Matrix

• New eigensolver can be added in EigAdept base class

EigAdept

EA_parpack EA_blzpack

LINSolver

LIN_superlu

Matrix

CRSMatrix

… … …

23

New eigensolver can be added in EigAdept base class
• New linear solver can be added in LINSolver base class
• New matrix format can be added in Matrix base class

How to Use EigAdept?
• Simplest: intelligent engine selects solver

EigAdept myeig(A,B);
/* “set” methods to set system properties */
myeig.solve();

• User selects eigensolver: bypass intelligent engine
EA_parpack myeig(A, B);
myeig.setNev(nev); /* “set” methods to modify parameters */
myeig.solve();

• User selects both eigensolver and linear solver

24

EA_parpack myeig(A,B);
LIN_superlu mylin(A-σB);
myeig.solve(mylin);

13

Summary

• Direct linear solvers
– Parallel analysis code will be released soon
– Will look into triangular solver
– Superfast solver: needs to generalize to more general

geometry, and parallelization
• Eigensolvers

– Parallelize ASEIG
– EigAdept: connect more eigensolvers, and build

kno ledge base

25

knowledge base.

26

14

Performance on IBM Power3 (375 MHz)

27

• Quantum mechanics, complex: N = 2 million

