Development of Sparse Direct Solvers

and Eigensolvers in TOPS

Sherry Li

Lawrence Berkeley National Laboratory

CScADS Workshop on Libraries and Algorithms for Petascale Applications

Snowbird, Utah
July 30t — August 2n, 2007

People

TOPS participants:

— Jim Demmel, UC Berkeley
Laura Grigori, INRIA, France
Parry Husbands, LBNL
Sherry Li, LBNL
Esmond Ng, LBNL
Jason Riedy, UC Berkeley
Chao Yang, LBNL
Collaborators:

Zhaojun Bai, UC Davis

Weiguo Gao, Fudan Univ. China
Ming Gu, UC Berkeley

Osni Marques, LBNL

Panayot Vassilevski, LLNL
Jianlin Xia, UCLA

Outline of This Talk 2k

» Sparse direct linear solvers
— Parallelizing symbolic analysis for SuperLU
— Linear-complexity factorizations

+ Sparse eigensolvers
— Algebraic substructuring method (ASEIG)
— An Expert Eigensolver Toolbox (EigAdept)

Available sparse codes _— :

» Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

— LLT(s.p.d.), LDLT (symmetric indefinite), LU
(nonsymmetric), QR (least squares)

— Sequential, shared-memory, distributed-memory, out-of-
core

 Distributed-memory solvers: usually MPI-based
— SuperLU_DIST [Li, Demmel, Grigori]
* Accessible from PETSc, Trilinos
— MUMPS, PasTiX, WSMP, . ..

SuperLU_DIST major steps:
(parallelization perspectives)
« Static numerical pivoting: improve diagonal dominance
— Currently use MC64 (HSL);
— Being parallelized [J. Riedy]
» Sparsity-preserving ordering
— Can use ParMeTis
» Symbolic factorization: determine pattern of {L\U}

— Being parallelized [L. Grigori]

» Numerics: factorization, triangular solves, iterative
refinement (usually dominate total time)

— Parallelized a while ago; Need to improve load balance,
latency-hiding

.}]\1

Examples m:]‘.ﬂ

Name Codes Type N |Al /N | Fill-ratio

matrix181 | M3D-C1 Real 589,698 | 161 9.3
(Fusion)

matrix211 | M3D-C1 Real 801,378 | 161 9.8
(Fusion)

cc_linear2 | NIMROD Complex | 259,203 | 109 7.5
(Fusion)

dds15 Omega3P Real 834,575 |16 40.2
(Accelerator)

- Sparsity-preserving ordering: MeTis applied to structure of A+A

Performance on IBM Power5 (1.9 GHz) o) j

Factorization Triangular solution

—0— matriet || [—6— matrixtar b. |
& matrix211 || al = matrbe211 | \
—%—cc_linearz —#—cc_linear2 N

- = dds15
0l Saos || Arams |
25 3 L

Seconds

1 -] 3R 128 256

2 12 o8 IBM power5 processors

8
|BM power5 processors

- 161 Gflops factorization rate for matrix121

Parallelizing symbolic factorization) j

» Serial algorithm is fast (usually < 10% total time) but
requires entire structure of A, limiting memory scalability

» Parallel approach
— Use graph partitioning to reorder/partition matrix.
* ParMetis on structure of A + A’

— Exploit parallelism given by this partition (coarse level) and
by a block cyclic distribution (fine level)

Matrix distribution

Ti

Max. memory (MB) of parallel symbolic 1
e
Matrix181 P=8 P =256
LU fill (millions) 1094.2 1445.3
symbolic Sequential 365.5 365.5
Parallel 18.0 8.1
Ratio Seq./Par. 20 45
Entire solver Old 1445.1 377.2
New 1262.8 84.3
dds15 P=8 P =256
LU fill (millions) 528.9 583.7
symbolic Sequntial 295.8 295.8
Parallel 27.2 10.8
Ratio Seq./Par. 11 27
Entire solver Oold 1061.9 341.3
New 817.0 113.1
Open problem: improve quality of parallel orderings. 0

Linear-complexity sparse factorization

.}]\1

In the spirit of fast multipole, but for matrix inversion

Model problem: discretized system Ax = b from certain
PDEs, e.g., 5-point stencil on k x k grid, n =k?

Nested dissection ordering gave optimal complexity using
exact elimination [Hoffman/Martin/Ross]

— Factorization cost: O(n32)

(3D: O(n?))
3] [10]
=B B
|,]+_?___ .—.—-—?_—-—-H_4?
ERBER e

[13]

Linear-complexity sparse factorization \1\1

« Exploit low-rank structure -- represented by semi-separable matrices
(... think about SVD)
Example: semi-separable matrix with 4 x 4 blocks

Dy U1V2T U1W2V3T U1W2WaV4T

4= VU D, UV Uy
A/ VA A /A O} U,
WU vnu, vy D,

First and second off-diagonal blocks of A are
Ui,

U J(VJ VA2

U, " wp s womy,') and [
2

(I’J) block entry is UW.. ., "'WHV/'T
D, U, W, and V are matrices of dimension k

Ais n x n, uses O(n k) memory, good for k<< n

Examples: banded matrices and their inverses

Results of fast solvers e)
mrarice i an)
. Fast dense SS-Cholesky . East spatrse multtlfron;al stqlver:
5 epresent separator submatrices as
gg‘:;.:.’;g over LAPACK SS structures, and perform SS-
Cholesky for the separators.
1 -
=D e » Complexity for model problems
2 2D: O(p k2), p is related to tolerance
§ 3 (i.e., numerical rank)
5 i 3D: O(c(p) k3), c(p) is a polynomial
i: 9 l_ I- L i Multifrontal solvers on SGI Altix

1 2D Mesh |255 |[1023 |4095
256 512 1024_ _2048 4096 8192

e MF 0.22 |87 383.6

Fast MF 0.24 [6.1 13.4

Great potential as preconditioners ! 12

Outline of This Talk

+ Sparse eigensolvers
— Algebraic sub-structuring method (ASEIG)
— An Expert Eigensolver Toolbox (EigAdept)

e ﬁl

Eigenvalue problem
Kx=1A Mx ——> K°x=0°Mx
where, K °=K—-oM

* Motivated by the EVP from accelerator SciDAC
— Small eigenvalues (tightly clustered) out of a large-

e ﬁl

eigenvalue dominated eigenspetrum: many small nonzero

eigenvalues desired
— Large null space in the stiffness matrix K
— Requires high accuracy for eigenpairs

— Need to be solved many times in shape optimization loop

courtesy of SLAC

Substructuring methods rreeen i

+ Substructuring dates back to the 1960s, e.g., CMS

» Holds great promoise for solving extremely large scale
problems, e.g., AMLS

— Industrial strength code in structural engineering
(Bennighof, Kaplan, Lehoucq)

» Compute vibration modes
* Perform frequency response analysis
» Open questions as the techniques extended for broad
applications:
— Arbitrary eigenmodes
— High frequency response analysis

— Accuracy
— Performance
15
Substructure partition \\1\1
» Single-level
Klol— Kl% Mll M13
K? = Ky Kyi| M= My, My
K?:O-l KG’GZ K363 M3l M32 M33
» Multi-level (nested dissection)
separator

substructure

Substructure reduction _—

» Block elimination matrix L (Craig-Bampton form)

Kﬁ Mll M13
Ke=L"K°L*= K, , M=L"ML"= M, M,
[%31‘73 MSI MSZ M33
* Local modes A\ « (Ki, M)
S, = S, «— (K5, My,)

Sy) « (KRG, My,)
. (K?, M) - projection on span{S, }
. ki R UCH YLK
K =S'K’S, = k3, , M, =S'MS, = My Ty
kg Py Ty, g
» Projected eigenvalue problem
Kid=M,00°

Implementation and performance evaluation oo

* Major operations:
1. transformations and projection
2. projected eigenvalue problem

+ Cost:
1. flops: more than a single sparse Cholesky factorization
2. storage: Block Cholesky factors + projected matrices + ...

But no triangular solvers, no (re)-orthogonalization
« ASEIG

1. interleave steps 1-4 computations
2. develop an in-core implementation

3. recompute some intermediate matrix blocks instead of
storing (semi-implicit representation)

50% of memory saving with = 15% recompute time

Case study: accelerator structure
» A 6-cell DDS realistic structure

— N =65K, nnz =1.5M 2200 ——
20001 | - A
* 4-level AS, ny = 3K rapo| -0 AMLS-Aiz
1500!-
. 14001

k-] |

P :

100 200 300 400
nev

« Many eigenvalues are wanted, O(103)
» SIL regiures multiple shifts (factorizations)

500

EigAdept: an expert eigensolver toolbox

» Motivated by nano-science, accelerator SciDACs ...

« Many eigenvalue libraries have been developed
— Serial
— Parallel

* No unified software framework

» A large number of parameters associated with each
algorithm

« Different architectures/applications need different
configurations

« Difficult to choose the “optimal” algorithm for a
particular application

20

10

EigAdept: goals m:]}l

1. Uniform interface
— Easy to use
— Hide unnecessary information

2. Intelligent engine
— Guide user through the various numerical libraries
— Help user to achieve the best performance for the target
application

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Eds.
Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide. SIAM, Philadelphia, 2000.

21

EigAdept: Architecture \1\1

User Interface
A
Data Analyzer

update

Knowledge Base I Intelligent Engine

\/

solver, preconditioner

decision tree

parameters

Library Collection

S R —— R — i Se— i se—
ARPACK ScaLAPACK BLZPACK AMLS
PETSc SuperLU MUMPS

22

11

EigAdept: infrastructure rreeen i

C++ class hierarchy

EigAdept LINSolver Matrix
EA_parpack EA_blzpack LIN_superlu CRSMatrix

* New eigensolver can be added in EigAdept base class
* New linear solver can be added in LINSolver base class
* New matrix format can be added in Matrix base class

23

How to Use EigAdept? el ']

» Simplest: intelligent engine selects solver
EigAdept myeig(A,B);
I* “set” methods to set system properties */
myeig.solve();

» User selects eigensolver: bypass intelligent engine
EA_parpack myeig(A, B);
myeig.setNev(nev); /* “set” methods to modify parameters */
myeig.solve();

» User selects both eigensolver and linear solver
EA_parpack myeig(A,B);
LIN_superlu mylin(A-cB);
myeig.solve(mylin);

24

12

Summary

 Direct linear solvers
— Parallel analysis code will be released soon
— Will look into triangular solver
— Superfast solver: needs to generalize to more general
geometry, and parallelization
* Eigensolvers
— Parallelize ASEIG

— EigAdept: connect more eigensolvers, and build
knowledge base.

“L‘?j‘\j

25

“L‘?j‘\j

26

13

Performance on IBM Power3 (375 MHz)

N=2M,nnz=26 M, nnz{L+U)=1.3B
6000 T 3

.-Factor.
Ml soive
5000 | W— S i
4000
w
=
8 3000
3
7]
2000
1000+ I
L L LL e
4 16 64 256 1024

IBM Power3 processors

* Quantum mechanics, complex: N = 2 million

27

14

