8/9/2007

Future of High Performance
Linear Algebra Libraries

Jim Demmel
CScADS
31 July 2007

Collaborators

 Dense:

— Jack Dongarra, Julien Langou, Julie Langou,
Laura Grigori, Jessica Schoen, Yozo Hida,
Jason Riedy, LAPACK groups at UTK, UCB

— loana Dumitriu, Olga Holtz, Robert Kleinberg,
» Sparse:

— Kathy Yelick, Mark Hoemmen,
Marghoob Mohiyuddin, BEBOP group




Outline

« Common Challenges

* Dense Linear Algebra
— Sca/LAPACK Goals
* What is still missing
— Novel Algorithms
» With optimal complexity
— Autotuning Space
* Need for automation

» Sparse Linear Algebra
— OSKI Goals
— Novel Algorithms
— Autotuning space

Common Challenges /
Research Opportunities

Increasing parallelism

— From multicore in your laptop up to Petascale

Exponentially growing gaps between

— Floating point time << 1/Memory BW << Memory Latency
* Improving 59%l/year vs 23%l/year vs 5.5%lyear

— Floating point time << 1/Network BW << Network Latency
* Improving 59%l/year vs 26%lyear vs 15%lyear

Heterogeneity (performance and semantics)

Asynchrony
Unreliability
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What cou/d go into Sca/LAPACK?

For all linear algebra problems

For all matrix structures

For all data types

For all architectures and networks
For all programming interfaces
Produce best algorithm(s) w.r.t.

performance and accuracy
(including condition estimates, etc)

Need to prioritize, automate, enlist volunteers!

Sca/LAPACK Participants

* UC Berkeley:

— Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye Li,
Osni Marques, Christof Voemel, David Bindel, Yozo Hida,
Jason Riedy, undergrads...

* U Tennessee, Knoxville

— Jack Dongarra, Julien Langou, Julie Langou, Piotr Luszczek,
Stan Tomov, Alfredo Buttari, Jakub Kurzak

* Other Academic Institutions

— UT Austin, U Colorado, UC Davis, Florida IT, U Kansas, U Maryland,
North Carolina SU, San Jose SU, UC Santa Barbara

— TU Berlin, U Electrocomm. (Japan), FU Hagen, U Carlos Ill Madrid,
U Manchester, U Umea, U Wuppertal, U Zagreb

* Research Institutions
— CERFACS, LBL
* Industrial Partners
— Cray, HP, Intel, Interactive Supercomputing, MathWorks, NAG, SGI

8/9/2007



Goals of next Sca/LAPACK

1. Expand contents
— More functions, more parallel implementations

2. Better algorithms
— Faster, more accurate

3. Automate performance tuning

4. Better software engineering

5. Improve ease of use

6. Increased community involvement

Goal 2: Better Algorithms

» Faster

— But provide “usual” accuracy, stability

— ... Or accurate for an important subclass
» More accurate

— But provide “usual” speed

— ... Or at any cost
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Goal 2 — Faster Algorithms (1)

1. MRRR algorithm for symmetric eigenproblem / SVD:
— Parlett / Dhillon / Voemel / Marques / Willems
2. Up to 10x faster HQR for nonsymmetric eigenproblem
— Byers / Mathias / Braman
3. Extensions to QZ for generalized eigenproblem
— Kagstrom / Kressner
4. Reduce HQR from O(n3) to O(n?) for roots()
— Gu/Chandrasekaran/Zhu/Xia/Bindel/Garmire/D
5. Faster Hessenberg, tridiagonal, bidiagonal reductions
— First steps for dense eigenvalue, SVD algorithm
— Halve memory traffic in BLAS 2 part of bidiagonal reduction
— van de Geijn/Quintana, Howell / Fulton / Hammarling/ D, Bischof / Lang
6. Recursive blocked layouts for packed formats:
— Gustavson / Kagstrém / Elmroth / Jonsson/
7. Mixed single/double precision (factor/refinement)
— 8x faster on Cell, 2x with SSE
— Dongarra/Langou/Langou/Luszczek / Kurzak / Buttari
8. Bisection on GPU
— Up to 43 GFlops by doing redundant work, 6.8x speedup

Goal 2 — Faster Algorithms (2)

 Thm (D., Dumitriu, Holtz, Kleinberg): If it is possible
to multiply n-by-n matrices in O(n%) arithmetic
operations, stably or not, then it is possible to
— Solve Ax=b
— Solve least squares problems
— Compute Schur form / SVD

in O(n¥*¢) operations, for any € > 0, and stably!

» Ex: Coppersmith-Winograd => w = 2.38
 Practicality?
— Elmroth/Gustavson used by Langou too




Goal 2 — Faster Algorithms (3)

» What is latency cost of factorization in parallel?
— 2D block cyclic layout
— QR and LU: O(N log p)
— Cholesky: O(N log P /b), b = block size
— Goal: reduce latency cost of QR and LU by factor b
+ |dea (Details in Langou’s talk)

W7] - lRf
W, | — R,
W, | — | Ry
- LR
« QRwhenN=bD

— TSQR = “Tall Skinny QR”
— Latency cost = O(log P )

R
" 72\
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Goal 2: More Accurate Algorithms

Conventional Gaussian Elimination With extra precise

1/e iterative refinement
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- Arbitrary precision versions of all of LAPACK
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Goal 3: Automatic Performance Tuning

» Writing high performance software is hard

« |deal: get high fraction of peak performance from
one algorithm

« Reality: Best algorithm (and its implementation)
can depend strongly on the problem, computer
architecture, compiler,...

— Changes with each new hardware, compiler
release

« How much of this can we teach?
« How much of this can we automate?

Impact of Automatic Performance Tuning

* Widely used in performance tuning of Kernels
— ATLAS (PhiPAC) - www.netlib.org/atlas
* Dense BLAS, now in Matlab, many other releases
— FFTW — www.fftw.org

» Fast Fourier Transform and similar transforms, Wilkinson Software
Prize

— Spiral - www.spiral.net
+ Digital Signal Processing

» Talks from CScADS Autotuning Workshop
» Sparse tuning (second half of this talk)
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Optimizing blocksizes for mat-mul

o=

4450

400

1350

1300

Finding a Needle in a Haystack — So Automate

ScalLAPACK Data Layouts

a 1 2 3 02 001 (203 D 2 (300 (20340 213021 .
1D Block 1D Cyclic
0101 a]i[0]1
2|3|2|3|2|3|2]|3
R ERCE 1
1D Block gj1|2|3(of1(2]3 2|3l2|3|2[3[2]3 2D Block
‘ G107 (0] [0o]1 Cvli
Cyclic 2(3|2|3|2|3]2]|3 yelie
SRR E
2|a|2|3|z|3]2z]|3

Speedups for using 2D block cyclic range from 2x to 8x
Cost of redistributing from 1D to best 2D layout 1% - 10%
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How do we best explore this large tuning space?

Algorithm tuning space includes
— Numerous block sizes, not just in underlying BLAS (1300 ILAENV calls)
— Many possible layers of parallelism, many mappings to HW
— Different traversals of underlying DAGs
» Left and right looking two of many; asynchronous algorithms (Buttari)
“Redundant” algorithms for GPUs
Recursive, parallel layouts and algorithms
New “optimal” algorithms for variations on standard factorizations
New and old eigenvalue algorithms
Mixed precision (for speed or accuracy)

Is there a concise set of abstractions to describe, generate tuning space?
— Block matrices, factorizations (partial, tree, ...), DAGs, ...
— PLASMA, GCO, FLAME, Spiral, Telescoping languages, Bernoulli, Rose, ...

Question: What fraction of dense linear algebra can be generated/tuned?
— Lots more than when we started
* Sequential BLAS -> Parallel BLAS -> LU -> other factorizations -> ...
— Most of dense linear algebra?
* Not eigenvalue algorithms (on compact forms)
* What fraction of LAPACK can be done?
* Rest of loop “for all linear algebra problems...”
— For all interesting architectures...?

Automatic Performance Tuning
for Sparse Matrix Algorithms

Tuning techniques for sparse matrix kernels
OSKI = Optimized Sparse Kernel Interface
Tuning on Multicore

Berkeley Benchmarking and
OPtimization (BeBOP)

— bebop.cs.berkeley.edu

— Codirected by Katherine Yelick
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NASA structural analysis matrix
*y=y+AX

Matrix 02-raefsky3
o T T T

\ | - for all nonzero A(i,j)
N | Y +=AG)) " X))

79% | 1 // Compressed Sparse Row
s | | Foreach row i

s=0
| \\ 1 for k = rotrfi] to rotrfi+1]-1
15304 | \ 1 s +=A[k] * x( col(k) )
yi)=s

18560

- S Indirect access
0 2636 5312 71ajgmm:oﬂr?ainjz?él2’jss 15904 18560 21216 Memory bound

NASA matrix (zoom in)

Matrix 02—raeisky3

* One index
per block

« Memory
accesses
minimized by
storing 8x8
dense blocks

g 16 24 32 40 48 56 64 72 80
1792 ideal nz + 0 explicit zeros = 1792 nz

10



Speedups on Itanium 2: The
Need for Search

900 MHz Itanium 2, Intel C v8: ref=275 Mflop/s
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Another tuning challenge

* More complicated
non-zero structure
in general

N = 16614
NNZ =1.1M
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3x3 blocks create a lot of “fill-in”

3% 3 Register Blocking Example
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Optimized Sparse Kernel
Interface: OSKI

* Provides sparse kernels automatically tuned for user’s
function, matrix & machine (lots more to do)

— Many functions, optimizations

— Searches over large set of possible data structures
and algorithms

— Some search at install time, some at run-time
— Performance models to prune search
— Learns from past optimizations
— Hides details from user
— Used at DOE, Clearstream (lithography)
» Bebop.cs.berkeley.edu

Automatic Selection of
Register Block Size (r x c)

+ Off-line benchmark
— Precompute Mflops(r,c) using dense A for

eachrxc e ==
— Once per machine/architecture faam =
. A
* Run-time “search” T ,-_jl

— Sample A to estimate Fill(r,c) for eachrxc
* Run-time heuristic model

— Choose r, ¢ to minimize
time ~ Fill(r,c) / Mflops(r,c)

8/9/2007

13



Summary of Other Performance Optimizations

* Optimizations for SpMV
— Register blocking (RB): up to 4x over CSR
Variable block splitting: 1.8x over RB
Diagonals: 2x over CSR
Reordering to create dense structure + splitting: 2x over CSR
Symmetry: 2.6x over RB
Cache blocking: 2.8x over CSR
Multiple vectors (SpMM): 7x over CSR
And combinations...
« Sparse triangular solve
— Hybrid sparse/dense data structure: 1.8x over CSR
* Higher-level kernels
— AAT*x, ATA*x: 4x over CSR, 1.8x over RB
— AZ*x: 2x over CSR, 1.5x over RB

« Example — Omega3P

Tuning SpMV on Multicore

» Larger search space for optimization:
— Data structure optimization
* Register, cache and TLB blocking
* 16 or 32 bit indices, block coordinate storage
— Code optimization

* Pipelining, no branches, SIMD, pointer arithmetic,
prefetching

— Parallelization optimizations
* Threading, row parallelism
* Process and memory affinity

» Different optimizations effective on different platforms
— AMD X2, Intel Clovertown, Sun Niagra, STI Cell

8/9/2007
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SpMV on Intel Clovertown
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SpMV on Cell
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Tuning at a Higher Level than SpMV

Tuning (X,A,k) — [x,Ax,A2x,...AKx]

Optimal communication complexity
algorithms for Krylov subspace methods

— Latency of communication, for a parallel machine
— Latency and bandwidth, for a memory hierarchy
Example: GMRES for Ax=b6 on “2D Mesh”

Performance modeling, measurements

8/9/2007
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Parallel Complexity

Example matrix — “2D mesh” n/p%I

— xlives on n-by-n mesh

— Partitioned on p* -by- p* processor grid

— Ahas “5 point stencil” (Laplacian) RREEEE

— Ex: 18-by-18 mesh on 3-by-3 grid

Cost = (flops, #words, #messages) AEmEEE

Cost(conventional algorithm for [x,Ax,...,Akx]) nip*
= (9kn2 /p, 4kn / p*%, 4k)

Cost(new algorithm for [x,Ax,...,Akx])
=(9kn2 /p + 9k?n / p”, 4kn / p” + 2k2, 8)

Latency cost of new algorithm is O(1), optimal

Minimizing Communication

» What is the cost = (#flops, #words, #mess)
of k steps of standard GMRES?

GMRES, v1:
fori=1tok
w=A* Ui-1) n/p”
MGS(w, L0),...,Ui-1))
update Wi), H
endfor

solve LSQ problem with | -n/pyz -

< Cost(A* )=k *(9n?/p,4n/p”, 4)

* Cost(MGS)=k%2* (4n?/p,logp,logp)
* Total cost ~ Cost( A* v) + Cost (MGS)

» Can we reduce the latency?

8/9/2007
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Minimizing Communication

+ Cost(GMRES, v1) = Cost(A*v) + Cost(MGS)
= (9kn?/p, 4kn/p”2, 4k )+ (2k?n?/p ,k?logp/2,k?logp/2)

- How much latency cost from A*v can you avoid? Almost all

GMRES, v2: |
W=1[v, Av, Av, ..., Av] §o 32

[QR=MGS(W) i :
Build Hfrom R, solve LSQ problem e

- Cost(W) = ( ~ same, ~ same, 8)

* Latency cost independent of k — optimal
* Cost (MGS) unchanged
» Can we reduce the latency more?

Minimizing Communication
* Cost(GMRES, v2) = Cost() + Cost(MGS)
= (9kn?/p, 4kn/p”, 8)+ (2k2n?/p ,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, v3:
W=1[v, Av, Rv, ..., Av]
[QR =TSQR(W) ... “Tall Skinny QR”
Build H#from R, solve LSQ problem

Wil = | R | 2R
- Ry
W{ %2 gz] > R 1234
3| 3| 2R
W4 — R4 7 34

- Cost(TSQR) = ( ~ same, ~ same, logp )
* Latency cost independent of k - optimal

8/9/2007
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Minimizing Communication
- Cost(GMRES, v2) = Cost(}) + Cost(MGS)
= (9kn?/p, 4kn/p”z, 8)+ (2k?n?/p ,k%logp/2,k?logp/2)

- How much latency cost from MGS can you avoid? Almost all

GMRES, v3:
W=1v, Av, Rv, ..., AV]
[QR =TSQR(W) ... “Tall Skinny QR”
Build H#from R, solve LSQ problem

Wiyl = | Ri| =R

w=| Wo | =™ | Ry T R1234
W3 nd R3 — R34/
w,] > LR, ] —

- Cost(TSQR) = ( ~ same, ~ same, log p )
* Oops

Minimizing Communication
* Cost(GMRES, v2) = Cost() + Cost(MGS)
= (9kn?/p, 4kn/p”, 8)+ (2k2n?/p ,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, v3:
W=1[v, Av, Rv, ..., Av]
[QR =TSQR(W) ... “Tall Skinny QR”
Build H#from R, solve LSQ problem

Wil = | R | 2R
- Ry
W{ %2 gz] > R 1234
3| 3| 2R
W4 — R4 7 34

- Cost(TSQR) = ( ~ same, ~ same, logp )
* Oops — W from power method, precision lost!

8/9/2007

19



Minimizing Communication

* Cost(GMRES, v3) = Cost() + Cost(TSQR)
= (9kn?/p, 4kn/p”, 8)+ (2k?n?/p,kZlogp/2,logp)

» Latency cost independent of k, just log p — optimal
* Oops — W from power method, so precision lost — What to do?

* Use a different polynomial basis

* Not Monomial basis W= [v, Ay, Ay, ...], instead ...

* Newton Basis W =[v, (A-06,)v, (A=-6,1)(A-0641)y, ...]or
» Chebyshev Basis W =[v, T4(V), To(V), ...]

Maftrix diag-cond-1.000000e-11: rel. 2-nrm resid.
T

T T
Monrestarted GMRES
w FRestarted GMRES({192)
O Monomial-GMRES(24 8)
MNewton-GMRES(24 8)

i
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nner iteration number

1 1
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Performance Modeling

* Petascale
— Max # processor =8100
— Memory/processor = 6.25 -10° words
— Flop time =2 -10-"" secs (50 GFlops/s)
— Latency = 10 secs
— 1/Bandwidth = 2 -109secs (4 GB/s)
» Grid
— Max # processor = 125
— Memory/processor = 1.2 -10"2words
— Flop time = 10-2secs (1 TFlops/s)
— Latency = .1 secs
— 1/Bandwidth = 25 -10-% secs (.32 GB/s)

Speedup of 2D Mesh, 9pt stencil, on Petascale, no overlap
Peta: 2D 9-pt stencil without communication overlap
Ponas = 8100, v = 107, 8= 2. 1072, flops/s=50 - 10°, mem=62.5 - 10°

2 100 1.00

Peak speedup —
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P

Puras = 81

Speedup of 2D Mesh, 9pt stencil, on Petascale
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Speedup on Grid, with overlap

Grids 3D 27-pt stencil with communication overlap

25 107", flops/s

Grid: 2D 9-pt stencil with communication everlap

125, a0 = 0.1, § = 25- 107", fops/s=10", mem=1.2. 10" =125 a=0173 10", mem=1.2 - 10

2D, 9 point stencil 3D, 27 point stencil
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Latency and Banadwidth Avoiding

Sequential Kernel for [x, AX, ..., A¥X]

* Mimic parallel algorithm:

— Fori =1 to #blocks of x

 Load rows of A needed to compute block i of [AX,...,Akx]
(including remotely dependent entries)

» Load block i of x and parts of x from neighboring blocks
needed to compute remotely dependent entries of [AX,...,Akx]

« Compute block i of [AX,...,Akx]
» #Blocks chosen to fit as much of A and
[x,AX,...,Akx] in fast memory as possible
— Double buffering, other optimizations possible
» Optimal in sense that all data moved between
fast and slow memory =once
— 1 + (k-surface/volume) times
— Increase computational intensity k-fold

Time{Akx)ik

Measured and Modeled Performance

5.2 GFlop Itanium2, 4GB memory, Disk

1/f= 300MFlops/s, BW,4 = 140 MB/s, BW,,;, =30 MB/s, disk latency irrelevant

160 A
140 \ Ik -
120 3 e
100 \ ! “f

a0 \ : /

40 R e e e = Y | /

20 . : i !

0 * = 2 : - “.

0 2 4 6 8 0 12 14

|~ Speedup = Modeled Speedup|

16

3D mesh, 27-pt stencil, n = 368, p = 64 blocks,

Measured Speedup up to 3.2x (flop time = V2 bandwidth time)
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Summary of Optimal Sparse Algorithms

Tuning and algorithmic design interact

Can eliminate latency from GMRES, CG, ...
maintaining stability

— Ideas go back to Van Rosendale (1983),

Chronopoulos & Gear (1989), Toledo (1991) many
others, but without simultaneous stability & optimality

Extends to preconditioned methods

— Kernel becomes [x,Ax,MAX,AMAXx,MAMAYX,...,(MA)kx]

— But only some preconditioners let us eliminate
latency, not raise flop count a lot (work in progress)

Lots of tuning opportunities

— All SpMV techniques, plus choosing k, polynomial in
kernel, partitioning, overlapping communication and
computation, ...

Summary

Tuning spaces for Dense and Sparse Libraries
large and promising
— New algorithms for new architectures

— Need to break old interfaces to make progress
+ BLAS2, BLAS3 -> BLAS2.5 in SVD
* SpMV -> Krylov method

— New minimal communication algorithms

SW problem moves from managing complexity
of libraries to managing autotuners

8/9/2007
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