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Outline
• Common Challenges

• Dense Linear Algebra• Dense Linear Algebra
– Sca/LAPACK Goals

• What is still missing
– Novel Algorithms

• With optimal complexity
– Autotuning Space

• Need for automation

• Sparse Linear Algebra
– OSKI Goals
– Novel Algorithms
– Autotuning space

Common Challenges /    
Research Opportunities

• Increasing parallelismg p
– From multicore in your laptop up to Petascale

• Exponentially growing gaps between
– Floating point time << 1/Memory BW << Memory Latency

• Improving   59%/year  vs  23%/year   vs  5.5%/year
– Floating point time << 1/Network BW << Network Latencyg p y

• Improving   59%/year  vs   26%/year  vs  15%/year

• Heterogeneity (performance and semantics)
• Asynchrony
• Unreliability
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What could go into Sca/LAPACK?
For all linear algebra problems

F ll t i t tFor all matrix structures

For all data types

For all programming interfaces 

For all architectures and networks

Produce best algorithm(s) w.r.t.    
performance and accuracy
(including condition estimates, etc)

Need to prioritize, automate, enlist volunteers!

Sca/LAPACK Participants
• UC Berkeley:

– Jim Demmel, Ming Gu, W. Kahan, Beresford Parlett, Xiaoye Li,    
Osni Marques, Christof Voemel, David Bindel, Yozo Hida,         
Jason Riedy undergradsJason Riedy, undergrads…

• U Tennessee, Knoxville
– Jack Dongarra, Julien Langou, Julie Langou, Piotr Luszczek,        

Stan Tomov, Alfredo Buttari, Jakub Kurzak
• Other Academic Institutions

– UT Austin, U Colorado, UC Davis, Florida IT, U Kansas, U Maryland,    
North Carolina SU, San Jose SU, UC Santa Barbara

– TU Berlin, U Electrocomm. (Japan), FU Hagen,  U Carlos III Madrid, 
U Manchester, U Umeå, U Wuppertal, U ZagrebU Manchester, U Umeå, U Wuppertal,  U Zagreb 

• Research Institutions
– CERFACS, LBL

• Industrial Partners
– Cray, HP, Intel, Interactive Supercomputing, MathWorks, NAG, SGI
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Goals of next Sca/LAPACK
1. Expand contents 

– More functions, more parallel implementations 
2. Better algorithms 

– Faster, more accurate
3. Automate performance tuning
4. Better software engineering
5 Improve ease of use5. Improve ease of use
6. Increased community involvement

Goal 2: Better Algorithms 

• Faster
– But provide “usual” accuracy, stability
– … Or accurate for an important subclass 

• More accurate
– But provide “usual” speed

Or at any cost– … Or at any cost
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Goal 2 – Faster Algorithms (1)
1. MRRR algorithm for symmetric eigenproblem / SVD:       

– Parlett / Dhillon / Voemel / Marques / Willems
2. Up to 10x faster HQR for nonsymmetric eigenproblem

– Byers / Mathias / Braman
3. Extensions to QZ for generalized eigenproblem

– Kågström / Kressner
4. Reduce HQR from O(n3) to O(n2) for roots()

– Gu/Chandrasekaran/Zhu/Xia/Bindel/Garmire/D
5. Faster Hessenberg, tridiagonal, bidiagonal reductions

– First steps for dense eigenvalue, SVD algorithm
– Halve memory traffic in BLAS 2 part of bidiagonal reduction
– van de Geijn/Quintana, Howell / Fulton / Hammarling/ D, Bischof / Lang

6. Recursive blocked layouts for packed formats:         
– Gustavson / Kågström / Elmroth / Jonsson/

7. Mixed single/double precision (factor/refinement) 
– 8x faster on Cell, 2x with SSE
– Dongarra/Langou/Langou/Luszczek / Kurzak / Buttari

8. Bisection on GPU
– Up to 43 GFlops by doing redundant work, 6.8x speedup

Goal 2 – Faster Algorithms (2)
• Thm (D., Dumitriu, Holtz, Kleinberg): If it is possible 

to multiply n-by-n matrices in O(nw) arithmetic 
operations, stably or not, then it is possible top , y , p
– Solve Ax=b
– Solve least squares problems
– Compute Schur form / SVD
in O(nw+ε) operations, for any ε > 0, and stably!

• Ex: Coppersmith-Winograd => w ≈ 2.38
• Practicality?

– Elmroth/Gustavson used by Langou too
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Goal 2 – Faster Algorithms (3)
• What is latency cost of factorization in parallel?

– 2D block cyclic layout
– QR and LU: O(N log p)QR and LU: O(N log p)
– Cholesky: O(N log P / b),      b = block size
– Goal: reduce latency cost of QR and LU by factor b

• Idea (Details in Langou’s talk)

W = 
W1
W2
W

R1
R2
R

R12
R1234

• QR when N = b
– TSQR = “Tall Skinny QR”
– Latency cost = O( log P )

W3
W4

R3
R4

R34

Goal 2: More Accurate Algorithms
Conventional Gaussian Elimination With extra precise

iterative refinement1/ε

ε

ε = n1/2 2−24

• Arbitrary precision versions of all of LAPACK
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Goal 3: Automatic Performance Tuning

• Writing high performance software is hard
• Ideal: get high fraction of peak performance from• Ideal: get high fraction of peak performance from 

one algorithm
• Reality: Best algorithm (and its implementation) 

can depend strongly on the problem, computer 
architecture, compiler,…
– Changes with each new hardware, compiler g p

release
• How much of this can we teach?
• How much of this can we automate?

Impact of Automatic Performance Tuning

• Widely used  in performance tuning of Kernels
ATLAS (PhiPAC) www netlib org/atlas– ATLAS (PhiPAC) - www.netlib.org/atlas

• Dense BLAS, now in Matlab, many other releases

– FFTW – www.fftw.org
• Fast  Fourier Transform and similar transforms, Wilkinson Software 

Prize

– Spiral  - www.spiral.net
Di it l Si l P i• Digital Signal Processing

• Talks from CScADS Autotuning Workshop
• Sparse tuning (second half of this talk)
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Optimizing blocksizes for mat-mul

Finding a Needle in a Haystack – So Automate

ScaLAPACK Data Layouts

1D Block 1D  Cyclic

1D Bl k 2D Block1D Block 
Cyclic

2D Block 
Cyclic

Speedups for using 2D block cyclic range from 2x to 8x
Cost of redistributing from 1D to best 2D layout 1% - 10% 



8/9/2007

9

How do we best explore this large tuning space?
• Algorithm tuning space includes

– Numerous block sizes, not just in underlying BLAS (1300 ILAENV calls)
– Many possible layers of parallelism, many mappings to HW 
– Different traversals of underlying DAGs

• Left and right looking two of many; asynchronous algorithms (Buttari)
– “Redundant” algorithms for GPUs
– Recursive, parallel layouts and algorithms
– New “optimal” algorithms for variations on standard factorizations
– New and old eigenvalue algorithms
– Mixed precision (for speed or accuracy)

• Is there a concise set of abstractions to describe, generate tuning space?
– Block matrices, factorizations (partial, tree, …), DAGs, …
– PLASMA, GCO, FLAME, Spiral, Telescoping languages, Bernoulli, Rose, …

• Question: What fraction of dense linear algebra can be generated/tuned?
– Lots more than when we started

• Sequential BLAS -> Parallel BLAS -> LU -> other factorizations -> …
– Most of dense linear algebra?

• Not eigenvalue algorithms (on compact forms)
• What fraction of LAPACK can be done?
• Rest of loop “for all linear algebra problems…”

– For all interesting architectures…?

Automatic Performance Tuning
for Sparse Matrix Algorithms

• Tuning techniques for sparse matrix kernels
• OSKI = Optimized Sparse Kernel Interface
• Tuning on Multicore
• Berkeley Benchmarking and       

OPtimization (BeBOP)
b b b k l d– bebop.cs.berkeley.edu

– Codirected by Katherine Yelick
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NASA structural analysis matrix
• y = y + A*x

for all nonzero A(i j)for all nonzero A(i,j)
y(i) += A(i,j) * x(j)

// Compressed Sparse Row 
For each row i

s = 0
ffor k = rptr[i] to rptr[i+1]-1

s += A[k] * x( col(k) )
y(i) = s

Indirect access
Memory bound

O i d

NASA matrix (zoom in)

• One index 
per block

• Memory 
accesses 
minimized byminimized by 
storing 8x8 
dense blocks
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Speedups on Itanium 2: The 
Need for Search

Mflop/s

Best: 4x2

Reference Mflop/s

Register Profiles: IBM and Intel 
IA-64

Power3 - 17% Power4 - 16%252 Mflop/s 820 Mflop/s

Itanium 2 - 33%Itanium 1 - 8%

122 Mflop/s 459 Mflop/s

247 Mflop/s 1.2 Gflop/s

107 Mflop/s 190 Mflop/s
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Another tuning challenge

M li t d• More complicated 
non-zero structure 
in general

• N = 16614
• NNZ = 1.1M

3x3 blocks create a lot of “fill-in”

• Need to store explicit 
zeros

• 50% more entries
• 1.5x as much arithmetic
• 1.5x as much memory  

traffic

• Take 1.5x less time!
• Flop rate is (1.5)2 = 2.25x 

higher on Pentium III
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Optimized Sparse Kernel 
Interface: OSKI

• Provides sparse kernels automatically tuned for user’s• Provides sparse kernels automatically tuned for user s 
function, matrix & machine (lots more to do)
– Many functions, optimizations 
– Searches over large set of possible data structures 

and algorithms 
– Some search at install time, some at run-time

See: bebop.cs.berkeley.edu

– Performance models to prune search
– Learns from past optimizations
– Hides details from user
– Used at DOE, Clearstream (lithography)

• Bebop.cs.berkeley.edu

Automatic Selection of 
Register Block Size  (r  x  c)

• Off-line benchmark
– Precompute Mflops(r,c) using dense A for 

each r x c
– Once per machine/architecture

• Run-time “search”
Sample A to estimate Fill(r c) for each r x c– Sample A to estimate Fill(r,c) for each r x c

• Run-time heuristic model
– Choose r, c to minimize                           

time ~ Fill(r,c) / Mflops(r,c)
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Summary of Other Performance Optimizations

• Optimizations for SpMV
– Register blocking (RB): up to 4x over CSR
– Variable block splitting: 1.8x over RB
– Diagonals: 2x over CSR
– Reordering to create dense structure + splitting: 2x over CSR
– Symmetry: 2.6x over RB
– Cache blocking: 2.8x over CSR
– Multiple vectors (SpMM): 7x over CSR
– And combinations…

• Sparse triangular solveSparse triangular solve
– Hybrid sparse/dense data structure: 1.8x over CSR

• Higher-level kernels
– AAT*x, ATA*x: 4x over CSR, 1.8x over RB
– A2*x: 2x over CSR, 1.5x over RB

• Example – Omega3P

Tuning SpMV on Multicore

• Larger search space for optimization:
Data structure optimization– Data structure optimization

• Register, cache and TLB blocking
• 16 or 32 bit indices, block coordinate storage

– Code optimization
• Pipelining, no branches, SIMD, pointer arithmetic, 

prefetching
– Parallelization optimizationsp

• Threading, row parallelism
• Process and memory affinity

• Different optimizations effective on different platforms
– AMD X2, Intel Clovertown, Sun Niagra, STI Cell
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Clovertown
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SpMV on Cell
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Tuning at a Higher Level than SpMV

• Tuning (x,A,k) → [x,Ax,A2x,…Akx]
• Optimal communication complexity 

algorithms for Krylov subspace methods
– Latency of communication, for a parallel machine
– Latency and bandwidth, for a memory hierarchy

• Example: GMRES for Ax=b on “2D Mesh”• Example: GMRES for Ax=b on 2D Mesh
• Performance modeling, measurements
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Parallel Complexity
• Example matrix – “2D mesh”

– x lives on n-by-n mesh
n/p½

– Partitioned on p½ -by- p½ processor grid
– A has “5 point stencil” (Laplacian)
– Ex: 18-by-18 mesh on 3-by-3 grid

• Cost =  (flops, #words, #messages)
• Cost(conventional algorithm for [x,Ax,…,Akx])

= (9kn2 /p, 4kn / p½ ,  4k )
= ( O(k volume) O(k surface) O(k) )

n/p½

= ( O(k·volume), O(k·surface), O(k) )
• Cost(new algorithm for [x,Ax,…,Akx])

= (9kn2 /p + 9k2n / p½ , 4kn / p½ + 2k2,  8 )
= (O(k·volume + k2·surface), O(k·surface), O(1) ) 

• Latency cost of new algorithm is O(1), optimal

Minimizing Communication
• What is the cost = (#flops, #words, #mess)  

of k steps of standard GMRES?of k steps of standard GMRES?
GMRES, v1:
for i=1 to k

w = A * v(i-1)
MGS(w, v(0),…,v(i-1))
update v(i), H
df

n/p½

endfor
solve LSQ problem with H n/p½

• Cost(A * v) = k * (9n2 /p, 4n / p½ ,  4 )
• Cost(MGS) = k2/2 * ( 4n2 /p , log p , log p )
• Total cost ~ Cost( A * v ) + Cost (MGS)
• Can we reduce the latency?
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Minimizing Communication
• Cost(GMRES, v1) = Cost(A*v) + Cost(MGS)

=  ( 9kn2 /p, 4kn / p½ ,  4k ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

How much latency cost from A*v can you avoid? Almost all• How much latency cost from A v can you avoid?  Almost all

GMRES, v2:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

• Cost(W) = ( ~ same, ~ same ,  8 )
• Latency cost independent of k – optimal

• Cost (MGS) unchanged
• Can we reduce the latency more?

s = 3

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

How much latency cost from MGS can you avoid? Almost all• How much latency cost from MGS can you avoid?  Almost all

GMRES, v3:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  …  “Tall Skinny QR”
Build H from R, solve LSQ problem

• Cost(TSQR) = ( ~ same, ~ same ,  log p )
• Latency cost independent of k - optimal

W = 
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234
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Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

How much latency cost from MGS can you avoid? Almost all• How much latency cost from MGS can you avoid?  Almost all

GMRES, v3:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  …  “Tall Skinny QR”
Build H from R, solve LSQ problem

• Cost(TSQR) = ( ~ same, ~ same ,  log p )
• Oops

W = 
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , k2 log p / 2 )

How much latency cost from MGS can you avoid? Almost all• How much latency cost from MGS can you avoid?  Almost all

GMRES, v3:
W = [ v, Av, A2v, … , Akv ]
[Q,R] = TSQR(W)  …  “Tall Skinny QR”
Build H from R, solve LSQ problem

• Cost(TSQR) = ( ~ same, ~ same ,  log p )
• Oops – W from power method, precision lost!

W = 
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234
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Minimizing Communication
• Cost(GMRES, v3) = Cost(W) + Cost(TSQR)

=  ( 9kn2 /p, 4kn / p½ ,  8 ) + ( 2k2n2 /p , k2 log p / 2 , log p )

• Latency cost independent of k just log p optimal• Latency cost independent of k, just log p – optimal
• Oops – W from power method, so precision lost – What to do?

• Use a different polynomial basis
• Not Monomial basis W = [v, Av, A2v, …], instead …

Newton Basis W = [v (A θ I)v (A θ I)(A θ I)v ] or• Newton Basis WN = [v, (A – θ1 I)v , (A – θ2 I)(A – θ1 I)v, …] or
• Chebyshev Basis WC = [v, T1(v), T2(v),  …]
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Performance Modeling
• Petascale

– Max # processor =8100a # p ocesso 8 00
– Memory/processor = 6.25 ·109  words
– Flop time = 2 ·10-11 secs (50 GFlops/s)
– Latency = 10-5 secs
– 1/Bandwidth = 2 ·10-9 secs (4 GB/s)

• Grid
– Max # processor = 125p
– Memory/processor = 1.2 ·1012 words
– Flop time = 10-12 secs (1 TFlops/s)
– Latency = .1 secs
– 1/Bandwidth = 25 ·10-9 secs (.32 GB/s)

Speedup of 2D Mesh, 9pt stencil, on Petascale, no overlap

Peak speedup
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Speedup of 2D Mesh, 9pt stencil, on Petascale

Without overlap With overlap

Speedup on Grid, with overlap

2D, 9 point stencil 3D, 27 point stencil
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Latency and Bandwidth Avoiding 
Sequential Kernel for [x, Ax, … , Akx]
• Mimic parallel algorithm:

– For i = 1 to #blocks of xo to #b oc s o
• Load rows of A needed to compute block i of [Ax,…,Akx] 

(including remotely dependent entries)
• Load block i of x and parts of x from neighboring blocks 

needed to compute remotely dependent entries of [Ax,…,Akx] 
• Compute block i of [Ax,…,Akx] 

• #Blocks chosen to fit as much of A and 
[x,Ax,…,Akx] in fast memory as possible
– Double buffering, other optimizations possible

• Optimal in sense that all data moved between 
fast and slow memory ≈once
– 1 + (k·surface/volume) times
– Increase computational intensity k-fold

Measured and Modeled Performance
5.2 GFlop Itanium2, 4GB memory, Disk

1/f= 300MFlops/s,   BWread = 140 MB/s,   BWwrite = 30 MB/s,   disk latency irrelevant

3D mesh, 27-pt stencil, n = 368, p = 64 blocks,

Measured Speedup up to 3.2x (flop time ≈ ½ bandwidth time)
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Summary of Optimal Sparse Algorithms
• Tuning and algorithmic design interact
• Can eliminate latency from GMRES, CG, … 

i t i i t bilitmaintaining stability
– Ideas go back to Van Rosendale (1983), 

Chronopoulos & Gear (1989), Toledo (1991) many 
others, but without simultaneous stability & optimality 

• Extends to preconditioned methods
– Kernel becomes [x,Ax,MAx,AMAx,MAMAx,…,(MA)kx]
– But only some preconditioners let us eliminate 

latency, not raise flop count a lot (work in progress)
• Lots of tuning opportunities

– All SpMV techniques, plus choosing k, polynomial in 
kernel, partitioning, overlapping communication and 
computation, …

Summary

• Tuning spaces for Dense and Sparse Libraries 
large and promisinglarge and promising
– New algorithms for new architectures
– Need to break old interfaces to make progress

• BLAS2, BLAS3 -> BLAS2.5 in SVD
• SpMV -> Krylov method

– New minimal communication algorithms
• SW problem moves from managing complexity 

of libraries to managing autotuners


