

Outline	
Outline	
1 Incremental linear least-squa	ares
Marc Baboulin 3/42	ৰ ロ ト ৰ 伊 ト ৰ 葦 ト ፋ 葦 ト - 葦 -
Outline	
Outline	
1 Incremental linear least-squa	ares
2 Parallel implementation of Q	R updating
	< ロ > < 団 > < 亘 > < 亘 > < 亘 > 三 ののの
Marc Baboulin 4/42	Very large least-squares: algorithm and application.

Marc Baboulin

Performance results

n	10240	14336	20480	28672	40960	61440	81920
procs	1	1 × 2	1 × 4	2 × 4	2×8	4×8	4 × 16
Our solver	2.47	3.02	3.30	2.87	2.89	2.80	2.37
PDGEQRF	3.50	3.36	3.20	3.25	2.93	2.83	2.63

Performance of a complete QR factorization (Gflops) IBM pSeries 690.

Marc Baboulin

19/42

Very large least-squares: algorithm and application.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Incremental linear least-squares Parallel implementation of QR updating Parallel tools for LS sensitivity analysis Application to space geodesy Conclusion

Performance results

Nb of new rows	512	1024	2048	5120	10240	12800	25600
Storage (Gbytes)	0.72	0.75	0.80	0.96	1.22	1.35	2.00
Flops overhead	1.50	1.31	1.22	1.16	1.14	1.14	1.13
Facto. time (sec)	7577	5824	5255	5077	5001	4894	4981
Gflops	3.33	3.61	3.59	3.47	3.44	3.50	3.40

Updating of a 25600 \times 25600 R factor by 51200 new observations (1 \times 4 procs) IBM pSeries 690.

< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > < 回 < の < ()

Marc Baboulin

Theoretical results

• Metric on data

 $\|(A, b)\|_{\text{F or } 2} = \sqrt{\alpha^2 \|A\|_{\text{F or } 2}^2 + \beta^2 \|b\|_2^2}, \ \alpha, \beta > 0$ (perturbations on *A* and *b* can be monitored with α and β).

• We have general expressions for the condition numbers of *x* and each x_i in Frobenius or spectral norm and we show that the corresponding condition numbers lie within a factor $\sqrt{6}$

We obtain from [baboulin et al., 07]

•
$$\kappa_i(A,b) = \left(\left\| R^{-1} (R^{-T} e_i) \right\|_2^2 \frac{\|r\|_2^2}{\alpha^2} + \left\| R^{-T} e_i \right\|_2^2 (\frac{\|x\|_2^2}{\alpha^2} + \frac{1}{\beta^2}) \right)^{\frac{1}{2}}$$

25/42

•
$$\kappa_{LS}(A, b) = \left\| R^{-1} \right\|_2 \sqrt{\frac{\|R^{-1}\|_2^2 \|r\|_2^2 + \|x\|_2^2}{\alpha^2} + \frac{1}{\beta^2}}$$

Marc Baboulin

Very large least-squares: algorithm and application.

SQA

Incremental linear least-squares Parallel implementation of QR updating Parallel tools for LS sensitivity analysis Application to space geodesy Conclusion

Link with statistics

- Stat. model $Ax = b + \epsilon$ with $E(\epsilon) = 0$ and $var(\epsilon) = \sigma^2 I$
- Variance-covariance matrix $C = \sigma^2 (A^T A)^{-1} = \sigma^2 R^{-1} R^{-T}$

We obtain

•
$$\kappa_i(A, b) = \frac{1}{\sigma} \left(\left\| \frac{C_i}{\sigma} \right\|_2^2 \frac{\|r\|_2^2}{\alpha^2} + C_{ii}\left(\frac{\|x\|_2^2}{\alpha^2} + \frac{1}{\beta^2} \right) \right)^{\frac{1}{2}}$$

where $C_i = i$ -th column and $c_{ii} = i$ -th diagonal element of C

• When only *b* is perturbed (common case), we get $\kappa_i(A, b) = \frac{\sqrt{c_{ii}}}{\sigma}$

•
$$\kappa_{LS}(A, b) \simeq \left(\frac{\operatorname{tr}(C)}{\sigma^2} \left(\frac{\operatorname{tr}(C) \|r\|_2^2 + \sigma^2 \|x\|_2^2}{\sigma^2 \alpha^2} + \frac{1}{\beta^2}\right)\right)^{\frac{1}{2}}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● 三 の へ ()

Computation with (Sca)LAPACK

Computation of least squares conditioning with (Sca)LAPACK

condition number	linear algebra operation	LAPACK routines	flops
$\kappa_i(A,b)$	$R^T y = e_i$ and $Rz = y$	2 calls to (P)DTRSV	2 <i>n</i> ²
all $\kappa_i(A, b), i = 1, n$	$RY = I$ and $ZR^T = Y$	(P)DPOTRI	2 <i>n</i> ³ /3
$\kappa_{LS}(A, b)$	estimate $ R^{-1} _{1 \text{ or } \infty}$ compute $ R^{-1} _{F}$	(P)DTRCON	$\mathcal{O}(n^2)$
	compute $\ R^{-1}\ _F$	(P)DTRTRI	n ³ /3

 There is currently no routine in (Sca)LAPACK for computing covariance, and we propose fragment codes to do this, similarly to the NAG library (routine F04YAF)

GOCE mission

GOCE: European Space Agency project (Gravity field and steady-state

Ocean Circulation Explorer

- satellite scheduled for launch in December 2007
- will provide a model of the Earth's gravity field and of the Geoid with an unprecedented accuracy
- follows the CHAMP (GFZ, 2000) and GRACE (NASA, 2002) missions

• gravitational potential of the Earth (spherical coordinates)

$$V(r,\theta,\lambda) = \frac{GM}{R} \sum_{l=0}^{l_{max}} \left(\frac{R}{r}\right)^{l+1} \sum_{m=0}^{l} \overline{P}_{lm}(\cos\theta) \left[\overline{C}_{lm}\cos m\lambda + \overline{S}_{lm}\sin m\lambda\right]$$

- G = gravitational constant, M = Earth's mass, R = Earth's reference radius, $I_{max} \simeq 300$.
- objective: determine \overline{C}_{lm} and \overline{S}_{lm} as accurately as possible number of unknowns $n = (I_{max} + 1)^2 \simeq 90,000$

numerical and computational challenge

(ロ > < □ > < 三 > < 三 > > へ ○

Gravity coefficients computation

31/42

1 dynamics: $\ddot{r} = f(r, \dot{r}, \gamma, t), \quad r(t_0) = r_0, \quad \dot{r}(t_0) = r_0'$

Marc Baboulin

Very large least-squares: algorithm and application.

ロト 4 回 ト 4 三 ト 4 三 ト 9 9 9 9

Incremental linear least-squares Parallel implementation of QR updating Parallel tools for LS sensitivity analysis Application to space geodesy Conclusion

Numerical methods for GOCE

A is several $10^6 \times 90,000$ dense (needs 6 months of measurements)

- iterative methods: (CG, FFT, multipole, spherical wavelets) slow convergence, accuracy ?
- o direct methods
 - normal equations method (e.g CNES)
 - orthogonal transformations (e.g out-of-core QR, GRACE)

computational cost, better accuracy

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ()

Conclusion

Incremental LLSP

User interface

Machine	Power5 1.9 GHz
DGEMM (Gflops)	6
Init. R (Gflops)	4.4
Update R (Gflops)	4.3
Total time	4 h 10 min

Performance for gravity field computation on 4 procs (IBM Power5). (m = 165, 960 and n = 22, 801).

Experimental results

Remark on accuracy

Conclusion

Incremental linear least-squares Parallel implementation of QR updating Parallel tools for LS sensitivity analysis Application to space geodesy Conclusion

References

[1] M. Baboulin, M. Arioli, S. Gratton,
A partial condition number for linear least-squares problems.
SIAM J. Matrix Analysis and Applications, Vol. 29, No 2, pp. 413-433 (2007).

[2] M. Baboulin, L. Giraud, S. Gratton, J. Langou,
A distributed packed storage for large dense in-core parallel calculations.
Concurrency and Computation: Practice and Experience., Vol. 19, No4, pp. 483-502 (2007).

[3] M. Baboulin, L. Giraud, S. Gratton, J. Langou, **HPC tools for solving incremental least-squares problems**. *LAPACK Working Note 179 (2006).*

[4] M. Baboulin, L. Giraud, S. Gratton, A parallel distributed solver for large and dense symmetric systems: application to geodesy and electromagnetic problems.

Int J. of High Performance Computing Applications, Vol. 19 No 4, pp. 353-363 (2005).

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の Q @