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General framework

parameter estimation problem

LLSP minx∈Rn ‖Ax − b‖2, A ∈ R
m×n, b ∈ R

m where

each row of A and b corresponds to one observation,

these observations being collected periodically,

accumulate observations and/or use regularization

techniques

until A is full column rank,

problem too large to be solved using only one factorization.
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Update of normal equations

ATA← ATA+ (new rows)T (new rows)

regularization (special case of Tikhonov) :

add to ATA a diagonal matrix D = diag(0, · · · ,0, α, · · · , α)

least-squares solver based on NE already implemented

(using MPI and BLAS3) in packed storage [ Baboulin et

al.,05 ] .
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Update of QR factorization

QR factorization of

( A
new rows

)
produces the same

upper triangular factor as does the factorization of( R
new rows

)

regularization: QR factorization of

( RD
)
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QR Updating

Updating of the R factor in an incremental QR factorization.

out-of-core algorithm in [ Gunter et al.,05 ]

here we want the R factor to be kept in-core
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Parallel packed storage

ScaLAPACK 2-D block cyclic distribution

block size s, p × q process grid

distributed packed format [ Baboulin et al.,07 ] :R factor partitioned into square blocks of size SS ∝ lcm(p,q)× s


B1 B2 B3

0 B4 B5

0 0 B6


 →

[ B1 B2 B3 B4 B5 B6

]

use of PBLAS and/or ScaLAPACK kernels

here: PDGEQRF (QR factorization) and PDORMQR

(multiplication by QT )
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Parallel packed storage

5

4

6

2 3

1

4
T

6

distributed packed

53

2

1

2 ScaLAPACK arrays

diagonal blocks stored using RFP storage [ Gustavson,04 ]
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General algorithm

new observations are stored in a block matrix L that

contains n columns and S rows

first we factor
B1:3

L1:3
−→ B̃1:3

L̃1:3
then

B4:5

L̃2:3
−→ B̃4:5

L2:3
,

...until completion.
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Implementation of R factor updating

    PDGEQRF partial

New observations

0
Block row of R 

QR factorization that stops after the first S columns

cost: ∼ 3Sn2 (if n≫ S)
exploits the good performance of PDGEQRF

does not take into account the upper triangular structure of

the block row of R. This can be compensated by storing

more new rows in the work array to be factored.
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Packed algorithm for QR updating

read new data in L1:N (N = n/S); L̃1:N ← L1:N
for i = 1 : N

j = INDGET (i , i) (indirect adressing Bj = Aii )
C ← [ Bj:j+N−iL̃i:N

]

C̃ = qr(C) stopped after the S first columns have been

factored

→ C̃ =

[ B̃j:j+N−i
∗ Li+2:N

]
(PDGEQRF partial)

Bj:j+N−i ← B̃j:j+N−i
end (i-loop)
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Performance results

n 10240 14336 20480 28672 40960 61440 81920

procs 1 1× 2 1× 4 2× 4 2× 8 4× 8 4× 16

Our solver 2.47 3.02 3.30 2.87 2.89 2.80 2.37

PDGEQRF 3.50 3.36 3.20 3.25 2.93 2.83 2.63

Performance of a complete QR factorization (Gflops)

IBM pSeries 690.
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Performance results

Nb of new rows 512 1024 2048 5120 10240 12800 25600

Storage (Gbytes) 0.72 0.75 0.80 0.96 1.22 1.35 2.00

Flops overhead 1.50 1.31 1.22 1.16 1.14 1.14 1.13

Facto. time (sec) 7577 5824 5255 5077 5001 4894 4981

Gflops 3.33 3.61 3.59 3.47 3.44 3.50 3.40

Updating of a 25600× 25600 R factor by 51200 new observations (1× 4 procs)

IBM pSeries 690.
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Other works

Choslesky factorization on distributed memory using

packed storage (Fred Gustavson)

tiled QR algorithm for multicore processors (A. Buttari et

al.)

new QR algorithms for distributed memory (J. Demmel, J.

Langou)
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Least squares conditioning

parallel packed implementation of triangular solve givesR−1x
similarly we get Rx , RTx and R−Tx in parallel packed

format

then we get K (A) =
√K (RTR) (power method or

Lanczos).

but: K (A) does not give sufficient information

need tools to assess the quality of the solution
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Least squares conditioning

If we consider

g : R
m×n × R

m −→ R
k

A,b 7−→ g(A,b) = LTx = LT (ATA)−1ATb,

then the condition number of g at (A,b) is the norm of the

derivative of g
We are interested here in the case where L = ei or L = I
Example of applications: all kind of parameter estimation

problems (e.g determination of positions using GPS,

determination of gravity field coefficients...)
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Theoretical results

Metric on data

‖(A,b)‖F or 2 =
√

α2‖A‖2F or 2 + β2 ‖b‖22, α, β > 0

(perturbations on A and b can be monitored with α and β).

We have general expressions for the condition numbers ofx and each xi in Frobenius or spectral norm and we show

that the corresponding condition numbers lie within a factor√
6

We obtain from [ baboulin et al., 07 ]

κi(A,b) =
(∥∥R−1(R−Tei)∥∥2

2

‖r‖22
α2 +

∥∥R−Tei∥∥2

2
(
‖x‖22
α2 + 1

β2 )
) 1

2

κLS(A,b) =
∥∥R−1

∥∥
2

√
‖R−1‖22‖r‖22+‖x‖22

α2 + 1
β2
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Link with statistics

Stat. model Ax = b + ǫ with E(ǫ) = 0 and var(ǫ) = σ2I
Variance-covariance matrix C = σ2(ATA)−1 = σ2R−1R−T

We obtain

κi(A,b) = 1
σ

(∥∥∥Ci
σ

∥∥∥
2

2

‖r‖22
α2 + cii(‖x‖22α2 + 1

β2 )

) 1
2

where Ci = i-th column and cii = i-th diagonal element ofC
When only b is perturbed (common case), we get

κi(A,b) =
√cii
σ

κLS(A,b) ≃
(

tr(C)
σ2

(
tr(C)‖r‖22+σ2‖x‖22

σ2α2 + 1
β2

)) 1
2
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Computation with (Sca)LAPACK

Computation of least squares conditioning with

(Sca)LAPACK

condition number linear algebra operation LAPACK routines flops

κi (A, b) RT y = ei and Rz = y 2 calls to (P)DTRSV 2n2
all κi (A, b), i = 1, n RY = I and ZRT = Y (P)DPOTRI 2n3/3

κLS(A, b) estimate ‖R−1‖1 or ∞ (P)DTRCON O(n2)
compute

 

 R−1
 

 F (P)DTRTRI n3/3
There is currently no routine in (Sca)LAPACK for

computing covariance, and we propose fragment codes to

do this, similarly to the NAG library (routine F04YAF)
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GOCE mission

GOCE: European Space Agency project (Gravity field and steady-state

Ocean Circulation Explorer)

satellite scheduled for launch in December 2007

will provide a model of the Earth’s gravity field and of the Geoid with an

unprecedented accuracy

follows the CHAMP (GFZ, 2000) and GRACE (NASA, 2002) missions
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GOCE mission

gravitational potential of the Earth (spherical coordinates)

V (r , θ, λ) =
GMR

lmax∑

l=0

(Rr
)l+1 l∑

m=0

P lm(cos θ)
[C lm cosmλ + Slm sinmλ

]

G = gravitational constant, M = Earth’s mass, R = Earth’s

reference radius, lmax ≃ 300.

objective: determine C lm and Slm as accurately as possible

number of unknowns n = (lmax + 1)2 ≃ 90,000

numerical and computational challenge
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Gravity coefficients computation

1 dynamics: r̈ = f (r , ṙ , γ, t), r(t0) = r0, ṙ(t0) = r ′0
2 measurements: Qj = h(r , ṙ , γ, tj) + εj = hj(γ) + εj
3 nonlinear LSP: minγ

∑mj=1 ‖Q̃j − hj(γ)‖22
4 solved by Gauss-Newton algorithm and computation of

A = h′(γ) =




∂Q1

∂γ1
· · · ∂Q1

∂γn
...

...
∂Qm
∂γ1

· · · ∂Qm
∂γn


 , b =




Q̃1 − h1(γ)
...Q̃m − hm(γ)




5 LLSP minx∈Rn ‖Ax − b‖2 where x = ∆γ.
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Numerical methods for GOCE

A is several 106 × 90,000 dense (needs 6 months of

measurements)

iterative methods: (CG, FFT, multipole, spherical wavelets)

slow convergence, accuracy ?

direct methods

normal equations method (e.g CNES)

orthogonal transformations (e.g out-of-core QR, GRACE)

computational cost, better accuracy
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Incremental LLSP

GOCE mission profile (end 2007 - end 2008).
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Experimental results

10 days of observations⇒ m = 165,960

number of spherical harmonic coefficients n = 22,801

we computed the 99 first degrees (lmax = 99)

we compared with a reference solution
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User interface

Init packed storage and ScaLAPACK parameters

CALL INIT PACKED( NBOBS, NBPAR, NPROW, NPCOL, MB,

S, N ELEM)

loop on block rows ELEM of observations

for I = 1:N ELEM

CALL READ ELEM( I, S, ELEM)

CALL QR UPDATE( I, ELEM)

end
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Experimental results

Machine Power5 1.9 GHz

DGEMM (Gflops) 6

Init. R (Gflops) 4.4

Update R (Gflops) 4.3

Total time 4 h 10 min

Performance for gravity field computation on 4 procs (IBM Power5).

(m = 165, 960 and n = 22, 801).
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Experimental results
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Gravity field computation for m = 165, 960 and n = 22, 801.
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Experimental results

Geoid map (4 ≤ l ≤ 99).
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Remark on accuracy

K (A) =
(
‖RTR‖ · ‖(RTR)−1‖

)1/2
= 5 · 106.

Householder QR
‖x−x̃‖
‖x‖ ≤ K (A)

(
1 + K (A)

‖r‖2
‖A‖2‖x‖2

) u = 6 · 10−10

influence of measurement errors:

measurement noise 10−9m/s2
Let perturb b with bi = bi + mod(i ,10) · ‖b‖ · 10−8
then

‖x̃−x̂‖
‖x̃‖ = 1.2 · 10−6
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Conclusion

incremental algorithm that makes current gravity field

computations affordable using direct methods

trade-off between memory and performance

next simulations will require more computational

capabilities

ongoing experiments:

-GOCE computations (300 degrees, 90,000 parameters)

on lower orbit, 60 days of observations, 43,200 obs./day

→ 2.6 millions observations (2 Tbytes)

Teraflops computer → 28h + I/O

-computation of conditioning of the solution components

(via the covariance)
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