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Modeling Materials at Petascal

• Study of Strongly-Correlated Materials;

◦ Great technological promises.

• most magnets and superconductors fall into this category.

◦ Poorly understood.

• properties of the materials are determined by complex interaction of electrons

long-ranged spin and charge correlations, competing ground states, complex phase diagrams, etc.

• Goals of the project;

◦ Numeric: develop mathematical and numerical understanding of the model.

◦ Algorithmic: develop massively parallel multi-scale method with a simple user interface.

◦ Scientific: better understand their properties to improve and create new materials.

• Multiscale modeling

◦ Short-length scales: 10− 100 electrons with QMC methods.

◦ Intermediate-length scales: 100− 1, 000 electrons using vertices from QMC.

◦ Long-length scales: 1, 000− electrons with mean field approximation.
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Hubbard model

• Hubbard Hamilotian captures the exact correlation of neighboring electrons,

H = HU +Ht +Hµ,

◦ potential energy U , kinetic energy t, and chemical energy µ of electrons.

• Study of the electron interactions on 2D lattice:
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◦ Number of lattice sites N = Nx ×Ny

• Nx sites in x direction and Ny sites in y direction.
• one electron per site on average, i.e., µ = 0.

◦ Discretize inverse temperature β into L intervals.
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Computational kernel

Computational kernel of QMC simulation solves

Ax = b,

where A = MT M is SPD and

M =

 !!!!!!�
I B1

−B2 I

. . .
. . .

−BL I

#$$$$$$% .

• Each Bl ∈ R
N×N is defined as

Bl = et△τKeνVl

where

◦ K ∈ RN×N describes the lattice structure and stays same through simulation,

◦ Vl = diag(hl,1, hl,2, . . . , hl,N ) is random config. and changes for each solution,

◦ △τ = β/L is a discritization parameter, and ν is defined as cosh ν = e
U△τ

2 .
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Computational bottleneck

• Large and ill-conditioned system;

◦ N = O(103), L = O(102), and NL = O(105).

◦ Conditioning of the matrix changes with the parameters.
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• The linear solver accounts for 80% - 90% of the total simulation time.

◦ a large number of solutions are required for each simulation with different Vl.

◦ A is large but sparse and structured:

matrix-vector multiply in matrix-free form withO(NL)-computation.

◦ high-accuracy is not required for each solution.
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Linear solver

• Comparison of PCG with Tim Davis’ CHOLMOD in UMFPACK.
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• Specialized direct solver with block-cyclic reduction;

◦ dense N ×N matrix operations;

• matrix-matrix multiply and QR factorization.

◦ O(N3)-computational complexity.

◦ O(N2L)-storage requirement.

• Toward “optimal” O(N)-complexity.

◦ My research focuses on preconditioning techniques.
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New preconditioning technique

The preconditioner R is constructed based on the factorization of the form

A + α ·DA = RRT + E,

where R is lower-triangular, and E is a symmetric error matrix. By combining

1. the static diagonal shifting of A with a scalar α, and

2. the dynamic updating of E = RF T + FRT − S − ST ;

• F and S are strictly-lower triangular,

• two-levels of drop tolerance σ1 and σ2 such that ‖F‖ ≤ σ1, ‖S‖ ≤ σ2, and

σ1 ≥ σ2 = α,

we can control the magnitude of entries in the residual matrix

I −R−T AR−1 = F T R−1 + R−1F !" #
#1

−R−1(S + αDA + ST )R−T !" #
#2

,

where small enough σ2 to make #1 dominant results in an efficient yet high-quality R.

• Related works: [Manteuffel’80] [Kaporin’98]
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New sparse data structure

• Extended Compressed Sparse Column (ECSC) format;

valR, rowR, ptrR, !" #
CSC

linkR, headR, !" #
Row Access

nextF, !" #
Access F

◦ avoids the storage of and operations with zero elements.

◦ accommodates all the underlying access pattern.

◦ never updates the data structure once non-zeros are stored.

◦ increases the storage requirement by 70% from CSC format.

• both R and F are sparse enough.

◦ exploits memory hierarchy, but only for column-access.

• Note: for each solution, sparsity pattern is same for A but not for R.
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Sparse matrix-vector multiply

• Optimizing matrix-vector multiply with explicitly-stored matrix

◦ same sparsity pattern of A for all solutions, but

◦ the matrix-vector multiply is more efficient in matrix-free form

for PCG iterations.
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PCG bottleneck

• Matrix-vector product can be computed efficiently in a matrix-free form.

• Sparse triangular solve is the bottleneck.

◦ R is stored in MSC format and applied with register-level tuning.
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Sparse triangular solve

• Sparsity pattern of R, i.e., large and sparse blocks.

◦ R with (N, L) = (64× 64, 4).
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Sparse triangular solve

• Sparsity pattern of R, i.e., large and sparse blocks.

◦ R(14000 : 16000, 10000 : 12000) with (N, L) = (64× 64, 4).
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Sparse triangular solve

• Sparsity pattern of R, i.e., large and sparse blocks.

◦ R(15950 : 16000, 11920 : 11970) with (N, L) = (64× 64, 4).
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• Sparse optimization techniques like OSKI by BeBOP did not work.
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