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Quantum Chemistry

* Multiple Potential Energy Surfaces (Born-Oppenheimer Approximation)
» Electron Correlation (various approximations and approaches)
e Molecular Structure and Properties (ground and excited states)

 Critical Points of high-dimensional surfaces (transition states, minima,
intersections, etc.)
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Fl fluorescence
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COLUMBUS

Goal: Parallel general-purpose ab initio techniques applicable to ground and
excited states for arbitrary points on the PES

Applications: spectroscopy, dynamics, kinetics

History: 1980 first sequential version, 1990 first parallel version

Distribution: Open source and binary (~500K lines of Fortran+C+Perl)

Contributors: I. Shavitt (GUGA), H. Lischka (photodynamics, solvent effects,
Analytic Gradients, NAC), R. Shepard (MCSCF, MRCI, Analytic
Gradients, NAC, SPAM), R. Pitzer (integrals, spin-orbit Cl), P. G. Szalay
(Analytic Gradients, MR-AQCC, GDIIS). Th. Mueller (parallel MRCI/MR-
AQCC, interoprability, spin-orbit Cl) D. R. Yarkony (NAC, Conical
Intersections, crossing seams), Granucci (Surface Hopping Dynamics),
and many others.

http://www.univie.ac.at/columbus/

Current Support: DOE, USAF, NSF, FWF(Austria), NIC(Juelich)

Single-Point Electronic Energy and Wave Function Evaluation:

At a fixed molecular conformation and for the electronic states of interest,
evaluate the expectation value
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The electronic wave function is expanded in a basis:

Nesf
[P, (r;R)) =D ¢, |m(r;R)) «— configuration state function

Im@R)Y =" Y Coo o

0,0,...0y,

0. (R)=> C, Ry, R, )
M ‘\ \

orbital coefficients (optimized at each conformation)
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atom-centered basis functions

orthonormal molecular orbitals

The CSF expansion results in a real symmetric eigenvalue equation:
H(R)c(R) = E(R)e(R)

H(R),, ={(m|H”|n) 2-particle coupling coefficient
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2-electron hamiltonian integral
1-particle coupling coefficient

1-electron hamiltonian integral




Tensor Transformations of Integral Arrays:

Integral arrays as needed
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Configuration Interaction:
Real Symmetric Eigenvalue Problem

* Use the iterative Davidson Method for the lowest (or lowest few) eigenpairs

« Direct CI: H is not explicitly constructed, w=Hx are constructed in “operator”
form

e Matrix dimensions are 104 to 1010

« All floating point calculations are 64-bit (need 8 to 11 significant figures in the
energy)




Davidson Method (simplified)

Generate an initial vector x;
MAINLOOP: DO n=1, NITER
Compute and save w, = Hx,
Compute the n* row and column of G = X"HX = WX
Compute the subspace Ritz pair: (G- pl)c=0
Compute the residual vectorr=Wec¢—-pXec
Check for convergence using Irl, ¢, p, etc.
IF (converged) THEN
EXIT MAINLOOP
ELSE
Generate a new expansion vector X
ENDIF
ENDDO MAINLOOP

.1 from r, p, v=Xc, etc.

Matrix-Vector Products

w=Hx
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* The challenge is to bring together the different factors in order to
compute w efficiently

h,, and g, are computed and stored as arrays (with index symmetry)
* <m|E,[n>and <m|e,

qrs/N> are sparse and are recomputed as needed




Coupling Coefficient Evaluation

e Graphical Unitary Group Approach (GUGA)
e Define a directed graph with nodes and arcs: Shavitt Graph

* Nodes correspond to spin-coupled states consisting of a subset of the total
number of orbitals and electrons

e Arcs correspond to the (up to) four allowed spin couplings when an orbital is
added to the graph

«  Coupling coefficients are evaluated as products of "segment values" of interacting
segments within the Shavitt Graph.

CSF/Walk order

<« graph head

W XYz

«—graph tail




Integral Types
H Matrix Structure
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» Some integral subsets are replicated on all nodes
» Some are distributed among nodes (e.g. GA Library)

Computational Kernels and Scaling

* Depending on the block (zz, yz, wx, etc., the low-level arithmetic
operations are DDOT, DAXPY, DGEMV, or DGEMM with the matrix
dimension being N, or N..

Relative cost for wx 2-external
block in terms of groups of
valid internal walks

Nuciive NI
- Total effort for MR-SDCl i ~ 4Tt N

This problem can use an arbitrarily large amount of computer time as the
size of the molecule increases




Davidson Diagonalization Details

New Expansion Vector:

[new] _

—(Hv-pv)=-r Lanczos

H°=D —Diagonal
Preconditioned Residual

(H° = p)x"! = —r + &v RQIl, IGD, GJD, etc.

SPAM (converging

x""1=Qv with HV=Ev
Qv wi preconditoner)

P=XX";Q=1-P,H=H-QMH-H")Q . Comp. Phys. 172, 472 (2001)

..Davidson Diagonalization Details

Choice of v and p:
* Choose the lowest unconverged eigenpair (sequential convergence)
* Cycle among unconverged eigenpairs (maintains subspace faithfulness)
» Choose the approximate eigenpair that maximizes <v|v'¢™>2 (vector following)
* Choose the approximate eigenpair that minimizes |p-E™f|  (root homing)
Single or multiple x"¥ (blocked algorithms):
« This affects data reuse efficiency, task granularity, and the convergence rate
Subspace contraction (restart strategy):
* Sometimes determined entirely by storage capacity (no choice)

* Optimal max and min subspace dimensions improves efficiency (transform away
useless components) by reducing memory, 1/0, and communications
requirements.

* Nonoptimal dimensions hurt efficiency — sometimes difficult to predict optimal
strategy




..Davidson Diagonalization Details

Convergence :

* Usually do not need energies (eigenvalues) to full machine precision
(8 to 11 significant figures is typical).
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Apply residual bound, spread bound, and
gap bound recursively

2N, ;
)/J_. Y, Comput. Phys. Comm. 167, 90 (2005)
Comput. Phys. Comm. 170, 109 (2005)

COLUMBUS Scalability
10000
i Software COLUMBUS (Quantum Chemlstry)
Ethylene, GVB-type (12, 123 AS
Execution times on JUMP (IBM SP4, 1.7GHz, Power4, 4GB/cpu)
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General Convergence Acceleration:
Direct Inversion in the Iterative Subspace (DIIS)

Want to solve F(x.)=0 with F(x)e R” and xe R4.
If u’e=1 with u,=1 for k=1:n, then

F(x)+ 0!(||x—xo||2) = ;F(xk)ck = kz_}ekck =Ec

Least squares interpolation is given by
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Summary

Configuration Interaction
» Seek efficient ways to distribute h and g arrays on parallel computers

» Seek efficient and flexible iterative subspace diagonalization methods (need 8 to
11 significant figures in the eigenvalues)

« Consider contractions with hiA°l and g/A°l — more arithmetic operations per task,
but no storage or communications requirements

» Tasks are not uniform in size — this presents load balancing challenges
Tensor Transformation

* Need efficient and general tensor transformation and tensor contraction libraries

* Must include index symmetry to reduce storage and arithmetic operation counts
Least Squares Interpolation (DIIS)

» Need robust software with ex(E) error rather than ex(E)?2 error




