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Quantum Chemistry

• Multiple Potential Energy Surfaces (Born-Oppenheimer Approximation)

• Electron Correlation (various approximations and approaches)

• Molecular Structure and Properties (ground and excited states)

• Critical Points of high-dimensional surfaces (transition states, minima,

intersections, etc.)

VR vibrational relaxation

Ph phosphorescence

Fl  fluorescence

PA photoabsorption

         conical intersection

         avoided crossings

         intersystem crossings
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COLUMBUS

Goal: Parallel general-purpose ab initio techniques applicable to ground and

excited states for arbitrary points on the PES

Applications: spectroscopy, dynamics, kinetics

History: 1980 first sequential version, 1990 first parallel version

Distribution: Open source and binary (~500K lines of Fortran+C+Perl)

Contributors: I. Shavitt (GUGA), H. Lischka (photodynamics, solvent effects,

Analytic Gradients, NAC), R. Shepard (MCSCF, MRCI, Analytic

Gradients, NAC, SPAM), R. Pitzer (integrals, spin-orbit CI), P. G. Szalay

(Analytic Gradients, MR-AQCC, GDIIS). Th. Mueller (parallel MRCI/MR-

AQCC, interoprability, spin-orbit CI) D. R. Yarkony (NAC, Conical

Intersections, crossing seams), Granucci (Surface Hopping Dynamics),

and many others.

http://www.univie.ac.at/columbus/

Current Support: DOE, USAF, NSF, FWF(Austria), NIC(Juelich)
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Single-Point Electronic Energy and Wave Function Evaluation:

At a fixed molecular conformation and for the electronic states of interest,

evaluate the expectation value
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The electronic wave function is expanded in a basis:

!el (r;R) = cm m(r;R)
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orthonormal molecular orbitals

orbital coefficients (optimized at each conformation)

atom-centered basis functions

Slater determinant

configuration state function
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The CSF expansion results in a real symmetric eigenvalue equation:

H(R)c(R) = E(R)c(R)

H (R)mn = m H
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1-electron hamiltonian integral

1-particle coupling coefficient

2-electron hamiltonian integral

2-particle coupling coefficient
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Tensor Transformations of Integral Arrays:
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Configuration Interaction:
Real Symmetric Eigenvalue Problem

• Use the iterative Davidson Method for the lowest (or lowest few) eigenpairs

•  Direct CI: H is not explicitly constructed, w=Hx are constructed in “operator”

form

• Matrix dimensions are 104 to 1010

• All floating point calculations are 64-bit (need 8 to 11 significant figures in the

energy)
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Davidson Method (simplified)

Generate an initial vector x1

MAINLOOP: DO n=1, NITER

    Compute and save wn = H xn
    Compute the nth row and column of G = XTHX = WTX

    Compute the subspace Ritz pair:  (G – !1) c = 0

    Compute the residual vector r = W c – ! X c

    Check for convergence using |r|, c, !, etc.

    IF (converged) THEN

        EXIT MAINLOOP

    ELSE

        Generate a new expansion vector xn+1 from r, !, v=Xc, etc.

    ENDIF

ENDDO MAINLOOP
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Matrix-Vector Products

w = H x

• The challenge is to bring together the different factors in order to

compute w efficiently

•  hpq and gpqrs are computed and stored as arrays (with index symmetry)

• <m|Epq|n> and <m|epqrs|n> are sparse and are recomputed as needed
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Coupling Coefficient Evaluation

• Graphical Unitary Group Approach (GUGA)

• Define a directed graph with nodes and arcs: Shavitt Graph

• Nodes correspond to spin-coupled states consisting of a subset of the total

number of orbitals and electrons

• Arcs correspond to the (up to) four allowed spin couplings when an orbital is

added to the graph

• Coupling coefficients are evaluated as products of "segment values" of interacting

segments within the Shavitt Graph.
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CSF/Walk order

! graph head

!graph tail

w    x y z
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Integral Types

•  0: gpqrs

•  1: gpqra

•  2: gpqab,

     gpa,qb

•  3: gpabc

•  4: gabcd 0,2,421,32w

20,2,41,32x

1,31,30,21y

2210z

wxyz

H Matrix Structure

• Some integral subsets are replicated on all nodes

• Some are distributed among nodes (e.g. GA Library)
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Computational Kernels and Scaling

• Depending on the block (zz, yz, wx, etc., the low-level arithmetic

operations are DDOT, DAXPY, DGEMV, or DGEMM with the matrix

dimension being Norb or Next.

relative

Relative cost for wx 2-external

block in terms of groups of

valid internal walks

• Total effort for MR-SDCI is

    This problem can use an arbitrarily large amount of computer time as the

size of the molecule increases
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Davidson Diagonalization Details

New Expansion Vector:

relative

H
0 ! "( )x[new] = !r

H0=D        "Diagonal

Preconditioned Residual

x
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SPAM (converging

preconditoner) 
J. Comp. Phys. 172, 472 (2001)

H
0 ! "( )x[new] = !r + #v RQII, IIGD, GJD, etc.

x
[new]

= !(Hv ! "v) = !r Lanczos
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…Davidson Diagonalization Details

relative

Choice of v and #:

• Choose the lowest unconverged eigenpair (sequential convergence)

• Cycle among unconverged eigenpairs (maintains subspace faithfulness)

• Choose the approximate eigenpair that maximizes <v|vref>2   (vector following)

• Choose the approximate eigenpair that minimizes |#-Eref|      (root homing)

Single or multiple xnew (blocked algorithms):

• This affects data reuse efficiency, task granularity, and the convergence rate

Subspace contraction (restart strategy):

• Sometimes determined entirely by storage capacity (no choice)

• Optimal max and min subspace dimensions improves efficiency (transform away

useless components) by reducing memory, I/O, and communications

requirements.

• Nonoptimal dimensions hurt efficiency – sometimes difficult to predict optimal

strategy
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…Davidson Diagonalization Details

relative

Convergence :

• Usually do not need energies (eigenvalues) to full machine precision

(8 to 11 significant figures is typical).

Apply residual bound, spread bound, and

gap bound recursively

Comput. Phys. Comm. 167, 90 (2005)

Comput. Phys. Comm. 170, 109 (2005)
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COLUMBUS Scalability
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General Convergence Acceleration:
Direct Inversion in the Iterative Subspace (DIIS)

Want to solve  F(x*) = 0 with F(x)$ m and x$ q.

If uTc=1   with uk=1 for k=1:n, then

Least squares interpolation is given by

xDIIS=Xc
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Normal equation

LSE

Substitution and elimination

Weighted least squares
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…DIIS
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Summary

Configuration Interaction

• Seek efficient ways to distribute h and g arrays on parallel computers

• Seek efficient and flexible iterative subspace diagonalization methods (need 8 to

11 significant figures in the eigenvalues)

• Consider contractions with h[AO] and g[AO] – more arithmetic operations per task,

but no storage or communications requirements

• Tasks are not uniform in size – this presents load balancing challenges

Tensor Transformation

• Need efficient and general tensor transformation and tensor contraction libraries

• Must include index symmetry to reduce storage and arithmetic operation counts

Least Squares Interpolation (DIIS)

• Need robust software with %&(E) error rather than %&(E)2 error


