
Concurrent Divide-and-Conquer Library
with Petascale Electromagnetics Applications

Johan Carlsson, Tech-X Corporation

CScADS Workshop on Libraries and Algorithms for

Petascale Applications, 07/30/2007, Snowbird, Utah

Johan Carlsson Concurrent Divide-and-Conquer Library

Background

Particle In Cell (PIC) in a sentence: solve Faraday and

Ampere laws for electromagnetic fields and get current

closure from set of particles accelerated by Lorentz force

For the purpose of this talk: think FDTD EM + explicit

current-source calculation

Two main uses for implicit field updates

Allow time steps beyond CFL limit, ∆t > ∆x/c

Numerical dissipation can suppress particle and other

numerical noise (grid heating)

VORPAL PIC code used by INCITE project (PI’d by

Geddes) and OFES SciDAC project (PI’d by Bonoli), etc.

Explicit (Yee) field update has excellent scalability

Original implicit field update was added to VORPAL in

February 2004

Johan Carlsson Concurrent Divide-and-Conquer Library



Bowers vs. ZCZ ADI implicit field update

Two implicit field updates were on shortlist
Bowers adds damping terms to Faraday and Ampere laws

∇× F → ∇× [(1 + τF ∂t)F], for F = E, B

Use Crank-Nicholson (CN) time discretization

Damping times τE,B correspond to implicitness parameters

τE = τB = ∆t/2 ⇒ fully implicit

τE = τB = −∆t/2 ⇒ fully explicit

Numerical dispersion well analyzed by Bowers

ZCZ ADI (Alternating Direction Implicit)

”Toward the Development of a Three-Dimensional

Unconditionally Stable Finite-Difference Time-Domain

Method”, F. Zheng, Z. Chen and J. Zhang, IEEE Trans. on

Microwave Theory and Techniques 48 (2000) 1550

Not charge conserving!

Bowers came out ahead

Johan Carlsson Concurrent Divide-and-Conquer Library

Implementation of Bowers implicit field update in

VORPAL

An electrostatic (ES) field update had just been added to
VORPAL

Trilinos/Aztec used for linear solve

Bowers implicit field update implemented making maximal

reuse of existing ES solver

Implementation was done in a couple of weeks as

evidenced by SVN log of main class file:

Thu 05 Feb 12:59:02 Adding new class for the implicit field

solver.

Thu 05 Feb 13:41:20 First iteration of changes.

Fri 06 Feb 19:35:00 Flipped the indices around.

Mon 09 Feb 19:42:19 Coded up the coefficient matrix.

Tue 10 Feb 11:46:06 Bug fix in the coefficient matrix.

continued...

Johan Carlsson Concurrent Divide-and-Conquer Library



Implementation of Bowers implicit field update in

VORPAL

Tue 10 Feb 12:25:05 Added the proper expressions for the

coefficient-matrix elements (including Bowers’ damping

coefficient, etc.).

Tue 10 Feb 19:56:03 This afternoon’s changes.

Wed 11 Feb 15:46:34 Coded up the right-hand side.

Wed 11 Feb 18:53:23 The core code should now be pretty much

complete (setting up coefficient matrix and RHS, updating the

field).

Thu 12 Feb 19:13:53 The code now builds.

Mon 16 Feb 18:26:35 Bugfix. Now it builds with HAVE AZTEC

defined.

Fri 20 Feb 11:18:07 Misc bugfixes.

Tue 24 Feb 21:49:24 Minor changes, still having convergence

problems with the iterative solver.

Wed 25 Feb 19:44:23 Several critical bugfixes! Implicit solver

now seems to work.

Johan Carlsson Concurrent Divide-and-Conquer Library

Performance of Bowers implicit field update in

VORPAL

Johan Carlsson Concurrent Divide-and-Conquer Library



Performance of Bowers implicit field update in

VORPAL

∼ 3× slower than explicit at CFL limit

2− 3× more memory used by field (can’t update in place)

Good numerical stability (convergence for CFL number

above 103)

However, ∼ 10 iterations in 1D, ∼ 40 in 2D, ∼ 400 in 3D!

Became orphaned when OFES SBIR Phase I project didn’t

go to Phase II

Has only been clearly superior in particle-dominated

(hundreds per cell) 2D simulations

Numerical dispersion not suitable for suppressing grid

heating

Concern about scalability due to global solve

Multigrid preconditioning recently tried, but found

ineffective
Johan Carlsson Concurrent Divide-and-Conquer Library

Recent developments on Maxwell solvers using

Alternating Direction Implicit (ADI)

Seminal paper by ZCZ mentioned above with first

unconditionally stable ADI field update

Work at Tech-X over last year by Smithe, Cary and
Carlsson

Improved version of ZCZ that is Space-Charge Conserving

(SCC) ADI

SCC ADI with “perfect dispersion” (avoids numerical

Cherenkov radiation)

Should lead to high-fidelity solutions

But does it scale?!?

Johan Carlsson Concurrent Divide-and-Conquer Library



ADI seems to have largely fallen out of favor

Was supposedly popular for elliptic problems before

multigrid became dominant

Divide timestep into substeps and Alternate which single

Direction is Implicit in each substep

Reduces single global solve into series of small tridiagonal

solves

Could make implicit field update more like explicit update

(Yee) in terms of communication needs (keep field data

local) and scalability

Bondelli introduced parallel algorithm for solving tridiagonal

system: Divide & Conquer

Johan Carlsson Concurrent Divide-and-Conquer Library

ADI non-trivial to parallelize efficiently

Use Divide & Conquer to parallelize solve of tridiagonal
system

Begin solve in parallel

Sequential bottleneck

Finish solve in parallel

Johan Carlsson Concurrent Divide-and-Conquer Library



Concurrent Divide-and-Conquer

Keep multiple tridiagonal solves in flight simultaneously to

overlap communication with computation

Johan Carlsson Concurrent Divide-and-Conquer Library

Scalability formula can be derived

Let C1D be number of cells in one direction, so that C3D = C3
1D

Let N1D be number of processors in one direction, so that N3D = N3
1D

Let τcell = time it takes to do backsolve of a single cell

Let τlatency = time it takes to receive a message

Then the maximum number of cell-rows that can be done

simultaneously by a processor is Ncellrows = C2
1D/N2

1D

A processors share of the common-matrix-inversions is therefore,

Nimmediate = Ncellrows/N1D

The number of cells in a single-processor’s backsolve is

NcellsSolved = C1D/N1D

So immediately following a processor’s common-matrix-inversion-and-send

on the Nimmediate matrices, it can proceed with Nimmediate backsolves, which will

take a time:

NimmediateNcellsSolvedτcell

to perform. This must exceed τlatency in order to ensure that there is no idle

processor time.

Johan Carlsson Concurrent Divide-and-Conquer Library



Might be possible to achieve good scaling on biggest

available machines

NimmediateNcellsSolvedτcell ≥ τlatency

(Ncellrows/N1D)(C1D/N1D)τcell ≥ τlatency

((C2
1D/N2

1D)/N1D)(C1D/N1D)τcell ≥ τlatency

(C3
1D/N4

1D)τcell ≥ τlatency

(C3D/N
4/3
3D )τcell ≥ τlatency

N3D ≤ (C3Dτcell/τlatency )3/4

With τlatency = 100τcell and a billion cells (103 × 103 × 103), it

would then be possible to scale beyond 105 processors.

Johan Carlsson Concurrent Divide-and-Conquer Library

ADI can simplify handling of complex boundaries

ILC SRF cavity

ADI in ILC SRF cavity

Johan Carlsson Concurrent Divide-and-Conquer Library



How do we get an efficient and portable

implementation?

We have recieved an ASCR SBIR Phase I grant to implement a

prototype ADI library and prove the scalability of our new SCC

ADI algorithm

Must balance efficient implementation vs. portability

MPI1 or MPI2? Or UPC?

MPI2 becoming ubiquitous

Any new killer features?

Multilevel parallelism with MPI/OpenMP?

gcc4.2 supports OpenMP

BlueGene/P nodes are SMP

More library dependencies can be added to VORPAL only

if there are very compelling reasons

Other considerations for efficient implementation?

Johan Carlsson Concurrent Divide-and-Conquer Library


