Concurrent Divide-and-Conquer Library

with Petascale Electromagnetics Applications

Johan Carlsson, Tech-X Corporation

CScADS Workshop on Libraries and Algorithms for
Petascale Applications, 07/30/2007, Snowbird, Utah

Johan Carlsson Concurrent Divide-and-Conquer Library

Background

@ Particle In Cell (PIC) in a sentence: solve Faraday and
Ampere laws for electromagnetic fields and get current
closure from set of particles accelerated by Lorentz force

@ For the purpose of this talk: think FDTD EM + explicit
current-source calculation
@ Two main uses for implicit field updates

e Allow time steps beyond CFL limit, A; > A, /c
e Numerical dissipation can suppress particle and other
numerical noise (grid heating)

@ VORPAL PIC code used by INCITE project (Pl'd by
Geddes) and OFES SciDAC project (PI'd by Bonoli), etc.

@ Explicit (Yee) field update has excellent scalability

e Original implicit field update was added to VORPAL in 4
February 2004

Johan Carlsson Concurrent Divide-and-Conquer Library

Bowers vs. ZCZ ADI implicit field update

@ Two implicit field updates were on shortlist

e Bowers adds damping terms to Faraday and Ampere laws
V xF—V x|[(1+70/)F],forF=E,B
@ Use Crank-Nicholson (CN) time discretization
@ Damping times 7¢ g correspond to implicitness parameters
o
("]

e = 78 = At/2 = fully implicit
T = 78 = —A+/2 = fully explicit
@ Numerical dispersion well analyzed by Bowers
e ZCZ ADI (Alternating Direction Implicit)

@ “Toward the Development of a Three-Dimensional
Unconditionally Stable Finite-Difference Time-Domain
Method”, F. Zheng, Z. Chen and J. Zhang, IEEE Trans. on
Microwave Theory and Techniques 48 (2000) 1550

@ Not charge conserving!

@ Bowers came out ahead

Johan Carlsson Concurrent Divide-and-Conquer Library

Implementation of Bowers implicit field update in
VORPAL

@ An electrostatic (ES) field update had just been added to
VORPAL

o Trilinos/Aztec used for linear solve

@ Bowers implicit field update implemented making maximal
reuse of existing ES solver

@ Implementation was done in a couple of weeks as
evidenced by SVN log of main class file:

Thu 05 Feb 12:59:02 Adding new class for the implicit field
solver.

Thu 05 Feb 13:41:20 First iteration of changes.

Fri 06 Feb 19:35:00 Flipped the indices around.

Mon 09 Feb 19:42:19 Coded up the coefficient matrix.

Tue 10 Feb 11:46:06 Bug fix in the coefficient matrix.

continued. ..

Johan Carlsson Concurrent Divide-and-Conquer Library

Implementation of Bowers implicit field update in

VORPAL

Tue 10 Feb 12:25:05 Added the proper expressions for the

coefficient-matrix elements (including Bowers’ damping
coefficient, etc.).

Tue 10 Feb 19:56:03 This afternoon’s changes.

Wed 11 Feb 15:46:34 Coded up the right-hand side.

Wed 11 Feb 18:53:23 The core code should now be pretty much
complete (setting up coefficient matrix and RHS, updating the
field) .

Thu 12 Feb 19:13:53 The code now builds.

Mon 16 Feb 18:26:35 Bugfix. Now it builds with HAVE_AZTEC
defined.

Fri 20 Feb 11:18:07 Misc bugfixes.

Tue 24 Feb 21:49:24 Minor changes, still having convergence
problems with the iterative solver. x/
Wed 25 Feb 19:44:23 Several critical bugfixes! Implicit solver (S

now seems to work.

Johan Carlsson Concurrent Divide-and-Conquer Library

Performance of Bowers implicit field update in
VORPAL

20 \\\\H‘ T T T T T T

CPU time (hours)
o
\

" Couront limit

O L1l \\i L1l \\‘ L1l \\‘
0.1 1.0 10.0 100.0 1000.0 WOOOO’T‘
Courant number

Johan Carlsson Concurrent Divide-and-Conquer Library

Performance of Bowers implicit field update in

VORPAL

@ ~ 3x slower than explicit at CFL limit
@ 2 — 3x more memory used by field (can’t update in place)

@ Good numerical stability (convergence for CFL number
above 103)

@ However, ~ 10 iterations in 1D, ~ 40 in 2D, ~ 400 in 3D!

@ Became orphaned when OFES SBIR Phase | project didn'’t
go to Phase |l

@ Has only been clearly superior in particle-dominated
(hundreds per cell) 2D simulations

@ Numerical dispersion not suitable for suppressing grid

heating
@ Concern about scalability due to global solve V4
@ Multigrid preconditioning recently tried, but found gH
ineffective

Johan Carlsson Concurrent Divide-and-Conquer Library

Recent developments on Maxwell solvers using
Alternating Direction Implicit (ADI)

@ Seminal paper by ZCZ mentioned above with first
unconditionally stable ADI field update

@ Work at Tech-X over last year by Smithe, Cary and
Carlsson

e Improved version of ZCZ that is Space-Charge Conserving
(SCC) ADI

e SCC ADI with “perfect dispersion” (avoids numerical
Cherenkov radiation)

@ Should lead to high-fidelity solutions
@ But does it scale?!?

Johan Carlsson Concurrent Divide-and-Conquer Library

ADI| seems to have largely fallen out of favor

@ Was supposedly popular for elliptic problems before
multigrid became dominant

@ Divide timestep into substeps and Alternate which single
Direction is Implicit in each substep

@ Reduces single global solve into series of small tridiagonal
solves

@ Could make implicit field update more like explicit update
(Yee) in terms of communication needs (keep field data
local) and scalability

@ Bondelli introduced parallel algorithm for solving tridiagonal
system: Divide & Conquer

Johan Carlsson Concurrent Divide-and-Conquer Library

ADI non-trivial to parallelize efficiently

@ Use Divide & Conquer to parallelize solve of tridiagonal
system

@ Begin solve in parallel

e Sequential bottleneck
@ Finish solve in parallel

N
N

Redhuction step,
st be dane an
single process

Single
Divide &
Conger

722

Johan Carlsson Concurrent Divide-and-Conquer Library

Concurrent Divide-and-Conquer

@ Keep multiple tridiagonal solves in flight simultaneously to
overlap communication with computation

Multiple Simultaneons Divide & Congiers

Johan Carlsson Concurrent Divide-and-Conquer Library

Scalability formula can be derived

Let Cyp be number of cells in one direction, so that Csp = Cf’D

Let Njp be number of processors in one direction, so that Nap = N3,
Let 7cen = time it takes to do backsolve of a single cell

Let Tiatency = time it takes to receive a message

Then the maximum number of cell-rows that can be done
simultaneously by a processor is Neejrows = C2p/N2p

A processors share of the common-matrix-inversions is therefore,
Nimmediate — Ncellrows/ N1D

@ The number of cells in a single-processor’s backsolve is
Neetissoved = C1p/Nip

So immediately following a processor's common-matrix-inversion-and-send
on the Nimmediate Matrices, it can proceed with Nimmediate Dacksolves, which will
take a time:

Nimmediate Ncelissoived Tcell

to perform. This must exceed Tiaency in Order to ensure that there is no idle cl
processor time.

Johan Carlsson Concurrent Divide-and-Conquer Library

Might be possible to achieve good scaling on biggest

available machines

Nimmediate NcelisSolved Teell = Tlatency
(Ncellrows/N1D)(C1 D/N1 D)Tcell > Tlatency

((C%p/Nzp)/Nip)(C1p/Nip)Teen > Tiatency
(C$D/Nfo)7ce// > Tlatency
(Can/Nap)Teell = Tiatency

Nap < (CapTeen/Tiatency)>'*

With T/atency = 1007¢s and a billion cells (102 x 10% x 103), it
would then be possible to scale beyond 10° processors.

Johan Carlsson Concurrent Divide-and-Conquer Library

ADI can simplify handling of complex boundaries

J n n ILC SRF cavity

ARAA

= oy

AVAVAVA

ADI in ILC SRF cavity 4

Johan Carlsson Concurrent Divide-and-Conquer Library

How do we get an efficient and portable

implementation?

We have recieved an ASCR SBIR Phase | grant to implement a
prototype ADI library and prove the scalability of our new SCC
ADI algorithm

@ Must balance efficient implementation vs. portability

@ MPI1 or MPI2? Or UPC?

e MPI2 becoming ubiquitous
@ Any new Killer features?

@ Multilevel parallelism with MPI/OpenMP?
@ gcc4.2 supports OpenMP
e BlueGene/P nodes are SMP
@ More library dependencies can be added to VORPAL only
if there are very compelling reasons

@ Other considerations for efficient implementation? %

Johan Carlsson Concurrent Divide-and-Conquer Library

