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PETSc

e Portable Extensible Toolkit for Scientific computation avail-
able from Argonne National Laboratory

e Started using it sometime around Y2K

e Implemented applications such as radiation diffusion problem,
concrete absorption, fast magnetic reconnection

e C and Fortran

e Platforms: Linux clusters, IBM SP, IBM BG/L, Windows

e Used np € [1,2025]




VORPAL

Relativistic, arbitrary dimensional, hybrid plasma and beam simulation
code from Tech-X Corporation

Started using it four months ago

Applications: EM simulations, plasma simulations, accelerator cavities
simulations, structure optimizations

VORPAL is used by researcher from JLAB, FNAL,LBNL, Brookhaven
NL, etc.

Plain MPI, C++4, Python, Trilinos, HDF5, newer autotools. Code devel-
opment by Tech-X and University of Colorado at Boulder

Platforms: Linux clusters, IBP SP, BG/L, SGI, Windows, etc.

Problem Description (PETSc)

Work with plasma equations in magnetohydrodynamics (MHD)
formalism

Simulate magnetic reconnection problem in reduced, two-
dimensional, Hall-MHD formulation (Fitzpatrick, 2004; Grasso
et al, 1999) — time-dependent, nonlinear problem with a non-
smooth solution

Apply fully coupled, nonlinearly implicit, parallel algorithms.
Contrast with: explicit, semi-implicit, implicit (physics-based
preconditioning, matrix-free)

Study the parallel performance of algorithms and assess their
applicability to solutions of problems with millions of un-
knowns using thousands of processors




Model MHD System
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where U is the vorticity, F is the canonical momentum, ¢ (V; = 2z x V¢ + V.z) and v
(B = Vv xz+ B,z) are the stream functions for the vorticity and current density, respectively,
v is the plasma viscosity, n is the normalized resistivity, de = c¢/wpe is the inertial skin depth,

and ps = +/T./T;p; is the ion sound Larmor radius. The current density is obtained by
C, = (F —1)/d2. This is equivalent to 8 = 0, but keeping ps finite (Fitzpatrick, 2004).
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Rectangular domain 2 = [0,27) x [0,47) with doubly periodic boundary conditions and a
sample 6 x 6 mesh. The solid circles indicate actual mesh points and empty circles denote
M.Qcm._ points that correspond to the boundary mesh points on the opposite side of the
omain.
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Discretizations

e Spatial discretizations are the standard second-order central differences
(five-point-stencil) used at every mesh point in the domain (including the
boundary)

e Temporal discretizations for the implicit time stepping are based on multi
step formulas (BDF); the discretization accuracy is up to the fourth-order
(start with lower order (backward Euler) and gradually increase the order
as more solution history becomes available)

e Temporal discretizations for the explicit method are based on the second-
order Adams (y*+1 = y* + At(Gf(a*) — I f(2*71))) with the CFL-based
timestep size reduction

e The main focus is on using third-order accurate temporal and second-
order accurate spatial discretizations in the implicit version of our code

e In the explicit version, we use second-order accurate temporal and second-
order accurate spatial discretizations

Discrete System
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k+1 — — k+1,. .
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where REY(i,5), RITH(i,5), Ri'(i,5), and Rytl(i,5) are the second-order accurate spatial
discretizations of the time-independent components.

e Ry and Rp are highly nonlinear

° m@ and me are linear and time independent




A Fully Coupled Inexact Newton

At each time step, {Ry = 0,R;, = 0, Ry = 0, Rp = 0} — G(E) = 0, where

E = (¢11,%11, U1, F11, ¢o1, ¥21, Uo1, Fo1, -+ )7,
and
G = (Gy(1,1),Gy(1,1),Gy(1,1),Gp(1, 1),
G4(2,1),G4(2,1),Gry(2,1),Gp(2,1),---)T

Er+1 = Ey—\J(EL) " *G(E), k=0,1,..., where Eg is a solution obtained
at the previous time step

J(Ey) = G'(Ey) is the Jacobian at Ey (dim(Nwull(J)) = 1), and )\, is the
step-length determined by a line search procedure

The accuracy of the Jacobian solve is determined by some n, v € [0, 1)
and the conditions:

IG(Er) + J(Ex)skll2 < maz{nkl|G(Ex) 2, v}

Jacobian Matrix

For every mesh point E; = {¢;, ¢, U;, F;} and a solution vector

u = A\QHL\;M“QWZ u\:\:H“v = AQHVANJ; QHVNMJH“@M“\%MV Q«M,m‘Mu ..Jﬁﬁu\%ﬁu qﬁfﬁzwu
where n is the number of mesh points

Jacobian

@QH\QQH @Qp\%ﬁm
J = 0G2/0u1 0G2/0us

Analytic expression for J;;

Compute J;; with finite differences and the multi-colored algorithm (Cole-
man et al, 1983):

gy = W@E &) - Gi(E))),
1
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Newton—Krylov—Schwarz

1. Inexactly solve the linear system J(E})sy = —G(E}) for s, using Schwarz-
preconditioned GMRES(30)

e One-level additive Schwarz right preconditioner (M~1): J(E,)M *Ms;, = —G(Ey)
e Two-level additive Schwarz right preconditioner (M;1): J(Ey) M, Mas, = —G(Ey,)

e Inner-outer preconditioning technique, where a Krylov subspace method is used as
the preconditioner

2. Perform a full Newton step with A\g = 1 in the direction sy
3. If the full Newton step is unacceptable, backtrack A\g using a backtrack-
ing procedure until a new X is obtained that makes Ey = Ej; 4+ As; an

acceptable step

4. Set Ejp4+1 = E4 and return to step 1 unless a stopping condition has been
met
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One-level Additive Schwarz Preconditioner
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Restricted additive Schwarz (RAS):
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Two-level Additive Schwarz Preconditioner
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Inner-outer Preconditioner
(1) AM~'y = b,
(2) Mz =y
e FGMRES — outer method, applied to (1)
e GMRES — inner method, applied to systems Mz = vy
e At the k' outer cycle, the inner GMRES performs a certain number of
iterations (m;) for solving
Mz = v,
where my, is limited by stopping criteria and v, is the k- Arnoldi vector of

FGMRES

e M1 is the one-level restricted additive Schwarz preconditioner
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Parallel Implementation

Implemented in the Portable Extensible Toolkit for Scientific computa-
tion (PETSc) framework (2.3.2), Argonne National Laboratory; PETSc
library is compiled with Fortran kernels

Extensive use of distributed memory multigrid object

The code’s multiple configurations can be accessed via command line
arguments (physical parameters, stopping conditions, restart sequence,
solver configurations, etc.)

Compilers: gcc and vendor-optimized proprietary systems

Target hardware: Linux cluster and IBM BG/L
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Parameters

Physical parameters:

0.08,
[1.0,10.0],
[10-°,107?],
[107°,1072],
ly/ly, =12

e
e

bm\&

S
Immm

Relative reduction in nonlinear function norm ||G(Ex)|l2 < 1077 [|G(Ep)||2
Absolute tolerance in nonlinear function norm ||G(E.)|2 < 107
Relative reduction in linear residual norm |rgll2 < 10719||rg]|2

Absolute tolerance in linear residual norm ||rgl|2 < 107

Subdomain solve: LU
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Scalability: 1980 x 1980 Mesh
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One-level Preconditioner, t = 10074
np Computing Time [sec] | Total Nonlinear Iterations | Linear/Nonlinear
225 716.8 10 42.2
324 457.8 10 46.1
400 342.3 10 56.0
484 284.7 10 56.4
900 151.7 10 63.0
1936 101.0 10 96.5
2025 90.8 10 98.4

One-level Preconditioner, t = 20074
225 965.5 11 65.6
324 754.3 12 53.6
400 465.7 10 68.7
484 427.8 10 74.0
900 276.8 12 67.7
1936 218.6 14 162.4
2025 189.9 13 149.5

One-level Preconditioner, t = 28074
225 2473.1 24 1135
324 1691.9 24 127.7
400 1359.6 24 135.1
484 1185.0 25 141.3
900 742.8 25 181.0
1936 514.8 27 226.6
2025 504.8 26 2443

17
peedup: 1980 x 1980 Mesh

Speedup curves t(np = 225)/t(np) as compared to the ideal speedup for 1980 x 1980 mesh,
LU factorization for all subproblems, At = 1.074, 10 time steps at times ¢t = 10074 (a),
t = 20074 (b) and ¢t = 28074 (c).
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Execution Times of GMRES Orthogonalization

t = 10074
np Times Called | Exec. Time [sec] | Percentage | Per Call | Speedup | Ideal
400 510 4.65 1.5% 0.00912 1.00 1.00
900 716 3.04 2.3% 0.00425 2.15 2.25
2025 1074 2.84 3.1% 0.00264 3.45 5.06
t = 28074
np Times Called | Exec. Time [sec] | Percentage | Per Call | Speedup | Ideal
400 4603 44.2 4.0% 0.00960 1.00 1.00
900 6318 26.6 4.5% 0.00421 2.28 2.25
2025 8026 26.0 6.3% 0.00324 2.96 5.06

Execution times of the GMRES orthogonalization, one-level algorithm, 1980 x 1980 mesh,
LU factorization for all subproblems, At = 1.074, 10 time steps taken at simulation time
t = 28074. The number of times the function is called, the function’s cumulative execution
time, the percentage of the total execution time, time per call, and experimental and ideal
speedups are shown.
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Comparison of Preconditioners: Speedup

1(225)/t(np)

o - ideal

+ - 1-level

X = inner-outer
* = 2-level T

500 1000 1500 2000 2500
np
Parallel speedup, 1080 x 1080 fine mesh, 90 x 90 coarse mesh, redundant solves on the
coarse mesh, LU factorization for all subproblems, At = 1.074, 10 time steps taken at
simulation time t = 20074. The overlap § = 8. The experiments are conducted with the
number of processors np = 225,324,900,2025 in the “vn” mode, and each subdomain is
assigned to one processor.
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Comparison of Preconditioners: Computing

Time
t = 10074
np Inner-outer Time [sec] | One-level Time [sec] | Two-level Time [secC]
225 50.02 134.3 670.9
324 35.10 97.1 608.1
900 35.59 39.8 524.9
2025 23.10 27.3 585.3
t = 20074
225 95.3 253.5 682.2
324 73.5 177.7 617.3
900 48.6 92.9 604.2
2025 26.0 61.2 605.8
t = 280714
225 2472.9 528.3 2449.8
324 1751.9 389.9 2178.4
900 1003.8 220.6 2052.9
2025 556.8 147.6 2573.5

Computing times of inner-outer, one-level and two-level preconditioning algorithms,
1080 x 1080 fine mesh, 90 x 90 coarse mesh, redundant solves on the coarse mesh, LU
factorization for all subproblems, At = 1.074, 10 time steps taken at simulation times
t = 10074, t = 20074 and ¢t = 28074. The overlap § = 8.
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GFLOPS

1080 x 1080 mesh
np t=10074 | t=20074 | t =28074
225 22.1 25.8 30.0
324 31.8 33.8 43.0
900 88.0 94.6 115.8
2025 166.1 175.9 252.6
1980 x 1980 mesh
np t =10074 | t=20074 [ t =28074
400 429 46.4 52.0
484 53.9 57.7 63.8
900 81.6 95.5 116.1
2025 188.0 198.4 249.3

GFLOP as a function of the number of subdomains, inner-outer preconditioning algorithm,
LU factorization for all subproblems, At = 1.074, 10 time steps taken at simulation times
t = 10074, t = 20074 and t = 28074. The overlap § = 8.
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Some Observations and Future Work

The one-level additive Schwarz preconditioner works quite well on fine meshes (1980 x
1980) with up to several hundred subdomains and for simulation times up to t = 150714

For larger numbers of subdomains, in the range of one to two thousands, the efficiency
of the one-level preconditioner degrades, and the parallel speedup is no longer close to
ideal

The two-level additive Schwarz preconditioning technique demonstrates an inferior per-
formance on the time-dependent problem with periodic boundary conditions both in
terms of the iteration count and the execution time

In some cases, the application of the inner-outer preconditioner results in much shorter
execution times and allows for a good parallel performance

Multilevel versions of the algorithm require improvements — solve the coarse problem in
parallel using MUMPS (Amestoy et al, 2000) or SuperLU (Demmel et al, 2003)

Extend our fully implicit parallel approach to adaptive mesh refinement
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VORPAL Project(s)

Currently work on accelerator cavities simulations (Crab cavity) - 3D
problems

There's a need to refine spatial resolution - going from small clusters
(np < 100) to IBM BG/L systems

Issues on a BG/L system? Compilers (IBM), HDF5, Python - cross-
compiling is somewhat problematic...

Fortunately, it's possible to overcome these issues for some classes of
simulations

Yee algorithm, FDTD (finite difference time domain), explicit, leap-frog
type of time stepping with finite difference discretization of spatial com-
ponents, PIC
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VORPAL Speedup
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Simple EM wave propagation, problem sizes (192 x 128, 1536 x 512 x 512,
1536 x 1024 x 1024, and 3072 x 1024 x 1024 cells) weak scaling with speedup
tnp=1/(tnp/np), I/O isn’t included.
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Some Observations and Future Work

PIC: particle-dominated approach vs. field-dominated approach. Particle-
dominated approach may scale better due to larger local computation
load (“pushing” particles). Field-dominated approach implies weaker
scalability?

Use PETSc (Poisson solves, matrix-vector products)?

Parallel efficiency needs improvement

Fine-tune the communication pattern

Improve I/O - > 100G B files can be produced by VORPAL simulations
Plan to make better use of TAU

Would like to get in the neighborhood of 300 TFLOPS sometime soon

Immediate: do something about Python on BG/L compute nodes
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