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Fusion Powersithe Stun.and Stars

The Case for Fusion Energy

Worldwide demand for energy continues to increase
— Due to population increases and economic development
— Most population growth and energy demand is in urban areas
« Implies need for large, centralized power generation
Worldwide oil and gas production is near or past peak
— Need for alternative source: coal, fission, fusion

Increasing evidence that release of greenhouse gases is causing global
climate change . . . “Global warming”

— Historical data and 100+ year detailed climate projections

— This makes nuclear (fission or fusion) preferable to fossil (coal)
Fusion has some advantages over fission that could become critical:
— Inherent safety (no China syndrome)

— No weapons proliferation considerations (security)

— Greatly reduced waste disposal problems (no Yucca Mt.)
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Controlled Fusion uses isotopes of Hydrogen in
a High Temperature lonized Gas (Plasma)

Deuterium
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Tritium / \14\44‘1](‘ Neutron
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sustains reaction

Lithium
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Deuterium exists in nature (0.015% abundant in Hydrogen) \
Tritium has a 12 year half life: produced via 6Li + n > T + “He 8.

Lithium is naturally abundant

Controlled Fusion Basics

Create a mixture of Dand T
(plasma), heat it to high
temperature, andthe Dand T
will fuse to produce energy.

Por=npny <ov>(U,+U,)
at 10 keV, <ov> ~ T2

Por~ (plasma pressure)?

Need ~ 5 atmosphere @ 10 keV

Note: 1 keV = 10,000,000 deg(K)

Operating
point ~ 10 keV
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Toroidal Magnetic Confinement

Foloidal field coil

MAGNETIC CONFINEMENT FUSION

Toraidal field
coil

Plasma
Electron

Central field coil

TOKAMAK creates toroidal magnetic
Charged particles have helical orbits ~ fields to confine particles in the 31

in a magnetic field; they describe ?lmggsllorr. Includes ant |tndr:1cetd d
circular orbits perpendicular to the c%rr?;in?e t‘;]zSTaasg]u;en o heatan
field and free-stream in the direction P

of the field. “TOKAMAK”: Russian abbreviation
for “toroidal chamber”

The U.S. is an official partner in ITER

International
Thermonuclear
Experimental Reactor:

e European Union
* Japan

« United States

* Russia

» Korea

e China

« India

scale

« World’s largest tokamak

500 MW fusion output « all super-conducting coils
» Cost: $5-10B
 To begin operation in 2015
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ITER has a site...
Cadarache, France

June 28, 2005

Ministerial Level Meeting
Moscow, Russia

Progress in Magnetic Fusion Research
and Next Step to ITER
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Simulations are needed in 4 areas

* How to heat the plasma to thermonuclear
temperatures ( ~ 100,000,000° C)

* How to reduce the background turbulence
* How to eliminate device-scale instabilities

* How to optimize the operation of the whole
device

These 4 areas address different timescales and are
normally studied using different codes

SAWTOOTH CRASH ENERGY CONFINEMENT
ELECTRON TRANSIT. TursuLEncE &
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X (em (b) Micro-
(a) RF codes turbulence codes

(c) Extended-
MHD codes

SEC.
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Extended MHD Codes solve 3D fluid equations for device-scale stability

SAWTOOTH CRASH ENERGY CONFINEMENT
ELECTRON TRANSIT  TURBULENCE 4 a
1 ISLAND GROWTH  CURRENT DIFFUSION
o1 oyt o ¥,
%010 8 -6 -4 -2 0 2 4
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1 1 1 1

SEC.

» Sawtooth cycle is one example
of global phenomena that need
to be understood

« Can cause degradation of
confinement, or plasma
termination

* The X-MHD codes typically
exhibit good parallel scaling to
500-1000 processors

* Running time is dominated by
elliptic solves

* Need to run for many time
steps

« Example of a recent 3D
CEMM calculation using
M3D code

¢ “Internal Kink” mode in a
small tokamak (Sawtooth
Oscillations)

« Good agreement between
M3D, NIMROD, and
experimental results

*500 wallclock hours and
over 200,000 CPU-hours
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Excellent Agreement between NIMROD and M3D
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Consider a simple 1-D Hyperbolic System of Equations (Wave Equation)

au_ o
At |t ou_

ov_ou [ oot o

E_ OX

Consider a simple 1-D Hyperbolic System of Equations (Wave Equation)

u_ov

ot ox ou  , 0%
—2—C —2:0

@_Cé_u ot OX

ot OX

Implicit Centered Difference:

n+1 n n+1 n+1 n n
uj _uj —clo Vj+1/2 _Vj—1/2 n (1_0) Vj+1/2 _Vj—llz
ot OX OX

n+1 n n+l n+l n n
Vj+1/2_vj+1/2 —clo uj+1_uj +(1_9) uj+1_uj
ot oX OX

Stable for 6 > ¥ 2" order for 6 = %
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Consider a simple 1-D Hyperbolic System of Equations (Wave Equation)

up+1 " n+1 _:_ﬁli_i v _Vr_17
j j —c 9( j+1/2 _J__l_/g (1_9) J+1/2§ j-1/2
X

ur_1+1_ur_1+l n+ _ur_1
=clg| 2L |+-0)| 2L
oX oX
Substitute from second equation into first:

-0t +u 2u v, =V
n+: n +1 +1 +1/2 -1/2
ujt =uf + (5tc){ [152] 01— 9)[’52H + §tc[‘5xj]

V?Illlz VJ+1/2+%|:0(U?:11 n+1)+(1 0)( T T):|

These two equations can be solved sequentially

Only first involves Matrix Inversion ... Diagonally Dominant

ul™ =ul +(stc)’| @ o[ WA Z 2T U +0(1-0) 7’“ 20+ UL || g Vine ~Vize
o ox? X 5x

Vi =V + 2o p(ut -0+ @-0) (v -ul)]

oX
52 n+1 2un+1+un+1
Rewrite using standard finite-difference notation:
5\’ _VJ+1IZ Vj—112
s
oX

Operator to invert\

[1-5%0°57 |uj™ =1+ 5%0(1- )57 |u] +S6,V]
n+1

n n+1 n
Viis =V +5 [95XUj+1/2 +(1- 9)5xuj+1/2:|
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This derivation can also be done in block matrix form:

Original equation:

X
L AL [uT™ By BL]uT A N
A, | [lvl B, B,llv o o

X X

Lower and upper bi-diagonal
matrices

This derivation can also be done in block matrix form:

Original equation:

X
— 12 X X 21 X
A21 I \ BZl BZZ \ X

X

Lower and upper bi-diagonal
matrices
Shur complement:

n+l n+l n n
v =—A,u" +Bu" +B,,v

n+1 n+l n n
u :A12A21u +(Bll_AlZBZl)u +(Blz_A1szz)V

or:

n+l n n

I_A12A21 u =(Bll_A12821)u +(Blz_Alszz)V
n+l n+1 n n

VT =-A,u"+B,u" +B,Vv

Operator to invert (tridiagonal for 1D)
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An alternate derivation:

ou ov
S ’ %:c%[v%&&%}
ov au Expand RHS in Taylor
=% series in time to time- o _ cﬁ[un +9§t5j}
center ot OX
An alternate derivation:
ou ov
S ’ %’:c%[v%&&%}
ov ou Expand RHS in Taylor
5=C& series in time to time- @:Cj[u”%tiu}
center ot ox ot
au Astitute from second

B 8 au
:Ca["“’%t(cg[”" +‘95t§}ﬂ equation into first
8
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An alternate derivation:

u_ v - u_ ol .. .o
ot ox §=c& \% +95t5
ov au Expand RHS in Taylor

el series in time to time- v _ cg[u" +9§t‘i“}

center ot OX

au ol 2 au Astitute from second
5=C&[V +5’5t[° P [U +‘9‘5t7D} equation into first
X ci[u" +¢9§ta—u}

ot ox

l Use standard centered difference in time:

{1 6%(st)°c? i } u™t [1+¢9(1 o)(st)’c? o }u +6tca%v

v =yt +§tc[0£u””+(l—0)gu”}
OX OX

An alternate derivation:

ou ov

E=C& E— %:c%[v%&ﬁtg}

ov ou Expand RHS in Taylor

il series in time to time- v _ ci[u" +35t‘iu}
center ot ox ot

e

au_ o, al ., au ubstitute from second
:C&[V +9§t[°&[” +‘95t§}ﬂ equation into first
3

\ Use standard centered difference in time:

1-02 (st
X

u™t [1+0(1 o)(st)?c? o }u +6tcgv
ox? OX

0

v =yt +§tc{¢9—u"+1 + (1—0)iu"}
OX X

This is the same operator as before when centered spatial differences used
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Now apply this technique to the basic 3D MHD equations:

oV = i[v xB]xB-Vp Ideal MHD Equations for velocity,
o magnetic field, and pressure:
B=Vx[VxB] Symmetric Hyperbolic System

p=-VIVp-ypViV 7-waves

Now apply this technique to the basic 3D MHD equations:

oV = i[v xB]xB-Vp Ideal MHD Equations for velocity,
0 My magnetic field, and pressure:

B=Vx[VxB] Symmetric Hyperbolic System

p=-ViVp-ypViV 7-waves

PAY :i[vX(B+0§tB)]x(B+9§tB)—v( p+05tp)
Y7

0

. . Taylor Expand in
B = Vx| (V+06tV)xB] Time as before

p=—(V+05tV ) Vp-ypVi(V+05tV)
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Now apply this technique to the basic 3D MHD equations:

PRV i[Vx B]xB-Vp Ideal MHD Equations for velocity,
Ho magnetic field, and pressure:
B=Vx[VxB] Symmetric Hyperbolic System

p=-VIVp-ypVV 7-waves

A =i[vx(B+05tB)]x(B+05tB)—v( p+05tp)
Ho Taylor Expand in

B=v x[(v + 051V )x B] Time as before

p=—(V+05tV)Vp—ypVi(V+65tV)

Substitute from 2" and 3 equation into first, finite difference in time:

{p=07 (B’ LIV™ ={p-0(0-1)(5t)’ L} V" +5t{—Vp+ﬂi(V>< B) x B}

MHD Operator: —

p— O (S2LIV™ = p— (O —-1) (S LY V" + 5t1—Vp + - (VxB) B
{ pvrt={ J

Ho

* Need to solve this in 3D torus with
strong magnetic field in toroidal
direction (o) ... anisotropy

« Wide range of wave speeds leads to
ill-conditioned matrices

« Gradients in (R,Z) plane much larger
than in ¢ direction

« Also need to preserve y[B=0

8/9/2007
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{p=07 G’ LIV™ ={p-0(0-1)(5t)’ L} V" +5t{—Vp +i(VX B)x B}

Ho

L{V} =i{Vx[V><(Vx B)]}xB+ﬂi0(VxB)x[V><(Vx B)]
+V(VIVp+ypVIV)

CEMM has 3 Major Codes using different
approaches for solving this equation:

NIMROD: Fourier analyses in ¢ and solves
each harmonic separately using SuperLU
with GMRES to couple harmonics

M3D: Finite Differences in ¢, but only
solves implicit operator equation in (R,Z)
planes, using either GMRES or HYPRE
(via PetSC) Explicit differences in ¢.

M3D-C% Finite Differences in ¢, uses
SuperLU in (R,Z) plane, now going to 3D.

M3D-C? uses a stream function / potential V=VUxi+V, z+V,
form of the velocity and magnetic fields

The sparse matrix equation to be solved for the velocity variables take the form:

v v v +1 v v v v v v

Spo S, Sp||uU ' D; D, Dgl|U ! Ry R, Ry||w !
Szvl Szvz Szva Vv, = Dzvl D;z Dgs V| + szl szz R;z I
Su S» Su|lx D; D; Du|lx Ry R: Rg]LP

e

» Corresponds to the operator equation derived on earlier vg:

{p=07 B’ LIV™ ={p-0(0-1)(5t)’ L} V" +5t{—Vp +i(vX B) x B}

Ho

« Also contains 2 non-trivial sub-systems (reduced MHD)

.:81\/1:IE[U ]n+1 = [D1V1:|E[U ]n +[R1VJE[V/]H etc.

8/9/2007
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In 2D, Implicit equations are solved using SuperLU_Dist

Details for bassi.nersc.gov:

Mesh points 180 x 180 # processors |8 32 128
Matrix Rank 5.9 x 10°

# Non-zeros 9.5 x 107
#NZin L/U 8.8 x 10° Gflop/s 27.2 |50.1 112.8

Factor (s) 69.5 [38.1 16.9

Total problem time (8 processors) for typical high resolution reconnection
problem =208 s x 400 cycles x 8p = 185 p-hrs

Note that for linear problem, Matrix need only be factored once. For semi-
implicit method, matrix needs to be factored only occasionally.

*NOTE: In 3D, if we had 100 planes with simultaneous instances of
SuperLU, this would be 12,800 p and 11.2 Tflop/s actual!

How to take this to 3D ? X/I‘Y

note: "Poisson Bracket"
Consider (1,1) component in 3D: Corresponds to [ab]= 22 _cad

“Strauss Equations” (3D reduced MHD for ¥ and U) Y ,,ﬁ:\ef\;rojfctﬁ\(

)= da ob  da ob

. 0 (ab)=—c—+——
V32U +| V23U U |=| Viy,p |+ B—=—V? X X oY v
L I: L ] [a 4 l//:l P 4
7 +|y,U|=B—U
vy U]=B=
Taylor expand in time:
ViU +[ ViU +05tViU,U + 051U | = Viy + 05tV + 05ty |
0 0 oo .
+B—Viy +66tB—V
pe nZ o n4

0 0

v+, U+00tU | = BEU +¢9§tBEU

Substitute field derivatives into velocity equation to get implicit equation:

8/9/2007
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1, : : 1

E[UM—UH] U, :W[UM 20, +U
When we apply C? continuous finite elements in (x,)), we get a block
tridiagonal equation, with the matrix blocks being 2D matrices:

Finite Difference in Z: Uz =

BU[™ + D +&(AU; +BU™* +CU" + D) =0

j+1

BIU;™ = v V2U, — (@6t [+Viw v [wu )= (w5 1 lvow]) + B (w[w U ])]

28?
(62)°

BjU™ =w ViU, - (0§t)2{ v,Viu "*1}

i Can this structure be
_;Vi'/’ Vi ,U;‘ﬂ—EViU i [vioy] used to define an
AU =—(651)° efficient iteration
(5 7 —— ViU +—( ,,|:l// U;‘Iﬂ) scheme where the 2D
direct solves serve as
;VZV/[ Uj"ff}+§EVin”ff Vv a preconditioner ?
C U =—0st7| 7
T .Viurrf——( vilw Uil

Summary of Proposed 3D Time Advance

n+1+Blun+l+C Un+l+D1) 0

j+l

Oy n+l 0 1
B;U[™ + Dy +e(A

U ;Hl is vector of all unknown velocities on plane j at new time
0 1 1 1
Bj ) Aj ) Bj ) Cj are 2D sparse matrices at plane j

D?, D} are 2D vectors at plane j

Possible iteration scheme. Use SuperLU to factor the B? simultaneously
: -1
i+l 0 0 L qi 1 L qi 1
Uj*=—[B]| ] D +&(AU;, +BU} +ClU}, +Dj) ]

Note that B;’ matrices only need to be factored once per timestep

8/9/2007
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Other Efforts in CEMM

NIMROD:

Sovinec (U. Wisc):
* Now using “poloidal preconditioning”. Exploring ‘toroidal preconditioning
S. Vadlamani, S. Kruger (Tech X), T. Manteuffel,S. McCormick (CU APPM):

« SBIR contract to explore the use of MultiGrid on the MHD equations. Plan to
use HYPRE via the PETSc interface
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