Community Petascale Project for Accelerator

Science and Simulation (ComPASS)
&

Synergia

Qiming Lu, Fermilab

A) Project Overview

e Community Petascale Project for Accelerator Science and
Simulation (ComPASS)

— Develop a comprehensive computational infrastructure for accelerator
modeling and optimization

— Advance accelerator computational capabilities from the terascale to
the petascale to support DOE priorities for the next decade and
beyond

— Components for beam dynamics, electromagnetics, electron cooling,
and advanced accelerator modeling, etc.

e The participants, description of team
— ANL, BNL, FNAL, LBNL, SLAC, Tech-X, TINAL, UCLA, U Maryland, USC

B) Science Lesson

e What does the application do, and how?

Restrict myself on my sub-project of beam dynamics simulation code
called Synergia

Single-particle dynamics
Multi-particle dynamics where the particle-particle interactions are
important

e Space charge: interaction of the beam with itself
e Beam-beam interaction
e Electron cloud

o Wakefields: fields in accelerator components generated by passing
beam

Parallel, 3D space charge Particle-in-cell (PIC) code with circular machine
modeling capabilities

C) Parallel Programming Model

e MPI, OpenMP, Hybrid, Pthreads, etc
— Plain MPI parallelization
— (Particle manager) distribute particles among processors
— (Poisson-Vlasov) distribute grid across all processors
e communication avoidance scheme with multiple redundant grids

e |Languages
— C++ with Python wrapper

e Runtime libraries, build requirements

— Boost, FFTW, HDF5, CHEF(single-particle accelerator physics library), etc.
— Portable and cross-platform build system based on CMake

C) Parallel Programming Model

What platforms does the application currently run on?
— Linux desktops (with or without GPU)
— Linux clusters (with or without GPUs)
— BG/P and BG/Q (ALCF)
— Cray XE6 (NERSC)

Current status & future plans for the programming model

— MPI-OpenMP hybrid for multi-core architectures
— Single GPU / Multi-GPU / GPU cluster

D) Computational Methods

e What algorithms and math libraries do you use? (PDE, FFT, etc)
— The fast Poisson-Vlasov solver involves intense FFT calculations

e Current status and future plans for your computation
— Weak scaling with multiple bunches works very well
— Strong scaling limited by FFT

e Pure MPI FFTW performs/scales poorly on multi-core/multi-node
platforms when crossing the node boundary

e MPI/OpenMP hybrid FFTW is even worse
e Seeking better parallel FFT routines, or implement our own
e Communication avoidance helps, but does not solve the problem

E) I/O Patterns and Strategy

Input I/0 and output I/O patterns (one file per MPI process?,
pNetCDF? HDF5?, etc)

— One file per MPI process
— Uses HDF5 for storing particle information when available

Approximate sizes of inputs and outputs (before, during, and
after computation)
— Typical inputs 200KB
— Typical outputs hundreds of MB to hundreds of GB
Checkpoint / Restart capabilities: what does it look like?
— Configurable checkpoint/restart frequency
— One file per core + one copy of each open output file
Current status and future plans for I/O
— Plan to do platform specific optimizations

F) Visualization and Analysis

e How do you explore the data generated?
— Post-processing of HDF5 data usually involves Python, Matplotlib, and VisIT

e Scientists can pick their tools

e Synergia uses VizSchema metadata
with VisIT

user: amun dson
Fri Mar 20 14:19:45 2009

c \|
N
®

= N N
(=] o »
log density [arbitrary units]

=
N

s
o
©

r 0.0

G) Performance

e What tools do you use now to explore performance (Tau,
Dynlnst, PAPI, etc)

— TAU and a custom simple timer

e What do you believe is your current bottleneck to better
performance?
— parallel FFT for small-to-medium sizes

e What do you believe is your current bottleneck to better
scaling?
— Single particles and independent operations can be scaled almost
infinitely
— The relatively small grid size has limited the strong scaling
— Global communications, e.g., distribute charge density, distribute fields

G) Performance

Current status and future plans for improving performance

— Experimented using single/multi-GPU to accelerate the Synergia
simulation

W Xeon 5550

45 sec Wilson Cluster ™ Wilson Cluster

64 sec Tesla C1060 ™ Tesla C1060

28 sec Tesla C1060 x 4 W C1060 x 4

Execution Time
700 (in seconds)

H) Tools

e How do you debug your code?
— TotalView and std::cerr

e What other tools do you use?
— CodeAnalyst

e Current status and future plans for improved tool integration
and support

1) Status and Scalability

e Current status and future plans for improving scaling

— Large problem sizes on large machine

strong scaling weak scaling
bunches
10 ‘ ‘ ‘ ‘ 30— 126 25 512 1024
=—a jdeal /.//‘
o L —& a
e—e actual
25}
20t
))
2 L
g 10 g 15
10t
5,
=—a jdeal
e—e actual
1 I I I I I I I I I
1062 128 256 512 1024 2048 0 8192 16384 32768 65536 131072

BG/Q (VEAS) cores BG/P (Intrepid) cores

1) Status and Scalability

e Current status and future plans for improving scaling
— Medium problem sizes on clusters

— For both large and small problems we would like to be able to run for many time
steps so strong scaling is important

e Future plans

— Better FFTs with multi-core
architectures

strong scaling for
medium problem sizes

— Platform specific optimizations
for BG/Q

e Will build on previous
works on GPUs and
multi-core

time [s]

10"}

L —O— comm. avoidance
r —/— OpenMP + FFTW
[—/— OpenMP + custom FFT
. —O— OpenMP + 4 MPI tasks per node

1 2 4 8 16 32 64 128 256
cores or threads

