
Tom Peterka	



tpeterka@mcs.anl.gov	



Mathematics and Computer Science Division	


CScADS Summer 
Workshop 7/26/12	



“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”	



	

–Carl Friedrich Gauss, 1777-1855 

 In Situ Data Analysis	
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Scalable Analysis & Visualization: The 
Data Parallel Approach���

Treat analysis as any other parallel computation	



-Decompose the domain	


-Assign to processors	


-Combine local and global operations	


-Use parallel I/O, MPI, other programming models	


-Balance load, minimize communication	


-Measure strong, weak scaling, efficiency	



“The combination of massive scale and complexity is such that high performance computers 
will be needed to analyze data, as well as to generate it through modeling and simulation.” 	


–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program 
Announcement LAB 10-256, 2010. 2	



Integrate with simulation	





Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics 

Morse-Smale complex of combustion Voronoi tessellation of cosmology 

Data Analysis Comes in Many Flavors	





Separate Analysis Ops from Data Ops	



You do this yourself	



Can use serial libraries such as OSUFlow, Qhull, VTK 
(don’t have to start from scratch) 

DIY handles this 
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Tackling the Data-Intensive Part of Data Analysis���

DIY: help the user write own data-parallel analysis algorithms. ���
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Main ideas and Objectives 	



-Large-scale parallel analysis (visual and 
numerical) on HPC machines	


-Scientists, visualization researchers, 
tool builders	



-In situ, coprocessing, postprocessing	


-Data-parallel problem decomposition	


-Scalable data movement algorithms	



Benefits	



-Researchers can focus on their own 
work, not on parallel infrastructure	



-Analysis applications can be custom	


-Reuse core components and algorithms 
for performance and productivity	





Implement Data Operations in a Library with a small l	
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Library	



Written in C++	


C bindings, future Fortran bindings	


Autoconf build system (configure, make, make install)	


Lightweight: libdiy.a 800KB	


Maintainable: ~15K lines of code, including examples	



DIY usage and library organization	



Features	



Parallel I/O to/from storage	


-MPI-IO, BIL	



Domain decomposition	


-Decompose domain	


-Describe existing decomposition	



Network communication	


-Global reduction (2 flavors)	


-Local nearest neighbor	
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Group Data Items Into Blocks	
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The block is DIY’s basic unit of data. Original dataset is decomposed into generic 
subsets called blocks, and associated analysis items live in the same blocks. Blocks 
contain one or more instances of the data type described earlier.	
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Block ≠ Process	
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All data movement operations are per block; blocks exchange information with 
each other using DIY’s communication algorithms. DIY manages and optimizes 
exchange between processes based on the process assignment. This allows for 
flexible process assignment as well as easy debugging.	
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Group Blocks into Neighborhoods	
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-Limited-range communication	


-Allow arbitrary groupings	


-Distributed, local data structure and 
knowledge of other blocks (not master-
slave global knowledge)	
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Provide Different Neighborhood Communication Patterns	
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DIY provides point to point and different varieties of collectives within a neighborhood via 
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	
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Make Global and Neighborhood Communication 
Fast and Easy	
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DIY provides 3 efficient scalable communication algorithms on top of MPI. May be 
used in any combination.	



Analysis Communication 

Particle Tracing Nearest neighbor 

Global Information 
Entropy 

Merge-based reduction 

Point-wise Information 
Entropy 

Nearest neighbor 

Morse-Smale Complex Merge-based reduction 

Computational Geometry Nearest neighbor 

Region growing Nearest neighbor 

Sort-last rendering Swap-based reduction 

Factors to consider when 
selecting communication 
algorithm:	


-associativity	


-number of iterations	


-data size vs. memory size	


-homogeneity of data	





3 Communication Patterns	
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 Swap-based 
reduction	



Merge-based 
reduction	





Data Input	
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Multiblock and Multifile I/O	



-Application-level two-phase I/O	


-Reads raw, netCDF, HDF5 (future)	


-Read requests sorted and aggregated  into large contiguous accesses	


-Data redistributed to processes after reading	


-Single and multi block/file domains	


-75% of IOR benchmark on actual scientific data	



Input algorithm	



Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11 



Analysis Output	
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Features	



Binary	


General header/data blocks	


Footer with indices	


Application assigns semantic value to DIY blocks	


Written efficiently in parallel	


Parallel block-wise compression	



Output file format	
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Example Usage	
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// initialize	


int dim = 3; // number of dimensions in the problem	



int tot_blocks = 8; // total number of blocks	


int data_size[3] = {10, 10, 10}; // data size	



MPI_Init(&argc, &argv); // init MPI before DIY	


DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, 

data_size, MPI_COMM_WORLD);	



// read data	


 for (int i = 0; i < nblocks; i++) {	



    DIY_Block_starts_sizes(i, min, size);	


    DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	



}	


DIY_Read_blocks_all();	



// decompose domain	


int share_face = 0; // whether adjoining blocks share the same face	



int ghost = 0; // additional layers of ghost cells	


int ghost_dir = 0; // ghost cells apply to all or some sides of a block	



int given[3] = {0, 0, 0}; // constraints on blocking (none)	


DIY_Decompose(share_face, ghost, ghost_dir, given);	





Example API Continued	
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// your own local analysis	



// merge results, in this example	


// could be any combination / repetition of the three communication patterns	



int rounds = 2; // two rounds of merging	


int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	



int nb_merged; // number of output merged blocks	


DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, 
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	



// write results	


DIY_Write_open_all(outfile);	


DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	


DIY_Write_close_all();	



// terminate	


DIY_Finalize(); // finalize DIY before MPI	



MPI_Finalize();	





Applications	
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Parallel Voronoi Tessellation	



Thresholding cell volume to reveal cosmological voids	



Particles Processes Total Time (s) Simulation 
Time (s) 

Tessellation 
Time (s) 

512^3 2048 3852 3684 167 

4192 2008 1918 89 

8096 1784 1722 62 

16384 1406 1344 61 

Subset of strong and weak 
scaling test results shows 
good scalability and relatively 
small fraction of total run 
time for in situ analysis	





Parallel Particle Tracing	
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Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	





Information Entropy Performance and Scalability	
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Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	





Morse-Smale Complex Performance and Scalability	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	





Summary	



-Consider data and data movement as first-class citizens	



-Tools needed both for run-time as well as postprocessing analysis	



-Analysis is any sequence of operations on data that hopefully 
reduces its size and/or improves its understandability	



-Much more work to be done!	
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