
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

CScADS Summer
Workshop 7/26/12	

“I have had my results for a long time, but I do not yet
know how I am to arrive at them.”	

	

–Carl Friedrich Gauss, 1777-1855

 In Situ Data Analysis	

Morse-Smale
Complex of

combustion in the
presence of a cross

flow (image
courtesy Attila

Gyulassy)	

Scalable Analysis & Visualization: The
Data Parallel Approach���

Treat analysis as any other parallel computation	

-Decompose the domain	

-Assign to processors	

-Combine local and global operations	

-Use parallel I/O, MPI, other programming models	

-Balance load, minimize communication	

-Measure strong, weak scaling, efficiency	

“The combination of massive scale and complexity is such that high performance computers
will be needed to analyze data, as well as to generate it through modeling and simulation.” 	

–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program
Announcement LAB 10-256, 2010. 2	

Integrate with simulation	

Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics

Morse-Smale complex of combustion Voronoi tessellation of cosmology

Data Analysis Comes in Many Flavors	

Separate Analysis Ops from Data Ops	

You do this yourself	

Can use serial libraries such as OSUFlow, Qhull, VTK
(don’t have to start from scratch)

DIY handles this

Analysis Application Application
Data Model

Analysis
Data Model

Analysis
Algorithm

Particle
Tracing

CFD Unstructured
Mesh

Particles Numerical
Integration

Information
Entropy

Astrophysics AMR Histograms Convolution

Morse-Smale
Complex

Combustion Structured
Grid

Complexes Graph
Simplification

Computational
Geometry

Cosmology Particles Tessellations Voronoi

Communica
tion

Additional

Nearest
neighbor

File I/O,
Domain
decompositi
on, process
assignment,
utilities

Global
reduction,
nearest
neighbor

Global
reduction

Nearest
neighbor

Tackling the Data-Intensive Part of Data Analysis���

DIY: help the user write own data-parallel analysis algorithms. ���

5	

Main ideas and Objectives 	

-Large-scale parallel analysis (visual and
numerical) on HPC machines	

-Scientists, visualization researchers,
tool builders	

-In situ, coprocessing, postprocessing	

-Data-parallel problem decomposition	

-Scalable data movement algorithms	

Benefits	

-Researchers can focus on their own
work, not on parallel infrastructure	

-Analysis applications can be custom	

-Reuse core components and algorithms
for performance and productivity	

Implement Data Operations in a Library with a small l	

6	

Library	

Written in C++	

C bindings, future Fortran bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	

DIY usage and library organization	

Features	

Parallel I/O to/from storage	

-MPI-IO, BIL	

Domain decomposition	

-Decompose domain	

-Describe existing decomposition	

Network communication	

-Global reduction (2 flavors)	

-Local nearest neighbor	

!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

Group Data Items Into Blocks	

7	

The block is DIY’s basic unit of data. Original dataset is decomposed into generic
subsets called blocks, and associated analysis items live in the same blocks. Blocks
contain one or more instances of the data type described earlier.	

!"#$%"$#&'()#*' +,-()#*' ./0"#$%"$#&'(,&01

Block ≠ Process	

8	

All data movement operations are per block; blocks exchange information with
each other using DIY’s communication algorithms. DIY manages and optimizes
exchange between processes based on the process assignment. This allows for
flexible process assignment as well as easy debugging.	

!"#$%&'(('()"#$%&'(('(*"#$%&'((

Group Blocks into Neighborhoods	

9	

-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and
knowledge of other blocks (not master-
slave global knowledge)	

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

!"#$%
&'(

!"#$%
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

333

!"#$%
&'(

!"#$%
)*+),+-

333

333

!"#$%
&'(

!"#$%
)*+),+-

333

"'(1415

"'(1416

"'(141
,!"#$%-1716

&'(141&"#!8"1!"#$%1'(),+'9'$8+'#,
"'(141"#$8"1!"#$%1'(),+'9'$8+'#,
2'(1412/#$)--1'(),+'9'$8+'#,

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

Provide Different Neighborhood Communication Patterns	

10	

DIY provides point to point and different varieties of collectives within a neighborhood via
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	

!"#$%&'()()$*+),$-+./
!"#$%&'()()$*+),$,012./

!"#$%&'()()$*+),$033./ !"#$%&'()()$*+),$4035./

!"#$%&'()()$*+),033&)06./
!"#$%&'()()$*+),4035&)06./

7(--86+95869:60-068(&;9&)*<4=8619
.6)-)0+*&<9=8(&;06>9?8&;*+*8&1/

Make Global and Neighborhood Communication
Fast and Easy	

11	

DIY provides 3 efficient scalable communication algorithms on top of MPI. May be
used in any combination.	

Analysis Communication

Particle Tracing Nearest neighbor

Global Information
Entropy

Merge-based reduction

Point-wise Information
Entropy

Nearest neighbor

Morse-Smale Complex Merge-based reduction

Computational Geometry Nearest neighbor

Region growing Nearest neighbor

Sort-last rendering Swap-based reduction

Factors to consider when
selecting communication
algorithm:	

-associativity	

-number of iterations	

-data size vs. memory size	

-homogeneity of data	

3 Communication Patterns	

12	

!"#$%&'
' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&(

!12#342

' () * + , - .

/ 0 (' ((() (* (+ (,

' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&'
(&)&* ' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&+
(&)&,

!34#564

' + , - * . / 0

1 2 +' ++ +, +- +* +.

' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&'
(&)&*

' + , - * . / 0

1 2 +' ++ +, +- +* +.

1 +' +, +*

1 +,

!"#$%&+
(&)&,

!34#564

Nearest neighbor	

 Swap-based
reduction	

Merge-based
reduction	

Data Input	

13	

Multiblock and Multifile I/O	

-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains	

-75% of IOR benchmark on actual scientific data	

Input algorithm	

Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11

Analysis Output	

14	

Features	

Binary	

General header/data blocks	

Footer with indices	

Application assigns semantic value to DIY blocks	

Written efficiently in parallel	

Parallel block-wise compression	

Output file format	

!"#$"%
&#'#

()#*+,-,
&#'# ././. ././.01,' 01,' 01,'20'3*4,

5/)

3*064/7 3*064/8 3*064/)/9/8 :00'"%

!"#$"%
&#'#

()#*+,-,
&#'#

!"#$"%
&#'#

()#*+,-,
&#'#

Example Usage	

15	

// initialize	

int dim = 3; // number of dimensions in the problem	

int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	

MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks,

data_size, MPI_COMM_WORLD);	

// read data	

 for (int i = 0; i < nblocks; i++) {	

 DIY_Block_starts_sizes(i, min, size);	

 DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	

}	

DIY_Read_blocks_all();	

// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	

int ghost = 0; // additional layers of ghost cells	

int ghost_dir = 0; // ghost cells apply to all or some sides of a block	

int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	

Example API Continued	

16	

// your own local analysis	

// merge results, in this example	

// could be any combination / repetition of the three communication patterns	

int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	

int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values,
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	

// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	

// terminate	

DIY_Finalize(); // finalize DIY before MPI	

MPI_Finalize();	

Applications	

17	

Parallel Voronoi Tessellation	

Thresholding cell volume to reveal cosmological voids	

Particles Processes Total Time (s) Simulation
Time (s)

Tessellation
Time (s)

512^3 2048 3852 3684 167

4192 2008 1918 89

8096 1784 1722 62

16384 1406 1344 61

Subset of strong and weak
scaling test results shows
good scalability and relatively
small fraction of total run
time for in situ analysis	

Parallel Particle Tracing	

19	

Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	

Information Entropy Performance and Scalability	

20	

Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.	

Morse-Smale Complex Performance and Scalability	

21	

Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	

Summary	

-Consider data and data movement as first-class citizens	

-Tools needed both for run-time as well as postprocessing analysis	

-Analysis is any sequence of operations on data that hopefully
reduces its size and/or improves its understandability	

-Much more work to be done!	

22	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

“The purpose of computing is insight, not numbers.”	

	

–Richard Hamming, 1962

CScADS Summer
Workshop 7/26/12	

Acknowledgments:	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	

http://www.mcs.anl.gov/~tpeterka/
software.html	

https://svn.mcs.anl.gov/repos/diy/trunk	

