Argonne°

NATIONAL LABORATORY

Parallel I/0 in Practice

Tom Peterka
Mathematics and Computer Science Division
Argonne National Laboratory

July 26, 2012

éx;ei\ U.S. DEPARTMENT OF
.9/ ENERGY



Computational Science

Use of computer simulation as a tool for
greater understanding of the real world

— Complements experimentation and theory

Problems are increasingly computationally
challenging

— Large parallel machines needed to perform
calculations

— Critical to leverage parallelism in all phases
Data access is a huge challenge
— Using parallelism to obtain performance

— Finding usable, efficient, portable
interfaces

— Understanding and tuning I/0O

— Data analysis and visualization are also
increasingly bound by data access (both
read and write)

IBM Blue Gene/P system at Argonne National
Laboratory.

Visualization of entropy in Terascale Supernova
Initiative application. Image from Kwan-Liu Ma'’s
visualization team at UC Davis.



Large-Scale Data Sets

Application teams are beginning to generate |0s of Tbytes of data in a single
simulation. Keeping 100s of TBs online is common.

Data requirements for select 201 | INCITE applications at ALCF
On-line Data Off-line Data

Pi Projec (TBytes) (TBytes)

Khokhlov Combustion in Gaseous Mixtures 1 17
Baker Protein Structure 1 2
Hinkel Laser-Plasma Interactions 60 60
Lamb Type la Supernovae 75 300
Vary Nuclear Structure and Reactions 6 15
Fischer Fast Neutron Reactors 100 100
Mackenzie Lattice Quantum Chromodynamics 300 70
Vashishta Fracture Behavior in Materials 12 72
Moser Engineering Design of Fluid Systems 3 200
Lele Multi-material Mixing 215 100
Kurien Turbulent Flows 10 20
Jordan Earthquake Wave Propagation 1000 1000
Tang Fustion Reactor Design 50 100



Applications, Data Models, and I/0

= Applications have data models

appropriate to domain

— Multidimensional typed arrays, images composed of
scan lines, variable length records

— Headers, attributes on data

= |/O systems have very simple data
models

— Tree-based hierarchy of containers

Graphic from J. Tannahill, LLNL

— Some containers have streams of bytes (files)

Log10 Density (g/cm®)

— Others hold collections of other containers (directories ... il |

or folders) 19

1.0x10°

T soxt0* ErTTTh 11 — z
O

= Someone has to map from one to the
other! il

sox10%

2.0x10*

0
o sox10* 1.0x10° 1.5x10° 2.0x10°
N r {em)
time = 30.012 s
number of blocks = 9452

AR levels = 7 Graphic from A. Siegel, ANL



Challenges in Application I/0

Leveraging aggregate communication and 1/O bandwidth of
clients

— ...but not overwhelming a resource limited 1/O system with
uncoordinated accesses!

Limiting number of files that must be managed

— Also a performance issue
Avoiding unnecessary post-processing

Often application teams spend so much time on this that they
never get any further:

— Interacting with storage through convenient abstractions
— Storing in portable formats

Parallel 1/0 software is available to address all of these
problems, when used appropriately.



1/0 for Computational Science

High-Level 1/0 Library
maps application abstractions
onto storage abstractions

and provides data portability.

HDFS5, Parallel netCDF, ADIOS

1/0 Forwarding
bridges between app. tasks
and storage system and
provides aggregation for
uncoordinated I/O.

IBM ciod

ﬂ
]

Application

High-Level I/O Library

I/O Middleware

/O Forwarding

Parallel File System

I/O Hardware

’_

1/0 Middleware
organizes accesses from
many processes,
especially those using
collective 1/O.

MPI-I0

Parallel File System
maintains logical space
and provides efficient
access to data.

PVFS, PanFS, GPFS, Lustre

Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application

codes.



N |
/0 Hardware and Software on Blue Gene/P

High-level 1/0 libraries 1/0 forwarding software  Parallel file system Drive management
execute on compute nodes, runs on compute and code runs on gateway and  software or firmware executes
mapping application abstractions  gateway nodes, bridges storage nodes, maintains on storage controllers,

into flat files, and encoding data networks, and provides logical storage space and organizes individual drives,

in portable formats. aggregation of independent enables efficient access to detects drive failures, and

1/0 middleware manages /0. . data. reconstructs lost data.

collective access to storage. ,

l

Compute nodes Gateway nodes Commodity network Storage nodes Enterprise storage
40,960 Quad core 640 Quad core 900+ port 10 Gigabit 36 two dual core I 7 DataDirect S2A9900
PowerPC 450 nodes with  PowerPC 450 nodes with  Ethernet Myricom Opteron servers with controller pairs with 480
2 Gbytes of RAM each 2 Gbytes of RAM each switch complex 8 Gbytes of RAM each | Tbyte drives and

8 InfiniBand ports per pair

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

v 7



What we’ve said so far...

= Application scientists have basic goals for interacting with
storage

— Keep productivity high (meaningful interfaces)

— Keep efficiency high (extracting high performance from hardware)

= Many solutions have been pursued by application teams, with
limited success

— This is largely due to reliance on file system APIs, which are poorly
designed for computational science

= Parallel I/O teams have developed software to address these
goals

— Provide meaningful interfaces with common abstractions
— Interact with the file system in the most efficient way possible



Parallel File Systems

Thanks to Rob Ross (ANL)



Parallel File System Application

= Manage storage hardware

— Present single view
— Stripe files for performance

= Inthe /O software stack ‘ _

— Focus on concurrent, independent access

— Publish an interface that middleware can use effectively I/O Hardware
¢ Rich I/0 language

e Relaxed but sufficient semantics



Parallel File System

Software

PVFS code runs on gateway and
storage nodes, maintains logical
storage space, and enables efficient

access to data.

DI
/1777777777777 7
IS
/7777777777777 7

AN
/17777777777777

Gateway nodes Commodity network

run parallel file primarily carries

system client
software

storage traffic

Storage nodes

run parallel file
system server
software and

manage incoming
FS traffic

11

Enterprise storage

accept block device
requests from file
server and manage
logical units (LUNSs)



Parallel File Systems

/astro

PFS || PFS || PFS

HO1 HO5 HO6

bz prot04.seq protl7.seq 105 105 105 105

HO3

HO4 /astro Ho1 e HOS J—
chkpt32.nc HO3 /pfs HO6 /bio

An example parallel file system, with large astrophysics checkpoints distributed across multiple 1/O servers
(10S) while small bioinformatics files are each stored on a single I0S.

= Building block for HPC /O systems

— Present storage as a single, logical storage unit
— Stripe files across disks and nodes for performance
— Tolerate failures (in conjunction with other HW/SW)

= User interface is often POSIX file I/O interface, not very
good for HPC

12




Locking in Parallel File Systems

Most parallel file systems use locks to manage concurrent access to files
=  Files are broken up into lock units

= (Clients obtain locks on units that they will access before
|/O occurs

= Enables caching on clients as well (as long as client has a lock, it knows its cached
data is valid)

m  |Locks are reclaimed from clients when others desire access

If an access touches any Offset in File

data in a lock unit, the ===ee=e-— >

lock for that region must | | | | | | | B | | |
° } — |

be obtained before access Lock Lock File Access

ocCcurs. Boundary Unit

o 13



Locking and Concurrent Access

2D View of Data

The left diagram shows a row-

block distribution of data for  — =
three processes. On the right

we see how these accesses

map onto locking units in the
file.

In this example a header

(black) has been prepended to
the data. If the header is not

aligned with lock boundaries,

false sharing will occur.

In this example, processes

exhibit a block-block access —
pattern (e.g.accessing a

subarray). This results in many
interleaved accesses in the file.

Offset in File

Y

1 N 1 ]

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

These two regions exhibit false sharing:
no bytes are accessed by both processes, but

because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

14



Parallel File Systems Recap

" Manage storage hardware for programmer productivity and
performance

= Expose API to next higher level in software stack

= Make striped files look like one file to the programmer

= Manage metadata (directories, file names, stripe locations)
= Manage concurrent access (usually locks)

15



The MPI-IO Interface

Thanks to Rob Latham (ANL)



High-level Libraries High-level 170 libraries and
and MPI-IO Software MPI-10 execute on compute nodes

and organize accesses before the 1/O
system sees them.

X

e e e e e e e e e e e - - —--

B e T L

Compute nodes

run application codes with high-level I/O
libraries and MPI-IO. 1/O libraries make
l/O calls to I/O forwarding system

é 17



MPI-10

B |/O interface specification for use in MPI apps
B Data model is same as POSIX

B Features:

Application

Stream of bytes in a file

Collective I/O
Noncontiguous I/O with MPI datatypes and file views

Nonblocking 1/0

I/O Hardware

Fortran bindings (and additional languages)

System for encoding files in a portable format (external32)
* Not self-describing - just a well-defined encoding of types

B |Implementations available on most platforms

18




Independent and Collective I/0

R e R R
B S S S

Independent 1/0 Collective I/O

= Independent I/O operations specify only what a single process will do

— Independent I/O calls do not pass on relationships between 1/0O on other processes
= Collective I/0 is coordinated access to storage by a group of processes

— Collective I/O functions are called by all processes participating in I/O

— Allows I/0 layers to know more about access as a whole, more opportunities for optimization in
lower software layers, better performance

19



Collective I/0 and Two-Phase 1/0

mixix imimin) e

Initial State Phase 1:1/0 Phase 2: Redistribution

Two-Phase Read Algorithm

= Problems with independent, noncontiguous access
— Lots of small accesses
— Independent data sieving reads lots of extra data, can exhibit false sharing
= |dea: Reorganize access to match layout on disks
— Single processes use data sieving to get data for many
— Often reduces total I/O through sharing of common blocks
= Second “phase” redistributes data to final destinations
= Two-phase writes operate in reverse (redistribute then 1/0)
— Typically read/modify/write (like data sieving)
— Overhead is lower than independent access because there is little or no false sharing

= Note that two-phase is usually applied to file regions, not to actual blocks

20



Contiguous and Noncontiguous 1/0

g

\ N\ [ [ 7 7 /
Contiguous Noncontiguous Noncontiguous Noncontiguous
in File in Memory in Both

= Contiguous I/O moves data from a single memory block into a single file region
=  Noncontiguous I/O has three forms:

— Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
=  Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)

= Describing noncontiguous accesses with a single operation passes more knowledge to
|/O system



Example: Visualization Staging

———— = - -,T——— - - - ——— == 1
| 11 I 1 |
| 11 11 |
I TileO 1 Tilel 1 Tile2 I
| 11 I 1 |
R Enn
| 1 11 |
[ Tile3 , Tiled4d 1, Tile5 I
| 11 11 |
_ Ll - - - - - | I |

=  Often large frames must be preprocessed before display on a tiled display

= First step in process is extracting “tiles” that will go to each projector
— Perform scaling, etc.

= Parallel I/O can be used to speed up reading of tiles
— One process reads each tile

= We're assuming a raw RGB format with a fixed-length header

22



MPI Subarray Datatype

N L I

1 g 1

1 ~ 1

1 |m 1

S| % :
g 3 |
"7’ 1 |:| !
o' | | tile_start[1] = tile_size[1] =] !
g1 1 r - ot !
S | 2 :
. 1

: l Tile 4 N !

1 I 2 1

1 O 1

B T j RN BRI

frame_size[1]

= MPI_Type create subarray can describe any N-dimensional subarray of
an N-dimensional array

" |n this case we use it to pull out a 2-D tile
= Tiles can overlap if we need them to
= Separate MPI_File_set view call uses this type to select the file region

23



Opening the File, Defining RGB Type

MPI_Datatype rgb, filetype;
MPI_File filehandle;
ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* collectively open frame file */

ret = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDONLY, MPI_INFO_NULL, &fﬂehand1e);

/* first define a simple, three-byte RGB type */
ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb);
ret = MPI_Type_commit(&rgb);

/* continued on next slide */

24



Defining Tile Type Using Subarray

|
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1

i 5
/* in C order, last array | o
* value (X) changes most S| 2
. . 8 tile_start[1] o tile_size[1] =
w S i I o
/ : , = | Tile 4 Iﬁ-
frame_size[1l] = 3%1024; ; . -

! |

I

frame_size[0] = 2*768; [ — R
tile_size[1l] = 1024; frame_size[1]
tile_s1ze[0] = 768;

tile_start[1l] = 1024 * (myrank % 3);

tile_start[0] = (myrank < 3) ? 0 : 768;

ret = MPI_Type_create_subarray(2, frame_size,
tile_size, tile_start, MPI_ORDER_C, rgb,
&filetype);

'OTEt = MPI_Type_commit(&filetype);




Reading Noncontiguous Data

/* set file view, skipping header */

ret = MPI_File_set_view(filehandle,
file_header_size, rgb, filetype, "native",
MPI_INFO_NULL);

/* collectively read data */

ret = MPI_File_read_all(filehandle, buffer,
tile_si1ze[0] * tile_size[l], rgb, &status);

ret = MPI_File_close(&filehandle);

M MPI_File_set_view is the MPI-IO mechanism for describing noncontiguous
regions in a file
M In this case we use it to skip a header and read a subarray
M Using file views, rather than reading each individual piece, gives the
implementation more information to work with (more later)
B Likewise, using a collective I/O call (MPI_File_read_all) provides additional
information for optimization purposes (more later)

26



MPI-10 Wrap-Up

= MPI-IO provides a rich interface allowing us to describe

— Noncontiguous accesses in memory, file, or both
— Collective I/O

®" This allows implementations to perform many
transformations that result in better 1/O performance

= Also forms solid basis for high-level I/O libraries
— But they must take advantage of these features!

27



The Parallel netCDF
Interface and File Format

Thanks to Wei-Keng Liao and Alok
Choudhary (NWU) for their help in the
development of PnetCDF.



Higher Level I/0 Interfaces —
Application

‘ High-Level /O Library

I/O Middleware

= Provide structure to files
I/O Forwarding

— Well-defined, portable formats
Parallel File System

— Self-describing

/O Hardware

— Organization of data in file

— Interfaces for discovering contents
" Present APls more appropriate for computational science

— Typed data

— Noncontiguous regions in memory and file

— Multidimensional arrays and I/O on subsets of these arrays

= Both of our example interfaces are implemented on top of
MPI-10

29



Parallel netCDF (PnetCDF)

B Based on original “Network Common Data Format” (netCDF) work from
Unidata

— Derived from their source code

B Data Model:
— Collection of variables in single file
— Typed, multidimensional array variables
— Attributes on file and variables

B Features:
— Cand Fortran interfaces
— Portable data format (identical to netCDF)
— Noncontiguous I/O in memory using MPI datatypes
— Noncontiguous I/0 in file using sub-arrays
— Collective I/O

B Unrelated to netCDF-4

30



Data Layout in netCDF Files

Application Data Structures netCDF File "checkpoint07.nc"

Variable "temp” { netCDF header describes
Double temp type = NC_DOUBLE, A o file
02 dims = {1024, 1024, 26}, the contents ot the Tile:
l 4 start offset = 65536 i A :

\ = ' - typed, multi-dimensional
\ attributes = {"Units" = "K"}}

..;'.':.;:'::; , ' variables and attributes
o Variable "surface_pressure" { on variables or the dataset
26 R ¥ type = NC_FLOAT, .
------------ $ Q dims = {512, 512}, itself.
/4 2 start offset = 218103808,
1024 g attributes = {"Units" = "Pa"}}
o , .
Float surface_pressure ) < Data for "temp" > Pata f?r variables is stored
512 ' in contiguous blocks,
—— /  encoded in a portable binary
< Data for "surface_pressure" > format according to the
512 variable's type.

— Y /—\___’/

o 31



Storing Data in PnetCDF

Create a dataset (file)
— Puts dataset in define mode

— Allows us to describe the contents
e Define dimensions for variables
e Define variables using dimensions
e Store attributes if desired (for variable or dataset)

Switch from define mode to data mode to write variables

Store variable data

Close the dataset

32



PnetCDF Wrap-Up

= PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective I/O
— Data structures closely mapping to the variables described
— Nonblocking option

= |f PnetCDF meets application needs, it is likely to give good
performance

— Type conversion to portable format does add overhead

33



The HDF5 Interface and
File Format

Thanks to Quincey Koziol (HDF group)



HDF5

= Hierarchical Data Format, from the HDF Group (formerly of
NCSA)

= Data Model:
— Hierarchical data organization in single file
— Typed, multidimensional array storage
— Attributes on dataset, data
= Features:
— C, C++, and Fortran interfaces
— Portable data format
— Optional compression (not in parallel I/O mode)
— Data reordering (chunking)
— Noncontiguous I/O (memory and file) with hyperslabs

35



HDF5 Files

HDF5 File “chkpt007.h5”

Dataset “temp”
datatype = HST_NATIVE_DOUBLE
dataspace = (10, 20)

20

—

g

attributes = ..

= HDF5 files consist of groups, datasets, and attributes
— Groups are like directories, holding other groups and datasets

— Datasets hold an array of typed data
e A datatype describes the type (not an MPI datatype)
e A dataspace gives the dimensions of the array
— Attributes are small datasets associated with the file, a group, or
another dataset
e Also have a datatype and dataspace

e May only be accessed as a unit .



HDF5 Data Chunking

B Apps often read subsets of arrays (subarrays)
B Performance of subarray access depends in part on how data is laid out in the file

— e.g. column vs. row major

Apps also sometimes store sparse data sets

B Chunking describes a reordering of array data

— Subarray placement in file determined lazily

— Can reduce worst-case performance for subarray access
— Can lead to efficient storage of sparse data

B Dynamic placement of chunks in file requires coordination
— Coordination imposes overhead and can impact performance

37



The ADaptable 10 System
(ADIOS)

Thanks to Scott Klasky (ORNL) for

providing background material on
ADIOS.



ADaptable 10 System (ADIOS)

The goal of ADIOS is to create an easy and efficient I/O interface that hides the details of
|/O from computational science applications:

B Operate across multiple HPC architectures and parallel file systems
— Blue Gene, Cray, IB-based clusters
— Lustre, PVFS2, GPFS, Panasas, PNFS
B Support many underlying file formats and interfaces
— MPI-IO, POSIX, HDF5, netCDF
— Facilitates switching underlying file formats to reach performance goals
B Cater to common I/O patterns
— Restarts, analysis, diagnostics
— Different combinations provide different levels of IO performance
B Compensate for inefficiencies in the current I/O infrastructures

39



ADIOS Philosophy (End User)

= Simple APl very similar to standard Fortran or C POSIX 10 calls.
— As close to identical as possible for C and Fortran API
— open, read/write, close is the core

— set_path, end_iteration, begin/end_computation, init/finalize are the
auxiliaries

= No changes in the API for different transport methods.

= Metadata and configuration defined in an external XML file
parsed once on startup.

Describe the various 10 groupings including attributes and hierarchical
path structures for elements as an adios-group

— Define the transport method used for each adios-group and give
parameters for communication/writing/reading

— Change on a per element basis what is written
— Change on a per adios-group basis how the |10 is handled

40



ADIOS and File Formats

= netCDF and HDF-5 are excellent, mature file formats

= APIs can have trouble scaling to petascale and beyond
— metadata operations bottleneck at MDS
— coordination among all processes takes time
— MPI Collective writes/reads add additional coordination
— Non-stripe-sized writes impact performance
— Read/write mode is slower than write only
— Replicate some metadata for resilience

= ADIOS provides a custom file format for accelerating large-scale write operations

41



ADIOS Binary Packed (BP) File Format

Defers translation into portable format
to attain high performance at runtime.

Accelerates writing from large numbers
of processes through a log-like storage

format:
"Each process writes independently

=Coordinate only twice

— Once at start to determine writing
locations

— Once at end for metadata
collection

=Vove the “header” to the end to aid in
alignment

b

Time (sec)

Chimera /O

10000
Original HDF5 —o—

ADIOS (1 Flle; —
_+_

1000 ADIOS (N Files —

_-".v-

100 ¢

10}

0.1}

0.0f b o :
? ’oao%o'%o %o%o%"o%o%o%
Number of Processes
/O times for Chimera
astrophysics application on Cray
XT at ORNL.“I File” results may
benefit from Lustre optimizations
that were not in place at time of

testing.

42



Other High-Level I/0 libraries

=  NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
— netCDF APl with HDF5 back-end

= SILO: https://wci.llnl.gov/codes/silo/
— A mesh and field library on top of HDF5 (and others)

= H5part: http://vis.Ibl.gov/Research/AcceleratorSAPP/
— simplified HDF5 API for particle simulations

= GIO: https://svn.pnl.gov/gcrm
— Targeting geodesic grids as part of GCRM

= PIO:

— climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from
master)

= ... Many more: my point: it's ok to make your own.



Lightweight Application
Characterization with
Darshan

Thanks to Phil Carns (ANL)



Characterizing Application I/0

How are are applications using the 1/0 system, and how successful are they at
attaining high performance?

Darshan (Sanskrit for “sight”) is a tool we developed for I/O characterization
at extreme scale:

= No code changes, small and tunable memory footprint (~2MB default)
= Characterization data aggregated and compressed prior to writing
= (Captures:
— Counters for POSIX and MPI-10 operations
— Counters for unaligned, sequential, consecutive, and strided access
— Timing of opens, closes, first and last reads and writes
— Cumulative data read and written
— Histograms of access, stride, datatype, and extent sizes

http://www.mcs.anl.gov/darshan/
P. Carns et al, “24/7 Characterization of Petascale 1/0 Workloads,” IASDS Workshop, held
in conjunction with IEEE Cluster 2009, September 2009.

45



The Darshan Approach

= Use PMPI and Id wrappers to intercept /O functions
— Requires re-linking, but no code modification
— Can be transparently included in mpicc

— Compatible with a variety of compilers

= Record statistics independently at each process

— Compact summary rather than verbatim record

— Independent data for each file

= Collect, compress, and store results at shutdown time

Aggregate shared file data using custom MPI reduction operator
Compress remaining data in parallel with zlib
Write results with collective MPI-IO

Result is a single gzip-compatible file containing characterization
information

46



Example Statistics (per file)

= Counters: )
— POSIX open, read, write, seek, stat, etc. 2 3

— MPI-10 nonblocking, collective, indep., etc.
— Unaligned, sequential, consecutive, strided access

— MPI-IO datatypes and hints I

= Hjstograms: )
: : consecutive
— access, stride, datatype, and extent sizes

= Timestamps: 1 I 2 I 3

— open, close, first I/0O, last I/O
strided

sequential

= Cumulative bytes read and written
= Cumulative time spent in I/O and metadata operations
= Most frequent access sizes and strides

= Darshan records 150 integer or floating point parameters per file,
plus job level information such as command line, execution time,
and number of processes.

47



Darshan Job Summary

jobid: £ uid:

| nprocs: 4096

runtime: 175 seconds

Average |/O cost per process

3000

1/O Operation Counts

100
o 80 2500 -
£ @
- Q
c 173
2 60 [ & 2000
H
3 a
a0l Z 1500 |
g El
=3
& gl £ 1000
2
o
0 500
0
Read s Read Write Open Stat Seek Mmap Fsync
Write s
Metadata e POSIX MPI-10 Coll. s
Other (including application compute) ms— MPI-10 Indep. s
I/0 Sizes 1/O Pattern
2500 3000 -
2000 |- 2500 -
@
o
g (]
= | 8 2000
= 1500 &
Tj = 1500
° -
£1000 F 5]
P o
g =
3 21000
© 500 &
I 500 |
0 o, 2 I/ % 2y 2 %
% 0, 0, : .
* 004_ 2 K4 0% k) Read Write
Total mmmmm  Consecutive s
Read mmmmm \Write somamn Sequential sessssn

Most Common Access Sizes

access size count
67108864 2048
41120
8
4 3

File Count Summary

type | number of files | avg. size | max size

total opened 129V 1017m 1.1G
read-only files 0 0 0
write-only files 129 1017M 1.1G
read/write files 0 0 0
created files 129 | 1017M 1.1G

48

Job summary tool shows
characteristics “at a
glance”; available to all
users

Shows time spent in read,
write, and metadata

Operation counts, access
size histogram, and
access pattern

Early indication of 1/0O
behavior and where to
explore in further
Example: Mismatch
between number of files (R)
vs. number of header writes
(L)

The same header is being

overwritten 4 times in each
data file

48



A Data Analysis I/0 Example

B Variable size analysis data requires headers to contain size information

B Original idea: all processes collectively write headers, followed by all processes
collectively write analysis data

B Use MPI-IO, collective I/O, all optimizations
B 4 GB output file (not very large)

Processes 1/0 Time (s) Total Time (s)

8,192 8 60
16,384 16 47
32,768 32 57

= Why does the I/O take so long in this case?

° 49



e
A Data Analysis I/0 Example (continued)

Average VO cost per process

B Problem: More than 50% of time spent writing
output at 32K processes. Cause: Unexpected g ®}
RMW pattern, difficult to see at the application 5 o

code level, was identified from Darshan -

summaries. 40 |
B \What we expected to see, read data followed

DY Write aNalySiS:..... o ww i scess o s s o socesn § rv %,

—— R %

| — e —
g. Motawl: —_—
] Oer (Inciuding SODICAICH COMPUIH) m—

200008 000 1S 000X oooc2s 00200 000X

B What we saw instead: RMW during the writing shown by overlapping red
(read) and blue (write), and a very long write as well.

Tirsesguet froen Seat 0 las! actucs on Mk shered by ol Seocuccurs

AL —
AR w—

NI procosss

000000 000¢ 10 W20 20 000030 000040 o0 0 20t 00 W0t 10 000120 008 3

[N SUN

v 50



A Data Analysis I/0 Example (continued)

Average /O cost per proocess

B Solution: Reorder operations to combine
writing block headers with block payloads,
so that "holes" are not written into the file
during the writing of block headers, to be
filled when writing block payloads. Also fix
miscellaneous 1/O bugs; both problems
were identified using Darshan.

B Result: Less than 25% of time spent . y
writing output, output time 4X shorter, % e
overall run time 1.7X shorter. Reac mmm—

Wrin e
Metacals me—

B Impact: Enabled parallel Morse-Smale Omer (Indlucing appication compute) s
computation to scale to 32K processes on
Rayleigh-Taylor instability data. Also used Processes 1/O Time(s) Total Time (s)
similar output strategy for cosmology
checkpointing, further leveraging the 8,192 4 60
lessons learned.

5 8 8 B8

Parcantage of run Sme

a8

(=]

16,384 6 40
32,768 7 33



S3D Turbulent Combustion Code

= S3Dis a turbulent combustion
application using a direct numerical
simulation solver from Sandia
National Laboratory

= Checkpoints consist of four global
arrays

— 2 3-dimensional
— 2 4-dimensional

4D subarray in
process Fy4

— 50x50x50 fixed
subarrays P ZX
Y
%/324,2/3349/ W vy
16/ 17 /18 /13 /
Thanks to Jackie Chen (SNL), Ray Grout (- o /P r /P 1)%e
(SNL), and Wei-Keng Liao (NWU) for G I R N 7
providing the S3D I/O benchmark, Wei- Py

Keng Liao for providing this diagram, C.

Fa| Fo| Ro| Ry
Wang, H.Yu, and K.-L. Ma of UC Davis for 4%
image. Ra2| B3| R4l Rs

-

n=1

local-to—global
/\\.‘ mapping

<

/”' n=m-1

m: length of the 4th dimension
n: index of the 4th dimension

52



Impact of Optimizations on S3D I/0

= Testing with PnetCDF output to single file, three configurations,
16 processes

— All MPI-IO optimizations (collective buffering and data sieving) disabled
— Independent I/O optimization (data sieving) enabled
— Collective I/O optimization (collective buffering, a.k.a. two-phase 1/0) enabled

POSIX writes 102,401 5
POSIX reads 0 0
MPI-10 writes 64 64
Unaligned in file 102,399 4
Total written (MB) 6.25 6.25
Runtime (sec) 1443 6.0
Avg. MPI-10 time 1426.47 0.60

per proc (sec)

53



Darshan Summary

= Scalable tools like Darshan can yield useful insight
— ldentify characteristics that make applications successful
— ldentify problems to address through 1/0 research

= Petascale performance tools require special considerations

— Target the problem domain carefully to minimize amount of data
— Avoid shared resources
— Use collectives where possible

= For more information:
http://www.mcs.anl.gov/research/projects/darshan

54



Summary



Wrapping Up

= We've covered a lot of ground in a short time
— Very low-level, serial interfaces

— High-level, hierarchical file formats

= Storage is a complex hardware/software system

* There is no magic in high performance I/0

— Lots of software is available to support computational science
workloads at scale

— Knowing how things work will lead you to better performance

= Using this software (correctly) can dramatically improve

performance (execution time) and productivity (development
time)

56



Printed References

= John May, Parallel 1/O for High Performance Computing,
Morgan Kaufmann, October 9, 2000.

— Good coverage of basic concepts, some MPI-IO, HDF5, and serial
netCDF

— Out of print?

= William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2:
Advanced Features of the Message Passing Interface, MIT
Press, November 26, 1999.

— In-depth coverage of MPI-10 API, including a very detailed description
of the MPI-10 consistency semantics

57



On-Line References

= netCDF and netCDF-4
— http://www.unidata.ucar.edu/packages/netcdf/

= PnetCDF

— http://www.mcs.anl.gov/parallel-netcdf/

= ROMIO MPI-IO

— http://www.mcs.anl.gov/romio/

= HDF5 and HDF5 Tutorial

— http://www.hdfgroup.org/

— http://www.hdfgroup.org/HDF5/

— http://www.hdfgroup.org/HDF5/Tutor
= Darshan I/O Characterization Tool

— http://www.mcs.anl.gov/research/projects/darshan

= Assorted ALCF-Specific suggestions:

— https://wiki.alcf.anl.gov/index.php/l O Tuning
— http://wiki.mcs.anl.gov/Darshan/index.php/Documentation for ALCF users

58



Argonne°

NATIONAL LABORATORY

Parallel 1I/0 in Practice

Tom Peterka
Mathematics and Computer Science Division
Argonne National Laboratory

July 26, 2012

This work is supported in part by U.S. Department of Energy Grant DE-
FC02-01ER25506, by National Science Foundation Grants EIA-9986052,
CCR-0204429, and CCR-0311542, and by the U.S. Department of Energy
under Contract DE-AC02-06CH11357.

Thanks to Rob Latham (ANL), Rob Ross (ANL), Phil Carns (ANL), Scott Klasky
(ORNL), Wei-keng Liao (NWU), Alok Choudhary (NWU), and Quincey Koziol
(HDF Group) for this material.

g\ U.S. DEPARTMENT OF
.4, ENERGY




