
perf_events status update

Stephane Eranian
Google, Inc

CSCADS workshop
Snowbird, UT
August 2010

Agenda

signal update
perf_events update
perf tool update
libpfm4 update

Signal update

POSIX: cannot target async signals to a specific thread

issue for self-sampling multithreaded workloads
SIGIO must go to thread where the event occurred

raised the issue on LKML
Zjilstra proposed a patch to extend fcntl()

2.6.32: new F_SETOWN_EX/F_GETOWN_EX commands
may not yet be in the system header files

Signal example

#ifndef F_SETOWN_EX
#define F_SETOWN_EX 15
#define F_GETOWN_EX 16

#define F_OWNER_TID 0
#define F_OWNER_PID 1
#define F_OWNER_PGRP 2
#endif

struct f_owner_ex {
 int type;
 pid_t pid;
};

struct f_owner_ex fown;

fown.type = F_OWNER_TID;
fown.pid = gettid();

fcntl(fd, F_SETOWN_EX, &fown);

Perf_event key design choices

supports per-thread and per-cpu monitoring
per-thread: state saved/restored on ctxsw
per-cpu: logical CPU, state persists across ctxsw

supports counting and sampling
saves samples in a kernel buffer

generic event-oriented API
not limited to PMU events
actual HW registers never exposed to users

manages events independently of each other
event identified by file descriptor
no notion of a session

available since 2.6.31(ABI changed in 2.6.32)

event vs. register oriented API

Perf_event system calls (1)

adds "one" system call to setup an event
get a file descriptor back to identify event
normal file sharing semantics apply

int perf_event_open(struct perf_event_attr *hw,
 pid_t pid,
 int cpu,
 int grp,
 int flags)

hw describes event and sampling configuration
pid target thread, 0=self, -1=cpu-wide mode
cpu CPU to monitor (can be used in per-thread mode)
flags provision to extend the number of parameters
grp file descriptor of group leader event

Perf_event system calls (2)

counts extracted via read()
counts are 64-bit wide (64-bit emulation)
also returns scaling infos

terminate event via close()

additional commands via ioctl()
enable, disable, reset, rewrite period, refresh, filter, output

prctl(PERF_EVENT_ENABLE/PERF_EVENT_DISABLE)
only works on events created by calling thread

kernel event buffer mapping via mmap()

Events

events have types:
hardware: generic PMU events
software: page faults, context switches, ...
tracepoint: kernel trace points
hw_cache: generic cache events (cache, TLB, BPU)
raw: actual PMU events
hw breakpoints: arbitrary data/code breakpoints

generic PMU events:
mimic Intel architected PMU
mapped to actual PMU events by kernel
lack precise definitions: what is actually measured?

Generic hardware events

PERF_COUNT_HW_CPU_CYCLES no precise definition yet

PERF_COUNT_HW_INSTRUCTIONS no precise definition yet

PERF_COUNT_HW_CACHE_REFERENCES no precise definition yet

PERF_COUNT_HW_CACHE_MISSES no precise definition yet

PERF_COUNT_HW_BRANCH_INSTRUCTIONS no precise definition yet

PERF_COUNT_HW_BRANCH_MISSES no precise definition yet

PERF_COUNT_HW_BUS_CYCLES no precise definition yet

mapping to actual HW events not exposed

Event grouping

events are independently scheduled on PMU
reliable event ratios => events must measure at the
same time

event group:
events are guaranteed to be scheduled together
cannot have more events than counters
created by chaining file descriptors

Events scheduling

event groups scheduled on
timer tick (issue w/ tickless per-cpu), start, ctxsw
multiplexing when PMU is overcommitted (each tick)
2.6.3[34] correct scheduling for X86 processor by Google

group round-robin list rotated each timer tick
scheduling guaranteed for list head
stop at 1st error => bad => not maximizing PMU usage
stop at 1st error => good => algorithm bound by #cntrs

more event scheduling

maximize PMU usage
to provide better quality counts

maximize by scanning the whole event list
pros:

 fill up the PMU
cons:

unbounded algorithm (list can be very large)
selection bias towards smaller groups or groups with
fewer event constraints

avoiding selection bias

discussed on LKML (http://lkml.org/lkml/2010/5/7/132)

ensure fair scheduling of events
if 3 groups, then each should get 1/3rd of the time
regardless of constraints

Zijlstra's algorithm:
each event E(i) keeps its time running on CPU s(i)
schedule E(i) if s(i) < avg(s(j)) for all j
stop at 1st schedule failure
problems: needs sort algorithm

evts A B C
s(0) 0 0 0 -> avg = 0/3=0.00, sort = A, B, C, schedule A, B
s(1) 1 1 0 -> avg = 2/3=0.66, sort = C, A, B, schedule C (A, B > avg)
s(2) 1 1 1 -> avg = 3/3=1.00, sort = A, B, C, schedule A, B
s(3) 2 2 1 -> avg = 5/3=1.66, sort = C, A, B, schedule C (A, B > avg)
s(4) 2 2 2 -> avg = 6/3=2.00, sort = B, C, A, schedule B, C
s(5) 2 3 3 -> avg = 8/3=2.66, sort = A, B, C, schedule A (B, C > avg)
s(6) 3 3 3 -> avg = 9/3=3.00, sort = A, B, C, schedule A, B

Per-thread vs per-cpu priority

concurrent per-thread and per-cpu events supported

pinned event
no multiplexing (but counter assignment can change)
can share PMU with other groups
example: NMI watchdog using perf_events (2.6.35)

flexible event
can be multiplexed

scheduling priority:
1. per-cpu pinned events
2. per-thread pinned events
3. per-cpu flexible events
4. per-thread flexible events

sampling buffer

samples saved in kernel buffer
size determined via mmap(): 1+2^n pages
one buffer per event or group
event buffer sharing via ioctl(PERF_COUNTER_IOC_SET_OUTPUT)

buffer format
fixed size header: head/tail pointers (first page)
universal sample: variable-size (type,size)
can record more than just PMU events

cyclic read-write buffer
use head + tail pointers, stop if head == tail
can lose events: LOST event type
buffer cycle detection possible via data_head

sampling buffer pointers

buffer payload size must be power of 2

sampling periods

supports 64-bit sampling periods
read() on sampling event = accumulated counts

sampling interval: number of occurrences of event
every 2000 LLC_MISSES (event-based sampling)

sampling interval: average sampling rate (Hz)
e.g., LLC_MISSES at 1000Hz (1000 samples/s)
kernel adjusts period each tick to achieve desired Hz
updated period logged in sampling buffer

X86 using NMI for PMU interrupt
can collect samples inside kernel's critical sections

average target rate implementation

at each timer tick:
 d = current_event_count - prev_event_count
 prev_event_count = current_event_count
 d = (d+7)/8 /* correction factor */
 p = d * ticks_per_sec / target_rate_in_hz

rate mode => time-based sampling
bias towards sections of code that run longer even
though sampling event occurrence rate is identical?
or just a profile interpretation problem?

rate mode is default mode for perf tool

rate vs. period interpretation example

10 misses/100 instr
 2 phases (same number of instr):

phase 1: 1e9 instr/s for 10s
phase 2: 2e9 instr/s for 5s

target rate 1000 cache miss samples/s (1000Hz)

rate base mode:
phase 1: 1e8 misses/s => period = 1e5 = 10000 samples
phase 2: 2e8 misses/s => period = 2e5 = 5000 samples

fixed period mode:
assume period = 1000 misses/sample
phase 1:10s@1e8 misses/s = 1e9 misses = 1e6 samples
phase 2: 5s@2e8 misses/s = 1e9 misses = 1e6 samples

sampling period randomization

not support yet

Google proposed a patch:
added random_width config option
vary p +/- random_width/2 => average is p

patch rejected
no support for randomization in sampling rate mode
no use case in perf tool

is that necessary?
not clear what it buys you? what are you measuring?

Intel LBR support

records taken branch trace (src, dst)
cyclic buffer hosted in registers
can freeze on PMU interrupt

LBR useful for:
basic block profiling
statistical call graph
path that lead to a cache miss

used internally to correct PEBS off by 1 issue

Google proposed patch to expose LBR to user:
PERF_SAMPLE_BRANCH_STACK
content: nr branches, then { flags, src, dst }/branch
rejected because missing use case in perf tool

Intel PEBS support

captures machine state at retirement of instr. which caused
an occurrence of the sampling event

sample stored in memory buffer
limited to certain events

initial support in 2.6.35
exports instruction address (not the full machine state)

PEBS not explicitly exposed:
 user requests precise sampling mode

precise sampling on Intel processors (w/ PEBS):
PEBS buffer setup for 1 sample/interrupt
off by 1 IP corrected using LBR, if possible (precise>=2)
corrected sample marked with PERF_RECORD_MISC_EXACT_IP

Supported HW

AMD64
K8, Barcelona, Shanghai, Istanbul (Magny-Cours?)

Intel X86
P6, Core Duo/Solo, Netburst (P4)(2.6.35)
Atom, Core, Nehalem/Westmere
any processor with architected perfmon (PMU)

ARM
ARMV6 (1136,1156,1176)
ARMV7 (cortex-a8, cortex a9)

IBM Power

still missing

Intel Nehalem: OFFCORE_RESPONSE_*
use extra MSR (shared when HT is on)

Intel Nehalem: LBR_SELECT
LBR filtering (shared when HT is on)
likely no support

Intel Nehalem uncore (Intel contributing)
internal restructuring to support distinct PMUs
PMU naming scheme (likely sysfs)

AMD IBS (AMD contributing)
patch proposed by AMD 6 months ago
not yet in, may be revisited by sysfs restructuring

perf tool

included in kernel source tree (tools/perf)

support for per-thread, per-cpu counting, sampling, tracing
cmdline tool, curses-based gui
operate like git: perf command arguments

profiling support similar to Oprofile
collection => perf record => binary output file
high level analysis => perf report
source level analysis => perf annotate
remote collect, local analysis possible

top-like mode => perf top

libpfm4

helper library to map event names to event encoding
rewritten from scratch for perf_events
core code independent of OS API

improved event string
ex: INST_RETIRED:ANY_P:c=1:i:u:k

provide OS specific API to initialize syscall structures
pfm_get_perf_event_encoding(char *, struct perf_event_attr *)

�HW support
all X86 processors, IBM Power

git repository: perfmon2.sf.net

Conclusion

signal problem solved

perf_events has improved
more HW support
better event scheduling

perf_events is still missing a some key HW features

perf_event tool available: perf

libpfm4 provides perf_events support

