Quantifying the Overhead of Today’s Execution Models

Using Benchmarking to Understand Advanced Architecture and Execution Models
John Shalf, Robert Lucas, Pedro Diniz, Nicholas Wright, Jacqueline Chame, Gene Wagenbreth

{ : : , , jchame@isi.edu, }
http://sites.google.com/site/executionmodelsisilbnl/

Introduction / Motivation GTC Node Level Analysis Communication Analysis

Today we h?ye a bulk S)tl_nCIPhI'OHOUS, dl(&‘»érslgl)ltbed m:mory, GTC (developed by PPPL) uses PIC method to simulate Source Code Analysis Tool using Open64 Infrastructure o
communicating sequential processes ase - - - | o1 ALl
execution model plasma microturbulence for fusion devices « Translates code to Intermediate Representation (IR WHIRL) Wasted Time MPI:Gath;“c’e
. . 200 y
. We've evolved into it over two decades . Scalable to thousands of processors » Leverages code transformations and architecture features ol bt
« |t will require a lot of work to carry it forward to exascale : : . * Analyzes computation’s critical-path and performance bounds for " MPI_Allgather
R ’ * ertten IN F90 W|th MPI . . 2 150 MPI_Comm_size
« The characteristics of today’s execution model are mis-aligned with specific architecture resources S B 'PI_Conm rank
. . '
emerging hardware trends of the coming decade - Relates metrics at source code level (not load/stores instructions) : Time wasted due to
Emerging Hierarchical Machine Architectures Example code provided by | R 2 compation
Stephane Ethier (PPPL) = Source F90 === x86 Binary © numbers of
et onim R e N (S particles move
| e ot et ~Initial conditions
* Particles are deposited on grid using multi-point gyro-averaging S g - R E , certioning o
to represent path of charged particles in a magnetic field = e © 3 & & & & 8 =& 8 = e o
_ _ _ _ ot et st B e PRI rted index in particle
* Accesses of grid point to deposit particle charge can create e | movsla %/imf;frﬁmﬁ Forted e distribution
challenging (nearly random) access patterns for memory T Compiler b TS S - Load imbalances are natural consequence - Typicaioa
Need to examine alternative execution models for exascale « Parallel updates to mesh points create challenging data hazards | ™ DFG o T of static scheduling performance loss
. can be between
. Alternﬁtlves ex;Est, ang the|\3/|/ Ic()joll< promising (e.g. dynamic / User Epcied Montl Hoder Comper Represenaton —*Programming Nocef “In Real Life’(PGF compiler) * Introspective dynamic scheduling solves 10-30% o;;gznding
asynchronous xesu felg! O els) | | Per iteration of loop: Per iteration of loop: Per iteration of loop: problem implicitly on concurrency
 We can use modeling and simulation to evaluate the alternatives FP MULTs: 195 FP MULTs: 195 and problem

FP MULTs+ADD/SUB: 284 definition
FP ADD/SUBs: 121 FP ADD/SUBs: 121
Data Accesses:

l Array Accesses Array Accesses: 96
“Scatter” / - Cost of repacking
' T

using DOE applications
« This can guide our hardware/software trade-offs in the codesign
process, and expands options for creating more effective machines

Charge Deposition Step (SCATTER operation)

GTC
; data is significant
Examples of parallel execution models Weight particles Before - After .
Ev——— SPVD o feld Gap exacerbated by x86 ISA 9 serial fraction of the
——— N Dynamic Threads E (%, v}) > (p.J), 1 execution time
O,
barrier -
. _D_r’ D V¥ g Classic PIC 4-Point Average GK Slve Memory Trace AnaIySIs o 0.8 WaSte Of ”
— - = as detrimental to
do m=1,mi > 0.6
€1=0.0 - I’O rammer
: : a1, Source FI0 s groguctivity
CoDesign for Execution Models e =
et 2 F S o |
G s AR e . :
 Execution Models are an integral part of the hardware CoDesign Cycle - Tt A0 D et et) < - S CE)xamlf)/Ilg.tBykl_Jsmg
. ?3__=e3+w;‘§o*3too*(ﬁo*iﬁitﬁi@jkijZ*Ziiﬁtﬁr(s,kmj!})) é y l" ‘/ Pr ' en askKin
 Different simulation methods have differing degrees of fidelity, AnaIYSIS Tools v 4 0.2 P J
e1ie1+wp0:wt10:(w20:evector(1,kk,?j:)+wz1:evector(1,kk+1,!J:)) ' -,,./ _ We Can use Spa re
coverage, and performance. T e Y . resources to
u u ij=jtion1(larmor,m) _— o 4 N 6142123;
« Combined together, the the Top-Down (model-based) and Bottom-Up Integrated Performance Monitoring (IPM) e T g 0 | repack buffers
(simulator based) methodologies enables full coverage of design space RO i v ik 1) e O ald nesw while messages
. s subj ficati idati - L - e ot e et e C i
Each tool is subjected to Verification and Validation to ensure IPM is a tool for performing lightweight measurement of the e L | | |) are being sent
confidence in its predictive fidelity. _ _ o _ _ e Compiler: Introduces many instructions for address calculations and GTC overall ~5 /0 faster
MPI| communication characteristics of an application. 02! temporary variables for expression evaluation.

wpi(3,m)=0.25"e3

o e - Misleading Metrics: Good cache behavior (~100% L1 hit rate) The BSP execution model wastes resources packing buffers
B 20iP PARALLEL ————tr— *— 1.1 instructions/cycle (avg.) and heavy on FP arithmetic. |

Programming Environment Definition B 1PI_Allreduce St_" |PC h |d b h h_ h I t I t 3 b 4
W opsenrecy § 7 #f Sercreos il... shou e much higher! (at least 3 maybe :
‘ ‘ ‘ W mLGte L | 1 sather g (y) Conclusion
Benchmarking Modeling Simulation MPI_Reduce E B T et |)]
Simulate Codes on Future/ Hel_Bcast. U ; 122:23 sthermsend Source F90 - o e 8 L A L L In tOday s CSP execution model
Target Architectures I oted £ - do i=1,msend i e 0 e Th . head | . data st t
HPI_Recy 2 ere IS overnead in accessing data Sstructures
£ o m=kzelectron(i) . .
P: 20 do while(mtop == kzelectron(lasth)) ¢ The memory hlerarChy IS nOt We” |everaged
Jse Performance Tools Validated Parametric Evaluate Hardware Design mtop=mtop-1 . . .
To Hentysoviened e o, + Users are burdened with management of communication
. ’ 4 1I6 6I4 2:56 1|'<: o 4I!<B. 1§E8t 6)4IKB 25I6KB 1;13 4:18 zeTélg%;T:?B,m):zelectron(1:6,mtop) and data movement
% ‘ ‘ bQ\, @ zmeilc()a‘():ir;rtlc())r(;G,m)=zelectron0(1 :6,mtop) I n p ra cti ce
‘O ° . . enddo .
% oredictions: Perf /Pl < Aolications and & Also using Cray Performance Analysis Tool (Cray PAT) to Developers shutfle data around
redictions: Performance / Power o Ications an : : : : o Taalv4
> e 3 gather information on data movement in the memory hierarchy. Petascale programmers tend to be better at optimizing
9 QQ? Code: “Repacks’ particles so that other sections of code are “easier” to code communication than Computation
‘ | and exhibit better locality properties. o Compiler inserts “busy” work
-~ Metrics: "Bad” cache behavior (=93.7% L1 hit rate) Next St
Refine Execution Environment 0.23 instructions/Cycle (avg.) ex eps _
Refine Application/Algorithm formulation Many copy instructions: 15 data-move instructions per particle. Evaluate CoDeS|gn Center Codes (LMC & NEK)
e No FP activity; IPC = 0.23 !

—

A\

(oo r |m

April 2012

U.S. DEPARTMENT OF Oﬁlce Of

EN ERGY Science

M

Information Sciences Institute

