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General principles in this tutorial 

 Everything is practically oriented 

 We will use lots of real example code to illustrate concepts  

 At the end, you should be able to use what you have learned 
and write real code, run real programs 

 Feel free to interrupt and ask questions 

 If my pace is too fast or two slow, let me know 
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About Myself 

 Computer Scientist in the Mathematics and Computer Science 
Division at Argonne National Laboratory 

 Research interests in parallel programming, message passing, 
global address space and task space models 

 Co-PI of the MPICH implementation of MPI 

 Participate in the MPI Forum that defines the MPI standard 
– Co-author of the MPI-2.1, MPI-2.2 and the upcoming MPI-3.0 

standards 

– Chair the hybrid programming working group for MPI-3 

– Committee member for the remote memory access (global address 
space runtime system) working group for MPI-3 
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What we will cover in this tutorial 

 MPI: History and Philosophy 

 Basic definitions and concepts in MPI 

 Advanced Topics 

– One-sided Communication 

– Hybrid programming (MPI+OpenMP/pthreads/CUDA/OpenCL) 

– Virtual Topology 

 Conclusions and Final Q/A 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Sample Parallel Programming Models 

 Shared Memory Programming 
– Processes share memory address space (threads model) 

– Application ensures no data corruption (Lock/Unlock) 

 Transparent Parallelization 
– Compiler works magic on sequential programs 

 Directive-based Parallelization 
– Compiler needs help (e.g., OpenMP) 

 Message Passing 
– Explicit communication between processes (like sending and receiving 

emails) 
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The Message-Passing Model 

 A process is (traditionally) a program counter and address 
space. 

 Processes may have multiple threads (program counters and 
associated stacks) sharing a single address space.  MPI is for 
communication among processes, which have separate 
address spaces. 

 Inter-process communication consists of  
– synchronization 

– movement of data from one process’s address space to another’s. 

Process Process 

MPI 

MPI 
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Standardizing Message-Passing Models with MPI 

 Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were 
not portable (or very capable) 

 Early portable systems (PVM, p4, TCGMSG, Chameleon) were 
mainly research efforts 

– Did not address the full spectrum of message-passing issues 

– Lacked vendor support 

– Were not implemented at the most efficient level 

 The MPI Forum was a collection of vendors, portability writers and 
users that wanted to standardize all these efforts 
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What is MPI? 

 MPI: Message Passing Interface 
– The MPI Forum organized in 1992 with broad participation by: 

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko 
• Portability library writers: PVM, p4 
• Users: application scientists and library writers 
• MPI-1 finished in 18 months 

– Incorporates the best ideas in a “standard” way 
• Each function takes fixed arguments 
• Each function has fixed semantics 

– Standardizes what the MPI implementation provides and what the 
application can and cannot expect 

– Each system can implement it differently as long as the semantics match 

 MPI is not… 
– a language or compiler specification 
– a specific implementation or product 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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What is in MPI-1 

 Basic functions for communication (100+ functions) 

 Blocking sends, receives 

 Nonblocking sends and receives 

 Variants of above 

 Rich set of collective communication functions 
– Broadcast, scatter, gather, etc 

– Very important for performance; widely used 

 Datatypes to describe data layout 

 Process topologies 

 C, C++ and Fortran bindings 

 Error codes and classes 
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Following MPI Standards 

 MPI-2 was released in 2000 
– Several additional features including MPI + threads, MPI-I/O, remote 

memory access functionality and many others 

 MPI-2.1 (2008) and MPI-2.2 (2009) were recently released 
with some corrections to the standard and small features 

 MPI-3.0 is being released this September 
 The Standard itself: 

– at http://www.mpi-forum.org 
– All MPI official releases, in both postscript and HTML 

 Other information on Web: 
– at http://www.mcs.anl.gov/mpi 
– pointers to lots of stuff, including other talks and tutorials, a FAQ, 

other MPI pages 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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The MPI Standard (1 & 2) 
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Tutorial Material on MPI-1 and MPI-2 

http://www.mcs.anl.gov/mpi/usingmpi 
http://www.mcs.anl.gov/mpi/usingmpi2 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Reasons for Using MPI 

 Standardization - MPI is the only message passing library which can be 
considered a standard. It is supported on virtually all HPC platforms. 
Practically, it has replaced all previous message passing libraries 

 Portability - There is no need to modify your source code when you port 
your application to a different platform that supports (and is compliant 
with) the MPI standard 

 Performance Opportunities - Vendor implementations should be able to 
exploit native hardware features to optimize performance 

 Functionality – Rich set of features  

 Availability - A variety of implementations are available, both vendor and 
public domain 

– MPICH is a popular open-source and free implementation of MPI 

– Vendors and other collaborators take MPICH and add support for their systems 
• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX 
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Important considerations while using MPI 

 All parallelism is explicit: the programmer is responsible for 
correctly identifying parallelism and implementing parallel 
algorithms using MPI constructs 

– Don’t expect magic to happen: If you ask MPI to move data from 
process 1 to process 2, MPI will do that for you 

 High-performance and portability 
– Some users prefer rich feature set, while others prefer a small set 

doing exactly what they want 

– MPI has always chosen to provide a rich set of portable features.  If 
you want a small subset providing only the things you want, you should 
write a high-level library on top of MPI 
• Almost all domains do that – E.g., PETSc, Trillinos, FFTW, ADLB, … 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Compiling and Running MPI applications (more 
details later) 

 MPI is a library 
– Applications can be written in C, C++ or Fortran and appropriate calls 

to MPI can be added where required 

 Compilation: 
– Regular applications: 

• gcc test.c -o test 

– MPI applications 
• mpicc test.c -o test 

 Execution: 
– Regular applications 

• ./test 

– MPI applications (running with 16 processes) 
• mpiexec –np 16 ./test 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Process Identification 

 MPI processes can be collected into groups 
– Each group can have multiple contexts (identifiers) 

– Group + identifier == communicator 

– When an MPI application starts, the group of all processes is initially 
given a predefined communicator called MPI_COMM_WORLD 

 More communicators can be created out of MPI_COMM_WORLD 

 A process is identified by a unique number within each 
communicator, called rank 
– For two different communicators, the same process can have two 

different ranks: so the meaning of a “rank” is only defined when you 
specify the communicator 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Communicators 

When you start an MPI 
program, there is one 

predefined communicator 
MPI_COMM_WORLD 

Can make copies of this 
communicator (same group of 

processes, but different 
“aliases”) 

Communicators do not 
need to contain all 

processes in the system 

Every process in a 
communicator has an ID 

called as “rank” 

1 2 3 4 

5 6 7 8 

3 4 

5 6 

1 2 

7 8 

The same process might have different 
ranks in different communicators 

Communicators can be created “by hand” or using tools provided by MPI 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Simple MPI Program Identifying Processes 

#include "mpi.h" 
#include <stdio.h> 
 
int main(int argc, char ** argv) 
{ 
    int rank, size; 
 
    MPI_Init(&argc, &argv); 
 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &size); 
    printf("I am %d of %d\n", rank, size); 
 
    MPI_Finalize(); 
    return 0; 
} 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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MPI Tags 

 Messages are sent with an accompanying user-defined 
integer tag, to assist the receiving process in identifying the 
message 

 For example, if an application is expecting two types of 
messages from a peer, tags can help distinguish these two 
types 

 Messages can be screened at the receiving end by specifying 
a specific tag 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Simple Communication in MPI 
#include "mpi.h" 
#include <stdio.h> 
 
int main(int argc, char ** argv) 
{ 
    int rank, data[100]; 
 
    MPI_Init(&argc, &argv); 
 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
    if (rank == 0) 
        MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD); 
    else if (rank == 1) 
        MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD, 
                 MPI_STATUS_IGNORE); 
 
    MPI_Finalize(); 
    return 0; 
} 
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Parallel Sort using MPI Send/Recv 
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Parallel Sort using MPI Send/Recv (contd.) 
#include "mpi.h" 
#include <stdio.h> 
int main(int argc, char ** argv) 
{ 
    int rank; 
    int a[1000], b[500]; 
 
    MPI_Init(&argc, &argv); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    if (rank == 0) { 
        MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD); 
        sort(a, 500); 
        MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD, &status); 
 
        /* Serial: Merge array b and sorted part of array a */ 
    } 
    else if (rank == 1) { 
        MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD, &status); 
        sort(b, 500); 
        MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD); 
    } 
 

    MPI_Finalize(); return 0; 
} 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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MPI is Simple 

 Many parallel programs can be written using just these six functions, only 
two of which are non-trivial: 
– MPI_INIT – initialize the MPI library (must be the 

first routine called) 

– MPI_COMM_SIZE - get the size of a communicator 

– MPI_COMM_RANK – get the rank of the calling process 
in the communicator 

– MPI_SEND – send a message to another process 
– MPI_RECV – send a message to another process 
– MPI_FINALIZE – clean up all MPI state (must be the 

last MPI function called by a process) 

 For performance, however, you need to use other MPI features 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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time 

Blocking Send-Receive Diagram 
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Non-Blocking Communication 

 Non-blocking (asynchronous) operations return (immediately) ‘‘request 

handles” that can be waited on and queried 
– MPI_ISEND(start, count, datatype, dest, tag, comm, request) 

– MPI_IRECV(start, count, datatype, src, tag, comm, request) 

– MPI_WAIT(request, status) 

 Non-blocking operations allow overlapping computation and communication 

 One can also test without waiting using MPI_TEST 
– MPI_TEST(request, flag, status) 

 Anywhere you use MPI_SEND or  MPI_RECV, you can use the pair of 
MPI_ISEND/MPI_WAIT or  MPI_IRECV/MPI_WAIT 

 Combinations of blocking and non-blocking sends/receives can be used to 
synchronize execution instead of barriers 
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Multiple Completions 

 It is sometimes desirable to wait on multiple requests: 

– MPI_Waitall(count, array_of_requests, array_of_statuses) 

– MPI_Waitany(count, array_of_requests, &index, &status) 

– MPI_Waitsome(count, array_of_requests, array_of_indices, 

               array_of_statuses) 

 There are corresponding versions of test for each of these 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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28 

Non-Blocking Send-Receive Diagram  

time 
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MPI Collective Communication 

 Communication and computation is coordinated among a 
group of processes in a communicator 

 Tags are not used; different communicators deliver similar 
functionality 

 No non-blocking collective operations in MPI-1 and MPI-2 
– They are added in MPI-3 

 Three classes of operations: synchronization, data movement, 
collective computation 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Synchronization 

 MPI_BARRIER(comm) 

– Blocks until all processes in the group of the communicator comm call 
it 

– A process cannot get out of the barrier until all other processes have 
reached barrier 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Collective Data Movement 
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More Collective Data Movement 
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Collective Computation 
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One-sided Communication 

 The basic idea of one-sided communication models is to 
decouple data movement with process synchronization 
– Should be able move data without requiring that the remote process 

synchronize 

– Each process exposes a part of its memory to other processes 

– Other processes can directly read from or write to this memory 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Two-sided Communication Example 
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One-sided Communication Example 
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Comparing One-sided and Two-sided Programming 
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Possible Applications of One-sided Communication 

 One-sided communication (or sometimes referred to as 
global address space communication) is very useful for many 
applications that require asynchronous access to remote 
memory 
– E.g., a nuclear physics application called as Greene’s Function Monte 

Carlo requires to store nearly 50 GB of memory per task for its 
calculations 

– No single node can provide that much memory 

– With one-sided communication, each task can store this data in global 
space, and access it as needed 

– Note: Remember that the memory is still “far away” (accesses require 
data movement over the network); so large data transfers are better 
for performance 
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Globally Accessible Large Arrays 

 Presents a shared view of physically 
distributed dense array objects over 
the nodes of a cluster 

 Accesses are using one-sided 
communication model using Put/Get 
and Accumulate (or update) semantics 

 Used in wide variety of applications 
– Computational Chemistry (e.g., NWChem, 

molcas, molpro) 

– Bioinformatics (e.g., ScalaBLAST) 

– Ground Water Modeling (e.g., STOMP) 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Window Creation: Static Model 

 Expose a region of memory in an RMA window 
– Only data exposed in a window can be accessed with RMA ops. 

 Arguments: 
– base - pointer to local data to expose 

– size - size of local data in bytes (nonnegative integer) 

– disp_unit - local unit size for displacements, in bytes (positive integer) 

– info - info argument (handle) 

– comm - communicator (handle) 

int MPI_Win_create(void *base, MPI_Aint size,  
  int disp_unit, MPI_Info info, 
  MPI_Comm comm, MPI_Win *win) 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Window Creation: Dynamic Model 

 Create an RMA window, to which data can later be attached 
– Only data exposed in a window can be accessed with RMA ops 

 Application can dynamically attach memory to this window 

 Application can access data on this window only after a 
memory region has been attached 

int MPI_Win_create_dynamic(…, MPI_Comm comm, MPI_Win *win) 
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Data movement 

 MPI_Get, MPI_Put, MPI_Accumulate, MPI_Get_accumulate, 
etc., move data between public copy of target window and 
origin local buffer 

 Nonblocking, subsequent synchronization may block 

 Origin buffer address 

 Target buffer displacement 
– Displacement in units of the window’s “disp_unit” 

 Distinct from load/store from/to private copy 
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Data movement: Get 

MPI_Get( 
 origin_addr, origin_count, origin_datatype, 
 target_rank, 
 target_disp, target_count, target_datatype, 
 win) 

 Move data to origin, from target 

 Separate data description triples for origin and target 

Origin Process 

Target Process 

RMA 
Window 

Local 
Buffer 
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Data movement: Put 

MPI_Put( 
 origin_addr, origin_count, origin_datatype, 
 target_rank, 
 target_disp, target_count, target_datatype, 
 win) 

 Move data from origin, to target 

 Same arguments as MPI_Get Target Process 

RMA 
Window 

Local 
Buffer 

Origin Process 
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Data aggregation: Accumulate 

 Like MPI_Put, but applies an MPI_Op instead 
– Predefined ops only, no user-defined! 

 Result ends up at target buffer 

 Different data layouts between target/origin OK, basic type 
elements must match 

 Put-like behavior with MPI_REPLACE (implements f(a,b)=b) 
– Atomic PUT Target Process 

RMA 
Window 

Local 
Buffer 

+= 

Origin Process 
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Data aggregation: Get Accumulate 

 Like MPI_Get, but applies an MPI_Op instead 
– Predefined ops only, no user-defined! 

 Result at target buffer; original data comes to the source 

 Different data layouts between target/origin OK, basic type 
elements must match 

 Get-like behavior with MPI_NO_OP 
– Atomic GET Target Process 

RMA 
Window 

Local 
Buffer 

+= 

Origin Process 
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MPI RMA Memory Model 

 Window: Expose memory for RMA 
– Logical public and private copies 

– Portable data consistency model 

 Accesses must occur within an epoch 

 Active and Passive synchronization 
modes 
– Active: target participates 

– Passive: target does not participate 

Rank 0 Rank 1 

Public 
Copy 

Private 
Copy 

Unified 
Copy 
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MPI RMA Memory Model (separate windows) 

 Compatible with non-coherent memory systems 

Public 
Copy 

Private 
Copy 

Same source 
Same epoch Diff. Sources 

load store store 

X 
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MPI RMA Memory Model (unified windows) 

Unified 
Copy 

Same source 
Same epoch Diff. Sources 

load store store 
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MPI RMA Operation Compatibility (Separate) 

Load Store Get Put Acc 

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL 

Store OVL+NOVL OVL+NOVL NOVL X X 

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL 

Put NOVL X NOVL NOVL NOVL 

Acc NOVL X NOVL NOVL OVL+NOVL 

This matrix shows the compatibility of MPI-RMA operations when two or more 
processes access a window at the same target concurrently. 
 
OVL  – Overlapping operations permitted 
NOVL  – Nonoverlapping operations permitted 
X  – Combining these operations is OK, but data might be garbage 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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MPI RMA Operation Compatibility (Unified) 

Load Store Get Put Acc 

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL 

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL 

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL 

Put NOVL NOVL NOVL NOVL NOVL 

Acc NOVL NOVL NOVL NOVL OVL+NOVL 

This matrix shows the compatibility of MPI-RMA operations when two or more 
processes access a window at the same target concurrently. 
 
OVL  – Overlapping operations permitted 
NOVL  – Nonoverlapping operations permitted 
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Ordering of Operations in MPI RMA 

 For Put/Get operations, ordering does not matter 
– If you do two PUTs to the same location, the resultant can be garbage 

 Two accumulate operations to the same location are valid 
– If you want “atomic PUTs”, you can do accumulates with 

MPI_REPLACE 

 In MPI-2, there was no ordering of operations 

 In MPI-3, all accumulate operations are ordered by default 
– User can tell the MPI implementation that (s)he does not require 

ordering as optimization hints 

– You can ask for “read-after-write” ordering, “write-after-write” 
ordering, or “read-after-read” ordering 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Additional Atomic Operations 

 Compare-and-swap 
– Compare the target value with an input value; if they are the same, 

replace the target with some other value 

– Useful for linked list creations – if next pointer is NULL, do something 

 Get Accumulate 
– Fetch the value at the target location before applying the accumulate 

operation 

– “Fetch-and-Op” style operation 

 Fetch-and-Op 
– Special case of Get accumulate for predefined datatypes – faster for 

the hardware to implement 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Other MPI-3 RMA features 

 Request based RMA operations 
– Can wait for single requests 

– Issue a large number of operations and wait for some of them to finish 
so you can reuse buffers 

 Flush 
– Can wait for RMA operations to complete without closing an epoch 

– Lock; put; put; flush; get; get; put; Unlock 

 Sync 
– Synchronize public and private memory 
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RMA Synchronization Models 

 Three models 
– Fence (active target) 

– Post-start-complete-wait (active target) 

– Lock/Unlock (passive target) 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Fence Synchronization 

 MPI_Win_fence(assert, win) 

 Collective, assume it 
synchronizes like a barrier 

 Starts and ends access & 
exposure epochs (usually) 

Fence Fence 

Get 

Target Origin 

Fence Fence 
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PSCW Synchronization 

 Target: Exposure epoch 
– Opened with MPI_Win_post 

– Closed by MPI_Win_wait 

 Origin: Access epoch 
– Opened by MPI_Win_start 

– Closed by MPI_Win_compete 

 All may block, to enforce P-S/C-
W ordering 
– Processes can be both origins and 

targets 

Start 

Complete 

Post 

Wait 

Get 

Target Origin 
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Lock/Unlock Synchronization 

 Passive mode: One-sided, asynchronous communication 

– Target does not participate in communication operation 

 Erroneous to combine active and passive modes 

Active Target Mode Passive Target Mode 

Lock 

Unlock 

Get Start 

Complete 

Post 

Wait 

Get 

CSCADS workshop, Snowbird, Utah (07/24/2012) 



Pavan Balaji, Argonne National Laboratory 

Passive Target Synchronization 

 Begin/end passive mode epoch 
– Doesn’t function like a mutex, name can be confusing 

– Communication operations within epoch are all nonblocking 

 Lock type 
– SHARED: Other processes using shared can access concurrently 

– EXCLUSIVE: No other processes can access concurrently 

int MPI_Win_lock(int lock_type, int rank, int assert,  MPI_Win win) 
 

int MPI_Win_unlock(int rank, MPI_Win win) 
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When should I use passive mode? 

 RMA performance advantages from low protocol overheads 
– Two-sided: Matching, queueing, buffering, unexpected receives, etc… 

– Direct support from high-speed interconnects (e.g. InfiniBand) 

 Passive mode: asynchronous one-sided communication 
– Data characteristics: 

• Big data analysis requiring memory aggregation 

• Asynchronous data exchange 

• Data-dependent access pattern 

– Computation characteristics: 
• Adaptive methods (e.g. AMR, MADNESS) 

• Asynchronous dynamic load balancing 

 Common structure: shared arrays 
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Use Case: Distributed Shared Arrays 

 Quantum Monte Carlo: Ensemble data 
– Represents initial quantum state 

– Spline representation, cubic basis functions 

– Large(100+ GB), read-only table of coeff. 

– Accesses are random 

 Coupled cluster simulations 
– Evolving quantum state of the system 

– Very large, tables of coefficients 

– Tablet read-only, Tablet+1 accumulate-only 

– Accesses are non-local/overlapping 

 Global Arrays PGAS programming model 
– Can be supported with passive mode RMA [Dinan et al., IPDPS’12] 
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MPI and Threads 

 MPI describes parallelism between processes (with 
separate address spaces) 

 Thread parallelism provides a shared-memory model within 
a process 

 OpenMP and Pthreads are common models 
– OpenMP provides convenient features for loop-level parallelism. 

Threads are created and managed by the compiler, based on user 
directives. 

– Pthreads provide more complex and dynamic approaches. Threads 
are created and managed explicitly by the user. 
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Programming for Multicore 

 Almost all chips are multicore these days 
 Today’s clusters often comprise multiple CPUs per node sharing 

memory, and the nodes themselves are connected by a 
network 

 Common options for programming such clusters 
– All MPI 

• MPI between processes both within a node and across nodes 
• MPI internally uses shared memory to communicate within a node 

– MPI + OpenMP 
• Use OpenMP within a node and MPI across nodes 

– MPI + Pthreads 
• Use Pthreads within a node and MPI across nodes  

 The latter two approaches are known as “hybrid programming” 
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MPI’s Four Levels of Thread Safety 

 MPI defines four levels of thread safety -- these are 
commitments the application makes to the MPI 
– MPI_THREAD_SINGLE: only one thread exists in the application 

– MPI_THREAD_FUNNELED: multithreaded, but only the main thread 
makes MPI calls (the one that called MPI_Init_thread) 

– MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a time 
makes MPI calls 

– MPI_THREAD_MULTIPLE: multithreaded and any thread can make MPI 
calls at any time (with some restrictions to avoid races – see next slide) 

 MPI defines an alternative to MPI_Init 
– MPI_Init_thread(requested, provided) 

• Application indicates what level it needs; MPI implementation returns the 
level it supports 
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MPI+OpenMP 
 MPI_THREAD_SINGLE 

– There is no OpenMP multithreading in the program. 
 MPI_THREAD_FUNNELED 

– All of the MPI calls are made by the master thread. i.e. all MPI calls are 
• Outside OpenMP parallel regions, or 
• Inside OpenMP master regions, or 
• Guarded by call to MPI_Is_thread_main MPI call. 

– (same thread that called MPI_Init_thread) 

 MPI_THREAD_SERIALIZED 
#pragma omp parallel 
… 
#pragma omp critical 
{ 
   …MPI calls allowed here… 
} 

 MPI_THREAD_MULTIPLE 
– Any thread may make an MPI call at any time 
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Specification of MPI_THREAD_MULTIPLE 

 When multiple threads make MPI calls concurrently, the 
outcome will be as if the calls executed sequentially in some 
(any) order 

 Blocking MPI calls will block only the calling thread and will not 
prevent other threads from running or executing MPI functions 

 It is the user's responsibility to prevent races when threads in 
the same application post conflicting MPI calls  

– e.g., accessing an info object from one thread and freeing it from 
another thread 

 User must ensure that collective operations on the same 
communicator, window, or file handle are correctly ordered 
among threads 

– e.g., cannot call a broadcast on one thread and a reduce on another 
thread on the same communicator 
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Threads and MPI 

 An implementation is not required to support levels higher than 
MPI_THREAD_SINGLE; that is, an implementation is not 
required to be thread safe 

 A fully thread-safe implementation will support 
MPI_THREAD_MULTIPLE 

 A program that calls MPI_Init (instead of MPI_Init_thread) 
should assume that only MPI_THREAD_SINGLE is supported 

 A threaded MPI program that does not call MPI_Init_thread is 
an incorrect program (common user error we see) 
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An Incorrect Program 

Process 0 
 

MPI_Bcast(comm) 
 
 

MPI_Barrier(comm) 
 
 

Process 1 
 

MPI_Bcast(comm) 
 
 

MPI_Barrier(comm) 

 
 

Thread 1 

Thread 2 

 Here the user must use some kind of synchronization to 
ensure that either thread 1 or thread 2 gets scheduled first 
on both processes  

 Otherwise a broadcast may get matched with a barrier on 
the same communicator, which is not allowed in MPI 
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A Correct Example 

Process 0 
 

MPI_Recv(src=1) 
 
 

MPI_Send(dst=1) 
 
 

Process 1 
 

MPI_Recv(src=0) 
 
 

MPI_Send(dst=0) 

 
 

Thread 1 

Thread 2 

 An implementation must ensure that the above example 
never deadlocks for any ordering of thread execution 

 That means the implementation cannot simply acquire a 
thread lock and block within an MPI function. It must 
release the lock to allow other threads to make progress. 
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The Current Situation 

 All MPI implementations support MPI_THREAD_SINGLE (duh). 

 They probably support MPI_THREAD_FUNNELED even if they 
don’t admit it. 
– Does require thread-safe malloc 

– Probably OK in OpenMP programs 

 Many (but not all) implementations support 
THREAD_MULTIPLE 
– Hard to implement efficiently though (lock granularity issue) 

 “Easy” OpenMP programs (loops parallelized with OpenMP, 
communication in between loops) only need FUNNELED 
– So don’t need “thread-safe” MPI for many hybrid programs 

– But watch out for Amdahl’s Law! 
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Performance with MPI_THREAD_MULTIPLE 

 Thread safety does not come for free 

 The implementation must protect certain data structures or 
parts of code with mutexes or critical sections 

 To measure the performance impact, we ran tests to 
measure communication performance when using multiple 
threads versus multiple processes 

– Details in our Parallel Computing (journal) paper (2009) 
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Message Rate Results on BG/P  

Message Rate Benchmark 

CSCADS workshop, Snowbird, Utah (07/24/2012) 



Pavan Balaji, Argonne National Laboratory 

Why is it hard to optimize MPI_THREAD_MULTIPLE 

 MPI internally maintains several resources 

 Because of MPI semantics, it is required that all threads have 
access to some of the data structures 
– E.g., thread 1 can post an Irecv, and thread 2 can wait for its 

completion – thus the request queue has to be shared between both 
threads 

– Since multiple threads are accessing this shared queue, it needs to be 
locked – adds a lot of overhead 

 In MPI-3.1 (next version of the standard), we plan to add 
additional features to allow the user to provide hints (e.g., 
requests posted to this communicator are not shared with 
other threads) 
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Thread Programming is Hard 

 “The Problem with Threads,” IEEE Computer 
– Prof. Ed Lee, UC Berkeley 
– http://ptolemy.eecs.berkeley.edu/publications/papers/06/problemwithThreads/ 

 “Why Threads are a Bad Idea (for most purposes)” 
– John Ousterhout 
– http://home.pacbell.net/ouster/threads.pdf 

 “Night of the Living Threads” 
http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_living_threads.html 

 Too hard to know whether code is correct 

 Too hard to debug 
– I would rather debug an MPI program than a threads program 
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Ptolemy and Threads 

 Ptolemy is a framework for modeling, simulation, and design of 
concurrent, real-time, embedded systems  

 Developed at UC Berkeley (PI: Ed Lee) 

 It is a rigorously tested, widely used piece of software 

 Ptolemy II was first released in 2000 

 Yet, on April 26, 2004, four years after it was first released, the 
code deadlocked! 

 The bug was lurking for 4 years of widespread use and testing! 

 A faster machine or something that changed the timing caught 
the bug 

CSCADS workshop, Snowbird, Utah (07/24/2012) 



Pavan Balaji, Argonne National Laboratory 

An Example I encountered recently 

 We received a bug report about a very simple 
multithreaded MPI program that hangs 

 Run with 2 processes 

 Each process has 2 threads 

 Both threads communicate with threads on the other 
process as shown in the next slide 

 I spent several hours trying to debug MPICH2 before 
discovering that the bug is actually in the user’s program  
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2 Proceses, 2 Threads, Each Thread Executes this 
Code 

for (j = 0; j < 2; j++) { 

     if (rank == 1) { 

         for (i = 0; i < 3; i++) 

  MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD); 

         for (i = 0; i < 3; i++) 

  MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat); 

     } 

    else {  /* rank == 0 */ 

         for (i = 0; i < 3; i++) 

  MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat); 

         for (i = 0; i < 3; i++) 

  MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD); 

     } 

} CSCADS workshop, Snowbird, Utah (07/24/2012) 
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What Happened 

Rank 0 
 
3 recvs 
3 sends 
3 recvs 
3 sends 
 
 
3 recvs 
3 sends 
3 recvs 
3 sends 

 
 

Rank 1 
 
3 sends 
3 recvs 
3 sends 
3 recvs 
 
 
3 sends 
3 recvs 
3 sends 
3 recvs 

 
 

Thread 1 

Thread 2 

 All 4 threads stuck in receives because the sends from one 
iteration got matched with receives from the next iteration 

 Solution: Use iteration number as tag in the messages 
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Hybrid Programming with Shared Memory 

 MPI-3 allows different processes to allocate shared memory 
through MPI 
– MPI_Win_allocate_shared 

 Uses many of the concepts of one-sided communication 

 Applications can do hybrid programming using MPI or 
load/store accesses on the shared memory window 

 Other MPI functions can be used to synchronize access to 
shared memory regions 

 Much simpler to program than threads 
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Hybrid Programming with GPU models 

 Simple GPU interoperability works out of the box 

 Many MPI processes 

 Each MPI process can launch CUDA/OpenCL/… kernels to 
compute on data 

 Move data back to the process memory 

 Use MPI to move data between processes 
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Interoperability with GPUs: Current Data Model 

GPU 
device 

memory 

GPU 
device 

memory 

CPU 
main 

memory 

CPU 
main 

memory 

Network 

Rank = 0 Rank = 1 

if(rank == 0) 
{ 
  cudaMemcpy(s_buf, s_dev_buf, D2H); 
  MPI_Send(s_buf, .. ..); 
} 

if(rank == 1) 
{ 
  MPI_Recv(r_buf, .. ..); 
  cudaMemcpy(r_dev_buf, r_buf, H2D); 
} 
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Tighter Interoperability: MPI-ACC (research project) 

 Productivity Goal (API) 
– Implement the rich data transfer interface of MPI for CUDA/OpenCL/.. 

 Performance Goal 
– Pipeline the data movement between GPU memory, host memory and 

remote node using architecture specific enhancements 
• NVIDIA: GPU Direct 
• Multi-stream copies between GPU and memory (multiple command queues 

can benefit from parallelism in the DMA engine) 

– Future architectures:  
• Zero-copy data movement if accelerators have direct network access 
• Eliminate “GPU-to-host” data transfers if the heterogeneous processors 

share memory spaces 

 All of the above should happen automatically within the MPI 
implementation, i.e. applications should not redo their data 
movement for each architecture 
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Interoperability with GPUs: New Data Model 

aux 
memory1 

CPU 
main 

memory 

CPU 
main 

memory 

Network 

Rank = 0 Rank = 1 

if(rank == 0) 
{ 
  MPI_Send(s_aux_buf, .. ..); 
} 

if(rank == 1) 
{ 
  MPI_Recv(r_aux_buf, .. ..); 
} 

aux 
memory2 

aux 
memory3 

aux 
memory4 

aux 
memory1 

aux 
memory2 

aux 
memory3 

aux 
memory4 
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Experimental Results (CUDA – RNDV mode) 
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MPI + GPU Example – Stencil Computation 
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GPU optimizations for Data Packing 

 Element-wise traversal by different threads 

 Embarrassingly parallel problem, except for structs, where 
element sizes are not uniform 

B0 B1 B2 B3 

b1,
0 

b1,
1 

b1,
2 

Pack 

Recorded by 
Dataloop # elements 

traverse by element #, read/write using extent/size 

threads 
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Packing Throughput (Indexed) 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Packing Throughput (Column-Vector) 
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MPI Virtual Topology 

 MPI topology functions:  
– Define the communication topology of the application  

• Logical process arrangement or virtual topology 

– Possibly reorder the processes to efficiently map over the 
system architecture (physical topology) for more performance 

 Virtual topology models: 
– Cartesian topology: multi-dimensional Cartesian arrangement 

– Graph topology: non-specific graph arrangement 

 Graph topology representation 
– Non-distributed: easier to manage, less scalable  

– Distributed: new to the standard, more scalable 
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MPI Graph and Cartesian Topology Functions 

 MPI defines a set of virtual topology definition functions for 
graph and Cartesian structures. 

 MPI_Graph_create and MPI_Cart_create non-distributed 
functions: 
– Are collective calls that accept a virtual topology 

– Return a new MPI communicator enclosing the desired topology 

– The input topology is in a non-distributed form 

– All  nodes have a full view of the entire structure  
• Pass the whole information to the function 

– If the user opts for reordering, the function may reorder the ranks 
for an efficient process-to-core mapping. 
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MPI Graph and Cartesian Topology Functions (II) 
 MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart ) 

– comm_old  [in] input communicator without topology (handle) 

– ndims  [in] number of dimensions of Cartesian grid (integer) 

– dims  [in] integer array of size  ndims specifying the number  

          of processes in each dimension 

– periods  [in] logical array of size ndims specifying whether the  
                           grid is periodic (true) or not (false) in each dimension 

– reorder  [in] ranking may be reordered (true) or not (false) (logical) 

– comm_graph [out] communicator with Cartesian topology (handle) 

 

 

 

 
 

 
 

Dimension #Processes 

1 
2 

4 
2 

ndims = 2 
dims = 4, 2 
periods = 1, 0 

4x2 2D-Torus 

0 1 

5 4 

2 3 

7 6 
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MPI Graph and Cartesian Topology Functions (III) 
 MPI_Graph_create(comm_old, nnodes, index, edges, reorder, comm_graph ) 

– comm_old  [in] input communicator without topology 
(handle) 

– nnodes  [in] number of nodes in graph (integer) 

– index  [in] array of integers describing node degrees 

– edges  [in] array of integers describing graph edges 

– reorder  [in] ranking may be reordered (true) or not (false)  
          (logical) 

– comm_graph [out] communicator with graph topology added  
             (handle) 

 

 

Process Neighbors 

0 
1 
2 
3 

1, 3 
0 
3 

0, 2 

0 1 

2 3 

nnodes = 4 
index = 2, 3, 4, 6 
edges = 1, 3, 0, 3, 0, 2 
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Design of MPI Topology Functions (I) 

 Both Cartesian and graph interfaces are treated as graph at the 
underlying layers 
– Cartesian topology is internally copied to a graph topology 

 Virtual topology graph:  
– Vertices: MPI processes 

– Edges: existence, or significance, of communication between any 
two processes 

– Significance of communication : normalized total communication 
volume between any pair of processes, used as edge weights 

– Edge replication is used to represent graph edge weight 
• Recap: MPI non-distributed interface does not support weighted 

edges 
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Design of MPI Topology Functions (II) 

 Physical topology graph:  
– Integrated node and network architecture 

– Vertices: architectural components such as:  
• Network nodes 
• Cores 
• Caches 

– Edges: communication links between the components 

– Edge weights: communication performance between components 
• Processor cores: closer cores have higher edge weight 

• Network nodes: closer nodes have higher edge weight 

• Farthest on-node cores get higher weight than closest network 
nodes 
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Physical Topology Distance Example 

 d1 will have the highest load value in the graph. 

 The path between N2 and N3 (d4) will have the lowest load 
value, indicating the lowest performance path. 

      d1 > d2 > d3 > d4 = 1  
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Exchange Micro-benchmark: Topology-aware 
Mapping Improvement over Block Mapping (%) 
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Applications: Topology-aware Mapping Improvement 
over Block Mapping (%) 
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2D Nearest Neighbor: Process Mapping (XYZ) 

X-Axis 
Z-Axis 

Y-Axis 
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2D Nearest Neighbor: Process Mapping (YXZ) 

X-Axis 
Z-Axis 

Y-Axis 
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Nearest Neighbor Performance 
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Physical Topology Information Retrieval 

 Virtual topology functionality relies on the user providing MPI 
with the application communication pattern 

 What about work-stealing applications?  Communication is 
pretty random 

 MPI-3 introduced a new function called MPI_Comm_split_type 
– Idea is to split a communicator based on some physical hardware 

information 

– E.g., you can split a communicator to contain processes that can create a 
shared memory region 

– Implementations can extend it to allow any form of creation – same 
node, same NUMA socket, same cache domain, same switch, same rack 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Concluding Remarks 

 Parallelism is critical today, given that that is the only way to 
achieve performance improvement with the modern 
hardware 

 MPI is an industry standard model for parallel programming 
– A large number of implementations of MPI exist (both commercial and 

public domain) 

– Virtually every system in the world supports MPI 

 Gives user explicit control on data management 

 Widely used by many many scientific applications with great 
success 

 Your application can be next! 

CSCADS workshop, Snowbird, Utah (07/24/2012) 
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Web Pointers 

 MPI standard : http://www.mpi-forum.org/docs/docs.html 

 MPICH2 : http://www.mcs.anl.gov/research/projects/mpich2/ 

 MPICH mailing list: mpich-discuss@mcs.anl.gov 

 MPI Forum : http://www.mpi-forum.org/ 
 

 Other MPI implementations:  
– IBM MPI (MPICH for BG) 

– Cray MPI (MPICH for Cray) 

– MVAPICH2 (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/  

– Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-library/ 

– Microsoft MPI (MPICH derivative) 

– Open MPI : http://www.open-mpi.org/ 

 Several MPI tutorials can be found on the web 
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