
Advanced Parallel Programming with MPI

Pavan Balaji

Argonne National Laboratory

balaji@mcs.anl.gov

http://www.mcs.anl.gov/~balaji

mailto:balaji@mcs.anl.gov
http://www.mcs.anl.gov/~balaji

Pavan Balaji, Argonne National Laboratory

General principles in this tutorial

 Everything is practically oriented

 We will use lots of real example code to illustrate concepts

 At the end, you should be able to use what you have learned
and write real code, run real programs

 Feel free to interrupt and ask questions

 If my pace is too fast or two slow, let me know

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

About Myself

 Computer Scientist in the Mathematics and Computer Science
Division at Argonne National Laboratory

 Research interests in parallel programming, message passing,
global address space and task space models

 Co-PI of the MPICH implementation of MPI

 Participate in the MPI Forum that defines the MPI standard
– Co-author of the MPI-2.1, MPI-2.2 and the upcoming MPI-3.0

standards

– Chair the hybrid programming working group for MPI-3

– Committee member for the remote memory access (global address
space runtime system) working group for MPI-3

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

What we will cover in this tutorial

 MPI: History and Philosophy

 Basic definitions and concepts in MPI

 Advanced Topics

– One-sided Communication

– Hybrid programming (MPI+OpenMP/pthreads/CUDA/OpenCL)

– Virtual Topology

 Conclusions and Final Q/A

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Sample Parallel Programming Models

 Shared Memory Programming
– Processes share memory address space (threads model)

– Application ensures no data corruption (Lock/Unlock)

 Transparent Parallelization
– Compiler works magic on sequential programs

 Directive-based Parallelization
– Compiler needs help (e.g., OpenMP)

 Message Passing
– Explicit communication between processes (like sending and receiving

emails)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

The Message-Passing Model

 A process is (traditionally) a program counter and address
space.

 Processes may have multiple threads (program counters and
associated stacks) sharing a single address space. MPI is for
communication among processes, which have separate
address spaces.

 Inter-process communication consists of
– synchronization

– movement of data from one process’s address space to another’s.

Process Process

MPI

MPI

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Standardizing Message-Passing Models with MPI

 Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were
not portable (or very capable)

 Early portable systems (PVM, p4, TCGMSG, Chameleon) were
mainly research efforts

– Did not address the full spectrum of message-passing issues

– Lacked vendor support

– Were not implemented at the most efficient level

 The MPI Forum was a collection of vendors, portability writers and
users that wanted to standardize all these efforts

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

What is MPI?

 MPI: Message Passing Interface
– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
• Portability library writers: PVM, p4
• Users: application scientists and library writers
• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way
• Each function takes fixed arguments
• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the
application can and cannot expect

– Each system can implement it differently as long as the semantics match

 MPI is not…
– a language or compiler specification
– a specific implementation or product

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

What is in MPI-1

 Basic functions for communication (100+ functions)

 Blocking sends, receives

 Nonblocking sends and receives

 Variants of above

 Rich set of collective communication functions
– Broadcast, scatter, gather, etc

– Very important for performance; widely used

 Datatypes to describe data layout

 Process topologies

 C, C++ and Fortran bindings

 Error codes and classes

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Following MPI Standards

 MPI-2 was released in 2000
– Several additional features including MPI + threads, MPI-I/O, remote

memory access functionality and many others

 MPI-2.1 (2008) and MPI-2.2 (2009) were recently released
with some corrections to the standard and small features

 MPI-3.0 is being released this September
 The Standard itself:

– at http://www.mpi-forum.org
– All MPI official releases, in both postscript and HTML

 Other information on Web:
– at http://www.mcs.anl.gov/mpi
– pointers to lots of stuff, including other talks and tutorials, a FAQ,

other MPI pages

CSCADS workshop, Snowbird, Utah (07/24/2012)

http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi

Pavan Balaji, Argonne National Laboratory

The MPI Standard (1 & 2)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Tutorial Material on MPI-1 and MPI-2

http://www.mcs.anl.gov/mpi/usingmpi
http://www.mcs.anl.gov/mpi/usingmpi2

CSCADS workshop, Snowbird, Utah (07/24/2012)

http://www.mcs.anl.gov/mpi/usingmpi
http://www.mcs.anl.gov/mpi/usingmpi2

Pavan Balaji, Argonne National Laboratory

Reasons for Using MPI

 Standardization - MPI is the only message passing library which can be
considered a standard. It is supported on virtually all HPC platforms.
Practically, it has replaced all previous message passing libraries

 Portability - There is no need to modify your source code when you port
your application to a different platform that supports (and is compliant
with) the MPI standard

 Performance Opportunities - Vendor implementations should be able to
exploit native hardware features to optimize performance

 Functionality – Rich set of features

 Availability - A variety of implementations are available, both vendor and
public domain

– MPICH is a popular open-source and free implementation of MPI

– Vendors and other collaborators take MPICH and add support for their systems
• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Important considerations while using MPI

 All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs

– Don’t expect magic to happen: If you ask MPI to move data from
process 1 to process 2, MPI will do that for you

 High-performance and portability
– Some users prefer rich feature set, while others prefer a small set

doing exactly what they want

– MPI has always chosen to provide a rich set of portable features. If
you want a small subset providing only the things you want, you should
write a high-level library on top of MPI
• Almost all domains do that – E.g., PETSc, Trillinos, FFTW, ADLB, …

CSCADS workshop, Snowbird, Utah (07/24/2012)

Basic Definitions and Concepts

Pavan Balaji, Argonne National Laboratory

Compiling and Running MPI applications (more
details later)

 MPI is a library
– Applications can be written in C, C++ or Fortran and appropriate calls

to MPI can be added where required

 Compilation:
– Regular applications:

• gcc test.c -o test

– MPI applications
• mpicc test.c -o test

 Execution:
– Regular applications

• ./test

– MPI applications (running with 16 processes)
• mpiexec –np 16 ./test

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Process Identification

 MPI processes can be collected into groups
– Each group can have multiple contexts (identifiers)

– Group + identifier == communicator

– When an MPI application starts, the group of all processes is initially
given a predefined communicator called MPI_COMM_WORLD

 More communicators can be created out of MPI_COMM_WORLD

 A process is identified by a unique number within each
communicator, called rank
– For two different communicators, the same process can have two

different ranks: so the meaning of a “rank” is only defined when you
specify the communicator

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Communicators

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
“aliases”)

Communicators do not
need to contain all

processes in the system

Every process in a
communicator has an ID

called as “rank”

1 2 3 4

5 6 7 8

3 4

5 6

1 2

7 8

The same process might have different
ranks in different communicators

Communicators can be created “by hand” or using tools provided by MPI

CSCADS workshop, Snowbird, Utah (07/24/2012)

mpiexec -np 16 ./test

Pavan Balaji, Argonne National Laboratory

Simple MPI Program Identifying Processes

#include "mpi.h"
#include <stdio.h>

int main(int argc, char ** argv)
{
 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);

 MPI_Finalize();
 return 0;
}

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI Tags

 Messages are sent with an accompanying user-defined
integer tag, to assist the receiving process in identifying the
message

 For example, if an application is expecting two types of
messages from a peer, tags can help distinguish these two
types

 Messages can be screened at the receiving end by specifying
a specific tag

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Simple Communication in MPI
#include "mpi.h"
#include <stdio.h>

int main(int argc, char ** argv)
{
 int rank, data[100];

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0)
 MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);
 else if (rank == 1)
 MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);

 MPI_Finalize();
 return 0;
}

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

 8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

 8 19 23 35 30 45 67 1 3 5 13 24

O(N log N)

 1 3 5 8 67 13 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Parallel Sort using MPI Send/Recv (contd.)
#include "mpi.h"
#include <stdio.h>
int main(int argc, char ** argv)
{
 int rank;
 int a[1000], b[500];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (rank == 0) {
 MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);
 sort(a, 500);
 MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

 /* Serial: Merge array b and sorted part of array a */
 }
 else if (rank == 1) {
 MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 sort(b, 500);
 MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);
 }

 MPI_Finalize(); return 0;
}

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI is Simple

 Many parallel programs can be written using just these six functions, only
two of which are non-trivial:
– MPI_INIT – initialize the MPI library (must be the

first routine called)

– MPI_COMM_SIZE - get the size of a communicator

– MPI_COMM_RANK – get the rank of the calling process
in the communicator

– MPI_SEND – send a message to another process
– MPI_RECV – send a message to another process
– MPI_FINALIZE – clean up all MPI state (must be the

last MPI function called by a process)

 For performance, however, you need to use other MPI features

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory 25

time

Blocking Send-Receive Diagram

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Non-Blocking Communication

 Non-blocking (asynchronous) operations return (immediately) ‘‘request

handles” that can be waited on and queried
– MPI_ISEND(start, count, datatype, dest, tag, comm, request)

– MPI_IRECV(start, count, datatype, src, tag, comm, request)

– MPI_WAIT(request, status)

 Non-blocking operations allow overlapping computation and communication

 One can also test without waiting using MPI_TEST
– MPI_TEST(request, flag, status)

 Anywhere you use MPI_SEND or MPI_RECV, you can use the pair of
MPI_ISEND/MPI_WAIT or MPI_IRECV/MPI_WAIT

 Combinations of blocking and non-blocking sends/receives can be used to
synchronize execution instead of barriers

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Multiple Completions

 It is sometimes desirable to wait on multiple requests:

– MPI_Waitall(count, array_of_requests, array_of_statuses)

– MPI_Waitany(count, array_of_requests, &index, &status)

– MPI_Waitsome(count, array_of_requests, array_of_indices,

 array_of_statuses)

 There are corresponding versions of test for each of these

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

28

Non-Blocking Send-Receive Diagram

time

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI Collective Communication

 Communication and computation is coordinated among a
group of processes in a communicator

 Tags are not used; different communicators deliver similar
functionality

 No non-blocking collective operations in MPI-1 and MPI-2
– They are added in MPI-3

 Three classes of operations: synchronization, data movement,
collective computation

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Synchronization

 MPI_BARRIER(comm)

– Blocks until all processes in the group of the communicator comm call
it

– A process cannot get out of the barrier until all other processes have
reached barrier

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

More Collective Data Movement

A
B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Collective Computation

P0
P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

ABCD

A
AB

ABC

ABCD

Reduce

Scan

CSCADS workshop, Snowbird, Utah (07/24/2012)

Advanced Topics: One-sided Communication

Pavan Balaji, Argonne National Laboratory

One-sided Communication

 The basic idea of one-sided communication models is to
decouple data movement with process synchronization
– Should be able move data without requiring that the remote process

synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

CSCADS workshop, Snowbird, Utah (07/24/2012)

Process 1 Process 2 Process 3

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Process 0

Private
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Global
Address

Space
Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Pavan Balaji, Argonne National Laboratory

Two-sided Communication Example

CSCADS workshop, Snowbird, Utah (07/24/2012)

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

Pavan Balaji, Argonne National Laboratory

One-sided Communication Example

CSCADS workshop, Snowbird, Utah (07/24/2012)

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Pavan Balaji, Argonne National Laboratory

Comparing One-sided and Two-sided Programming

CSCADS workshop, Snowbird, Utah (07/24/2012)

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the
sending

process is
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in
process 1
does not

affect
process 0

GET(data)

Pavan Balaji, Argonne National Laboratory

Possible Applications of One-sided Communication

 One-sided communication (or sometimes referred to as
global address space communication) is very useful for many
applications that require asynchronous access to remote
memory
– E.g., a nuclear physics application called as Greene’s Function Monte

Carlo requires to store nearly 50 GB of memory per task for its
calculations

– No single node can provide that much memory

– With one-sided communication, each task can store this data in global
space, and access it as needed

– Note: Remember that the memory is still “far away” (accesses require
data movement over the network); so large data transfers are better
for performance

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Globally Accessible Large Arrays

 Presents a shared view of physically
distributed dense array objects over
the nodes of a cluster

 Accesses are using one-sided
communication model using Put/Get
and Accumulate (or update) semantics

 Used in wide variety of applications
– Computational Chemistry (e.g., NWChem,

molcas, molpro)

– Bioinformatics (e.g., ScalaBLAST)

– Ground Water Modeling (e.g., STOMP)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Physically distributed data

Global Address Space

Pavan Balaji, Argonne National Laboratory

Window Creation: Static Model

 Expose a region of memory in an RMA window
– Only data exposed in a window can be accessed with RMA ops.

 Arguments:
– base - pointer to local data to expose

– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

int MPI_Win_create(void *base, MPI_Aint size,
 int disp_unit, MPI_Info info,
 MPI_Comm comm, MPI_Win *win)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Window Creation: Dynamic Model

 Create an RMA window, to which data can later be attached
– Only data exposed in a window can be accessed with RMA ops

 Application can dynamically attach memory to this window

 Application can access data on this window only after a
memory region has been attached

int MPI_Win_create_dynamic(…, MPI_Comm comm, MPI_Win *win)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Data movement

 MPI_Get, MPI_Put, MPI_Accumulate, MPI_Get_accumulate,
etc., move data between public copy of target window and
origin local buffer

 Nonblocking, subsequent synchronization may block

 Origin buffer address

 Target buffer displacement
– Displacement in units of the window’s “disp_unit”

 Distinct from load/store from/to private copy

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Data movement: Get

MPI_Get(
 origin_addr, origin_count, origin_datatype,
 target_rank,
 target_disp, target_count, target_datatype,
 win)

 Move data to origin, from target

 Separate data description triples for origin and target

Origin Process

Target Process

RMA
Window

Local
Buffer

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Data movement: Put

MPI_Put(
 origin_addr, origin_count, origin_datatype,
 target_rank,
 target_disp, target_count, target_datatype,
 win)

 Move data from origin, to target

 Same arguments as MPI_Get Target Process

RMA
Window

Local
Buffer

Origin Process

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Data aggregation: Accumulate

 Like MPI_Put, but applies an MPI_Op instead
– Predefined ops only, no user-defined!

 Result ends up at target buffer

 Different data layouts between target/origin OK, basic type
elements must match

 Put-like behavior with MPI_REPLACE (implements f(a,b)=b)
– Atomic PUT Target Process

RMA
Window

Local
Buffer

+=

Origin Process

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Data aggregation: Get Accumulate

 Like MPI_Get, but applies an MPI_Op instead
– Predefined ops only, no user-defined!

 Result at target buffer; original data comes to the source

 Different data layouts between target/origin OK, basic type
elements must match

 Get-like behavior with MPI_NO_OP
– Atomic GET Target Process

RMA
Window

Local
Buffer

+=

Origin Process

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI RMA Memory Model

 Window: Expose memory for RMA
– Logical public and private copies

– Portable data consistency model

 Accesses must occur within an epoch

 Active and Passive synchronization
modes
– Active: target participates

– Passive: target does not participate

Rank 0 Rank 1

Public
Copy

Private
Copy

Unified
Copy

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI RMA Memory Model (separate windows)

 Compatible with non-coherent memory systems

Public
Copy

Private
Copy

Same source
Same epoch Diff. Sources

load store store

X

CSCADS workshop, Snowbird, Utah (07/24/2012)

X

Pavan Balaji, Argonne National Laboratory

MPI RMA Memory Model (unified windows)

Unified
Copy

Same source
Same epoch Diff. Sources

load store store

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted
X – Combining these operations is OK, but data might be garbage

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL – Overlapping operations permitted
NOVL – Nonoverlapping operations permitted

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Ordering of Operations in MPI RMA

 For Put/Get operations, ordering does not matter
– If you do two PUTs to the same location, the resultant can be garbage

 Two accumulate operations to the same location are valid
– If you want “atomic PUTs”, you can do accumulates with

MPI_REPLACE

 In MPI-2, there was no ordering of operations

 In MPI-3, all accumulate operations are ordered by default
– User can tell the MPI implementation that (s)he does not require

ordering as optimization hints

– You can ask for “read-after-write” ordering, “write-after-write”
ordering, or “read-after-read” ordering

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Additional Atomic Operations

 Compare-and-swap
– Compare the target value with an input value; if they are the same,

replace the target with some other value

– Useful for linked list creations – if next pointer is NULL, do something

 Get Accumulate
– Fetch the value at the target location before applying the accumulate

operation

– “Fetch-and-Op” style operation

 Fetch-and-Op
– Special case of Get accumulate for predefined datatypes – faster for

the hardware to implement

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Other MPI-3 RMA features

 Request based RMA operations
– Can wait for single requests

– Issue a large number of operations and wait for some of them to finish
so you can reuse buffers

 Flush
– Can wait for RMA operations to complete without closing an epoch

– Lock; put; put; flush; get; get; put; Unlock

 Sync
– Synchronize public and private memory

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

RMA Synchronization Models

 Three models
– Fence (active target)

– Post-start-complete-wait (active target)

– Lock/Unlock (passive target)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Fence Synchronization

 MPI_Win_fence(assert, win)

 Collective, assume it
synchronizes like a barrier

 Starts and ends access &
exposure epochs (usually)

Fence Fence

Get

Target Origin

Fence Fence

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

PSCW Synchronization

 Target: Exposure epoch
– Opened with MPI_Win_post

– Closed by MPI_Win_wait

 Origin: Access epoch
– Opened by MPI_Win_start

– Closed by MPI_Win_compete

 All may block, to enforce P-S/C-
W ordering
– Processes can be both origins and

targets

Start

Complete

Post

Wait

Get

Target Origin

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Lock/Unlock Synchronization

 Passive mode: One-sided, asynchronous communication

– Target does not participate in communication operation

 Erroneous to combine active and passive modes

Active Target Mode Passive Target Mode

Lock

Unlock

Get Start

Complete

Post

Wait

Get

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Passive Target Synchronization

 Begin/end passive mode epoch
– Doesn’t function like a mutex, name can be confusing

– Communication operations within epoch are all nonblocking

 Lock type
– SHARED: Other processes using shared can access concurrently

– EXCLUSIVE: No other processes can access concurrently

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

When should I use passive mode?

 RMA performance advantages from low protocol overheads
– Two-sided: Matching, queueing, buffering, unexpected receives, etc…

– Direct support from high-speed interconnects (e.g. InfiniBand)

 Passive mode: asynchronous one-sided communication
– Data characteristics:

• Big data analysis requiring memory aggregation

• Asynchronous data exchange

• Data-dependent access pattern

– Computation characteristics:
• Adaptive methods (e.g. AMR, MADNESS)

• Asynchronous dynamic load balancing

 Common structure: shared arrays

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Use Case: Distributed Shared Arrays

 Quantum Monte Carlo: Ensemble data
– Represents initial quantum state

– Spline representation, cubic basis functions

– Large(100+ GB), read-only table of coeff.

– Accesses are random

 Coupled cluster simulations
– Evolving quantum state of the system

– Very large, tables of coefficients

– Tablet read-only, Tablet+1 accumulate-only

– Accesses are non-local/overlapping

 Global Arrays PGAS programming model
– Can be supported with passive mode RMA [Dinan et al., IPDPS’12]

CSCADS workshop, Snowbird, Utah (07/24/2012)

Advanced Topics: Hybrid Programming

Pavan Balaji, Argonne National Laboratory

MPI and Threads

 MPI describes parallelism between processes (with
separate address spaces)

 Thread parallelism provides a shared-memory model within
a process

 OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-level parallelism.

Threads are created and managed by the compiler, based on user
directives.

– Pthreads provide more complex and dynamic approaches. Threads
are created and managed explicitly by the user.

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Programming for Multicore

 Almost all chips are multicore these days
 Today’s clusters often comprise multiple CPUs per node sharing

memory, and the nodes themselves are connected by a
network

 Common options for programming such clusters
– All MPI

• MPI between processes both within a node and across nodes
• MPI internally uses shared memory to communicate within a node

– MPI + OpenMP
• Use OpenMP within a node and MPI across nodes

– MPI + Pthreads
• Use Pthreads within a node and MPI across nodes

 The latter two approaches are known as “hybrid programming”

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI’s Four Levels of Thread Safety

 MPI defines four levels of thread safety -- these are
commitments the application makes to the MPI
– MPI_THREAD_SINGLE: only one thread exists in the application

– MPI_THREAD_FUNNELED: multithreaded, but only the main thread
makes MPI calls (the one that called MPI_Init_thread)

– MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a time
makes MPI calls

– MPI_THREAD_MULTIPLE: multithreaded and any thread can make MPI
calls at any time (with some restrictions to avoid races – see next slide)

 MPI defines an alternative to MPI_Init
– MPI_Init_thread(requested, provided)

• Application indicates what level it needs; MPI implementation returns the
level it supports

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI+OpenMP
 MPI_THREAD_SINGLE

– There is no OpenMP multithreading in the program.
 MPI_THREAD_FUNNELED

– All of the MPI calls are made by the master thread. i.e. all MPI calls are
• Outside OpenMP parallel regions, or
• Inside OpenMP master regions, or
• Guarded by call to MPI_Is_thread_main MPI call.

– (same thread that called MPI_Init_thread)

 MPI_THREAD_SERIALIZED
#pragma omp parallel
…
#pragma omp critical
{
 …MPI calls allowed here…
}

 MPI_THREAD_MULTIPLE
– Any thread may make an MPI call at any time

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Specification of MPI_THREAD_MULTIPLE

 When multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in some
(any) order

 Blocking MPI calls will block only the calling thread and will not
prevent other threads from running or executing MPI functions

 It is the user's responsibility to prevent races when threads in
the same application post conflicting MPI calls

– e.g., accessing an info object from one thread and freeing it from
another thread

 User must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered
among threads

– e.g., cannot call a broadcast on one thread and a reduce on another
thread on the same communicator

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Threads and MPI

 An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not
required to be thread safe

 A fully thread-safe implementation will support
MPI_THREAD_MULTIPLE

 A program that calls MPI_Init (instead of MPI_Init_thread)
should assume that only MPI_THREAD_SINGLE is supported

 A threaded MPI program that does not call MPI_Init_thread is
an incorrect program (common user error we see)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

An Incorrect Program

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 1

Thread 2

 Here the user must use some kind of synchronization to
ensure that either thread 1 or thread 2 gets scheduled first
on both processes

 Otherwise a broadcast may get matched with a barrier on
the same communicator, which is not allowed in MPI

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

A Correct Example

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

 An implementation must ensure that the above example
never deadlocks for any ordering of thread execution

 That means the implementation cannot simply acquire a
thread lock and block within an MPI function. It must
release the lock to allow other threads to make progress.

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

The Current Situation

 All MPI implementations support MPI_THREAD_SINGLE (duh).

 They probably support MPI_THREAD_FUNNELED even if they
don’t admit it.
– Does require thread-safe malloc

– Probably OK in OpenMP programs

 Many (but not all) implementations support
THREAD_MULTIPLE
– Hard to implement efficiently though (lock granularity issue)

 “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED
– So don’t need “thread-safe” MPI for many hybrid programs

– But watch out for Amdahl’s Law!

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Performance with MPI_THREAD_MULTIPLE

 Thread safety does not come for free

 The implementation must protect certain data structures or
parts of code with mutexes or critical sections

 To measure the performance impact, we ran tests to
measure communication performance when using multiple
threads versus multiple processes

– Details in our Parallel Computing (journal) paper (2009)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Message Rate Results on BG/P

Message Rate Benchmark

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Why is it hard to optimize MPI_THREAD_MULTIPLE

 MPI internally maintains several resources

 Because of MPI semantics, it is required that all threads have
access to some of the data structures
– E.g., thread 1 can post an Irecv, and thread 2 can wait for its

completion – thus the request queue has to be shared between both
threads

– Since multiple threads are accessing this shared queue, it needs to be
locked – adds a lot of overhead

 In MPI-3.1 (next version of the standard), we plan to add
additional features to allow the user to provide hints (e.g.,
requests posted to this communicator are not shared with
other threads)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory
76

Thread Programming is Hard

 “The Problem with Threads,” IEEE Computer
– Prof. Ed Lee, UC Berkeley
– http://ptolemy.eecs.berkeley.edu/publications/papers/06/problemwithThreads/

 “Why Threads are a Bad Idea (for most purposes)”
– John Ousterhout
– http://home.pacbell.net/ouster/threads.pdf

 “Night of the Living Threads”
http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_living_threads.html

 Too hard to know whether code is correct

 Too hard to debug
– I would rather debug an MPI program than a threads program

CSCADS workshop, Snowbird, Utah (07/24/2012)

http://ptolemy.eecs.berkeley.edu/publications/papers/06/problemwithThreads/
http://home.pacbell.net/ouster/threads.pdf
http://weblogs.mozillazine.org/roc/archives/2005/12/night_of_the_living_threads.html

Pavan Balaji, Argonne National Laboratory

Ptolemy and Threads

 Ptolemy is a framework for modeling, simulation, and design of
concurrent, real-time, embedded systems

 Developed at UC Berkeley (PI: Ed Lee)

 It is a rigorously tested, widely used piece of software

 Ptolemy II was first released in 2000

 Yet, on April 26, 2004, four years after it was first released, the
code deadlocked!

 The bug was lurking for 4 years of widespread use and testing!

 A faster machine or something that changed the timing caught
the bug

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

An Example I encountered recently

 We received a bug report about a very simple
multithreaded MPI program that hangs

 Run with 2 processes

 Each process has 2 threads

 Both threads communicate with threads on the other
process as shown in the next slide

 I spent several hours trying to debug MPICH2 before
discovering that the bug is actually in the user’s program 

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

2 Proceses, 2 Threads, Each Thread Executes this
Code

for (j = 0; j < 2; j++) {

 if (rank == 1) {

 for (i = 0; i < 3; i++)

 MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

 for (i = 0; i < 3; i++)

 MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

 }

 else { /* rank == 0 */

 for (i = 0; i < 3; i++)

 MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);

 for (i = 0; i < 3; i++)

 MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

 }

} CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

What Happened

Rank 0

3 recvs
3 sends
3 recvs
3 sends

3 recvs
3 sends
3 recvs
3 sends

Rank 1

3 sends
3 recvs
3 sends
3 recvs

3 sends
3 recvs
3 sends
3 recvs

Thread 1

Thread 2

 All 4 threads stuck in receives because the sends from one
iteration got matched with receives from the next iteration

 Solution: Use iteration number as tag in the messages
CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Hybrid Programming with Shared Memory

 MPI-3 allows different processes to allocate shared memory
through MPI
– MPI_Win_allocate_shared

 Uses many of the concepts of one-sided communication

 Applications can do hybrid programming using MPI or
load/store accesses on the shared memory window

 Other MPI functions can be used to synchronize access to
shared memory regions

 Much simpler to program than threads

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Hybrid Programming with GPU models

 Simple GPU interoperability works out of the box

 Many MPI processes

 Each MPI process can launch CUDA/OpenCL/… kernels to
compute on data

 Move data back to the process memory

 Use MPI to move data between processes

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Interoperability with GPUs: Current Data Model

GPU
device

memory

GPU
device

memory

CPU
main

memory

CPU
main

memory

Network

Rank = 0 Rank = 1

if(rank == 0)
{
 cudaMemcpy(s_buf, s_dev_buf, D2H);
 MPI_Send(s_buf,);
}

if(rank == 1)
{
 MPI_Recv(r_buf,);
 cudaMemcpy(r_dev_buf, r_buf, H2D);
}

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Tighter Interoperability: MPI-ACC (research project)

 Productivity Goal (API)
– Implement the rich data transfer interface of MPI for CUDA/OpenCL/..

 Performance Goal
– Pipeline the data movement between GPU memory, host memory and

remote node using architecture specific enhancements
• NVIDIA: GPU Direct
• Multi-stream copies between GPU and memory (multiple command queues

can benefit from parallelism in the DMA engine)

– Future architectures:
• Zero-copy data movement if accelerators have direct network access
• Eliminate “GPU-to-host” data transfers if the heterogeneous processors

share memory spaces

 All of the above should happen automatically within the MPI
implementation, i.e. applications should not redo their data
movement for each architecture

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Interoperability with GPUs: New Data Model

aux
memory1

CPU
main

memory

CPU
main

memory

Network

Rank = 0 Rank = 1

if(rank == 0)
{
 MPI_Send(s_aux_buf,);
}

if(rank == 1)
{
 MPI_Recv(r_aux_buf,);
}

aux
memory2

aux
memory3

aux
memory4

aux
memory1

aux
memory2

aux
memory3

aux
memory4

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Experimental Results (CUDA – RNDV mode)

1

10

100

1000

10000

16384 32768 65536 131072 262144 524288 1048576 2097152 4194304

La
te

nc
y

(u
s)

Data Size (bytes)

MPI-ACC

MPI_Send (R3) CudaMemcpy_D2H + MPI_Send + CudaMemcpy_H2D MPIX_Send (R3)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI + GPU Example – Stencil Computation

CSCADS workshop, Snowbird, Utah (07/24/2012)

GPU

GPU GPU

GPU

CPU CPU

CPU CPU

MPI_Isend/Irecv

cudaMemcpy

cudaMemcpy cudaMemcpy

cudaMemcpy

16 MPI transfers + 16 GPU-CPU xfers

2x number of transfers!

non-contiguous!

high latency!

Pavan Balaji, Argonne National Laboratory

GPU optimizations for Data Packing

 Element-wise traversal by different threads

 Embarrassingly parallel problem, except for structs, where
element sizes are not uniform

B0 B1 B2 B3

b1,
0

b1,
1

b1,
2

Pack

Recorded by
Dataloop # elements

traverse by element #, read/write using extent/size

threads

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Packing Throughput (Indexed)

CSCADS workshop, Snowbird, Utah (07/24/2012)

displacement

blocklength

0 1024 1536 2048

8 8 8 8 8

512

128 128 128 128 128

(bytes)

Pavan Balaji, Argonne National Laboratory

Packing Throughput (Column-Vector)

CSCADS workshop, Snowbird, Utah (07/24/2012)

Advanced Topics: Virtual Topology

Pavan Balaji, Argonne National Laboratory

MPI Virtual Topology

 MPI topology functions:
– Define the communication topology of the application

• Logical process arrangement or virtual topology

– Possibly reorder the processes to efficiently map over the
system architecture (physical topology) for more performance

 Virtual topology models:
– Cartesian topology: multi-dimensional Cartesian arrangement

– Graph topology: non-specific graph arrangement

 Graph topology representation
– Non-distributed: easier to manage, less scalable

– Distributed: new to the standard, more scalable

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI Graph and Cartesian Topology Functions

 MPI defines a set of virtual topology definition functions for
graph and Cartesian structures.

 MPI_Graph_create and MPI_Cart_create non-distributed
functions:
– Are collective calls that accept a virtual topology

– Return a new MPI communicator enclosing the desired topology

– The input topology is in a non-distributed form

– All nodes have a full view of the entire structure
• Pass the whole information to the function

– If the user opts for reordering, the function may reorder the ranks
for an efficient process-to-core mapping.

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI Graph and Cartesian Topology Functions (II)
 MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart)

– comm_old [in] input communicator without topology (handle)

– ndims [in] number of dimensions of Cartesian grid (integer)

– dims [in] integer array of size ndims specifying the number

 of processes in each dimension

– periods [in] logical array of size ndims specifying whether the
 grid is periodic (true) or not (false) in each dimension

– reorder [in] ranking may be reordered (true) or not (false) (logical)

– comm_graph [out] communicator with Cartesian topology (handle)

Dimension #Processes

1
2

4
2

ndims = 2
dims = 4, 2
periods = 1, 0

4x2 2D-Torus

0 1

5 4

2 3

7 6

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

MPI Graph and Cartesian Topology Functions (III)
 MPI_Graph_create(comm_old, nnodes, index, edges, reorder, comm_graph)

– comm_old [in] input communicator without topology
(handle)

– nnodes [in] number of nodes in graph (integer)

– index [in] array of integers describing node degrees

– edges [in] array of integers describing graph edges

– reorder [in] ranking may be reordered (true) or not (false)
 (logical)

– comm_graph [out] communicator with graph topology added
 (handle)

Process Neighbors

0
1
2
3

1, 3
0
3

0, 2

0 1

2 3

nnodes = 4
index = 2, 3, 4, 6
edges = 1, 3, 0, 3, 0, 2

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Design of MPI Topology Functions (I)

 Both Cartesian and graph interfaces are treated as graph at the
underlying layers
– Cartesian topology is internally copied to a graph topology

 Virtual topology graph:
– Vertices: MPI processes

– Edges: existence, or significance, of communication between any
two processes

– Significance of communication : normalized total communication
volume between any pair of processes, used as edge weights

– Edge replication is used to represent graph edge weight
• Recap: MPI non-distributed interface does not support weighted

edges

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Design of MPI Topology Functions (II)

 Physical topology graph:
– Integrated node and network architecture

– Vertices: architectural components such as:
• Network nodes
• Cores
• Caches

– Edges: communication links between the components

– Edge weights: communication performance between components
• Processor cores: closer cores have higher edge weight

• Network nodes: closer nodes have higher edge weight

• Farthest on-node cores get higher weight than closest network
nodes

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Physical Topology Distance Example

 d1 will have the highest load value in the graph.

 The path between N2 and N3 (d4) will have the lowest load
value, indicating the lowest performance path.

  d1 > d2 > d3 > d4 = 1

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Exchange Micro-benchmark: Topology-aware
Mapping Improvement over Block Mapping (%)

-60

-40

-20

0

20

40

60

80

100

1 8 64 512 4K 32K 128K

Exchange Message Size (Byte)

8x4x4 3D-Torus with heavy
communication on the longer
dimension (128-core cluster B)

Non-weighted graph
Weighted-graph
Weighted and network-aware graph

-10

0

10

20

30

40

50

60

1 8 64 512 4K 32K 128K

Exchange Message Size (Byte)

4x4x2 3D-Torus with heavy
communication on the longer
dimension (32-core cluster A)

Non-weighted graph
Weighted-graph
Weighted and network-aware graph

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Applications: Topology-aware Mapping Improvement
over Block Mapping (%)

-20

-15

-10

-5

0

5

10

15

20

25

LA
M

M
PS

-F
ric

tio
n

LA
M

M
PS

-P
ou

r

LA
M

M
PS

-C
ou

pl
e

CG
.D

.1
28

M
G

.D
.1

28

Applications

Communication Time Improvement
non-weighted graph
weighted graph
Weighted & network-aware graph

-6

-4

-2

0

2

4

6

8

LA
M

M
PS

-F
ric

tio
n

LA
M

M
PS

-P
ou

r

LA
M

M
PS

-C
ou

pl
e

CG
.D

.1
28

M
G

.D
.1

28

Applications

Run-time Improvement
non-weighted graph
weighted graph
Weighted & network-aware graph

128-core cluster B

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

2D Nearest Neighbor: Process Mapping (XYZ)

X-Axis
Z-Axis

Y-Axis

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

2D Nearest Neighbor: Process Mapping (YXZ)

X-Axis
Z-Axis

Y-Axis

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Nearest Neighbor Performance

CSCADS workshop, Snowbird, Utah (07/24/2012)

0

100

200

300

400

500

600

700

800

900

2 4 8 16 32 64 128 256 512 1K

Ex
ec

ut
io

n
Ti

m
e

(u
s)

Grid Partition (bytes)

System Size : 16K Cores

XYZT

TXYZ

ZYXT

TZYX

0

500

1000

1500

2000

2500

2 4 8 16 32 64 128 256 512 1K

Ex
ec

ut
io

n
Ti

m
e

(u
s)

Grid Partition (bytes)

System Size : 128K Cores

XYZT

TXYZ

ZYXT

TZYX

Pavan Balaji, Argonne National Laboratory

Physical Topology Information Retrieval

 Virtual topology functionality relies on the user providing MPI
with the application communication pattern

 What about work-stealing applications? Communication is
pretty random

 MPI-3 introduced a new function called MPI_Comm_split_type
– Idea is to split a communicator based on some physical hardware

information

– E.g., you can split a communicator to contain processes that can create a
shared memory region

– Implementations can extend it to allow any form of creation – same
node, same NUMA socket, same cache domain, same switch, same rack

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Concluding Remarks

 Parallelism is critical today, given that that is the only way to
achieve performance improvement with the modern
hardware

 MPI is an industry standard model for parallel programming
– A large number of implementations of MPI exist (both commercial and

public domain)

– Virtually every system in the world supports MPI

 Gives user explicit control on data management

 Widely used by many many scientific applications with great
success

 Your application can be next!

CSCADS workshop, Snowbird, Utah (07/24/2012)

Pavan Balaji, Argonne National Laboratory

Web Pointers

 MPI standard : http://www.mpi-forum.org/docs/docs.html

 MPICH2 : http://www.mcs.anl.gov/research/projects/mpich2/

 MPICH mailing list: mpich-discuss@mcs.anl.gov

 MPI Forum : http://www.mpi-forum.org/

 Other MPI implementations:
– IBM MPI (MPICH for BG)

– Cray MPI (MPICH for Cray)

– MVAPICH2 (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/

– Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI (MPICH derivative)

– Open MPI : http://www.open-mpi.org/

 Several MPI tutorials can be found on the web

 CSCADS workshop, Snowbird, Utah (07/24/2012)

http://www.mpi-forum.org/docs/docs.html
http://www.mcs.anl.gov/research/projects/mpich2/
mailto:mpich-discuss@mcs.anl.gov
http://www.mpi-forum.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/

	Advanced Parallel Programming with MPI
	General principles in this tutorial
	About Myself
	What we will cover in this tutorial
	Sample Parallel Programming Models
	The Message-Passing Model
	Standardizing Message-Passing Models with MPI
	What is MPI?
	What is in MPI-1
	Following MPI Standards
	The MPI Standard (1 & 2)
	Tutorial Material on MPI-1 and MPI-2
	Reasons for Using MPI
	Important considerations while using MPI
	Basic Definitions and Concepts
	Compiling and Running MPI applications (more details later)
	Process Identification
	Communicators
	Simple MPI Program Identifying Processes
	MPI Tags
	Simple Communication in MPI
	Parallel Sort using MPI Send/Recv
	Parallel Sort using MPI Send/Recv (contd.)
	MPI is Simple
	Slide Number 25
	Non-Blocking Communication
	Multiple Completions
	Non-Blocking Send-Receive Diagram
	MPI Collective Communication
	Synchronization
	Collective Data Movement
	More Collective Data Movement
	Collective Computation
	Advanced Topics: One-sided Communication
	One-sided Communication
	Two-sided Communication Example
	One-sided Communication Example
	Comparing One-sided and Two-sided Programming
	Possible Applications of One-sided Communication
	Globally Accessible Large Arrays
	Window Creation: Static Model
	Window Creation: Dynamic Model
	Data movement
	Data movement: Get
	Data movement: Put
	Data aggregation: Accumulate
	Data aggregation: Get Accumulate
	MPI RMA Memory Model
	MPI RMA Memory Model (separate windows)
	MPI RMA Memory Model (unified windows)
	MPI RMA Operation Compatibility (Separate)
	MPI RMA Operation Compatibility (Unified)
	Ordering of Operations in MPI RMA
	Additional Atomic Operations
	Other MPI-3 RMA features
	RMA Synchronization Models
	Fence Synchronization
	PSCW Synchronization
	Lock/Unlock Synchronization
	Passive Target Synchronization
	When should I use passive mode?
	Use Case: Distributed Shared Arrays
	Advanced Topics: Hybrid Programming
	MPI and Threads
	Programming for Multicore
	MPI’s Four Levels of Thread Safety
	MPI+OpenMP
	Specification of MPI_THREAD_MULTIPLE
	Threads and MPI
	An Incorrect Program
	A Correct Example
	The Current Situation
	Performance with MPI_THREAD_MULTIPLE
	Message Rate Results on BG/P
	Why is it hard to optimize MPI_THREAD_MULTIPLE
	Thread Programming is Hard
	Ptolemy and Threads
	An Example I encountered recently
	2 Proceses, 2 Threads, Each Thread Executes this Code
	What Happened
	Hybrid Programming with Shared Memory
	Hybrid Programming with GPU models
	Interoperability with GPUs: Current Data Model
	Tighter Interoperability: MPI-ACC (research project)
	Interoperability with GPUs: New Data Model
	Experimental Results (CUDA – RNDV mode)
	MPI + GPU Example – Stencil Computation
	GPU optimizations for Data Packing
	Packing Throughput (Indexed)
	Packing Throughput (Column-Vector)
	Advanced Topics: Virtual Topology
	MPI Virtual Topology
	MPI Graph and Cartesian Topology Functions
	MPI Graph and Cartesian Topology Functions (II)
	MPI Graph and Cartesian Topology Functions (III)
	Design of MPI Topology Functions (I)
	Design of MPI Topology Functions (II)
	Physical Topology Distance Example
	Exchange Micro-benchmark: Topology-aware Mapping Improvement over Block Mapping (%)�
	Applications: Topology-aware Mapping Improvement over Block Mapping (%)�
	2D Nearest Neighbor: Process Mapping (XYZ)
	2D Nearest Neighbor: Process Mapping (YXZ)
	Nearest Neighbor Performance
	Physical Topology Information Retrieval
	Concluding Remarks
	Web Pointers

