World Scientific

www www.warldscientific.cam

Parallel Processing Letters, Vol. 17, No. 1 (2007) 89-102 ’
(© World Scientific Publishing Company

LANGUAGES FOR HIGH-PRODUCTIVITY COMPUTING:
THE DARPA HPCS LANGUAGE PROJECT

EWING LUSK

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue
Chicago, Illinois 60439, USA

and

KATHERINE YELICK

University of California at Berkeley and Lawrence Berkeley National Laboratory
Berkeley, California 94720-1776, USA

Received December 2006
Revised January 2007
Communicated by Guest Editors

ABSTRACT

We present a summary of the current state of DARPA’s HPCS language project. We de-
scribe the challenges facing any new language for scalable parallel computing, including
the strong competition presented by MPI and the existing Partitioned Global Address
Space (PGAS) Languages. We identify some of the major features of the proposed
languages, using MPI and the PGAS languages for comparison, and describe the oppor-
tunities for higher productivity along with the implementation challenges. Finally, we
present the conclusions of a recent workshop in which a concrete plan for the next few
years was proposed.

Keywords: High-Productivity Computing Systems, X10, Chapel, Fortress.

1. Introduction

In 2002 DARPA initiated the “High Productivity Computing Systems” project,
with the goal of accelerating both the performance of the largest parallel computers
and their usability. It was recognized that a significant barrier to the application
of computing to science, engineering, and large-scale processing of data was the
cumbersomeness of developing software that exploits the power of new architectures.
As part of the HPCS project, three computer vendors—Cray, IBM, and Sun—have
competed not only in the area of hardware design to address DARPA’s performance
goals, but also in language design to address the software development productivity
goals. In this paper we present a snapshot of the language design efforts, comparing
them with one another and also with the current non-HPCS major programming
methodology, the message-passing model represented by the MPI standard.

In Section 2 we describe the current lay of the land in parallel programming
and identify the challenges faced by ambitious language development projects. In
Section 3 we outline some of the features of MPI that software developers have

89



90 E. Lusk & K. Yelick

found useful and that new approaches are likely to need in order to become widely
adopted. In Section 4 we compare the three HPCS languages along several axes in
order to facilitate an understanding of them as a group. In Section 5 we report the
findings of a recent HPCS language workshop in which plans were made to initiate
a new phase of the HPCS language development project, targeted at an eventual
single high-productivity language. Our conclusions are presented in Section 6.

2. Background

In this section we present our view of the current state of scalable parallel program-
ming. We discuss current practice, compare some early production languages with
the HPCS languages, and comment on previous efforts to introduce new program-
ming languages for productivity and parallelism.

2.1. Architectural Developments

Language development for productivity is taking place at a time when the archi-
tecture of large-scale machines is still an area of active change. Innovative network
interfaces and multiprocessor nodes are challenging current programming model im-
plementations to provide access to the best performance the hardware can provide,
and multicore chips are providing another level of the processing hierarchy. The
HPCS hardware efforts are at the leading edge of these innovations. By combining
hardware and languages in one program, DARPA is allowing language designs that
may take advantage of unique features of one system, although this design freedom
is tempered by the desire for language ubiquity. New programming models and
languages will be expected to exploit the full power of new architectures, while still
providing reasonable performance on more conventional systems.

2.2. Current Practice

Most parallel programs for large-scale parallel machines are currently written in a
conventional sequential language (Fortran-77, Fortran-90, C, or C++) with calls to
the MPI message-passing library. The MPI standard [11,12] defines bindings for
these languages. Bindings for other languages (particularly Java [13]) have been
developed and are in occasional use but are not part of the MPI standard. MPI is a
realization of the message-passing model, in which processes with completely sepa-
rate address spaces communicate with explicit calls to send and receive functions.
MPI-2 extended this model in several ways (parallel I/O, remote memory access,
and dynamic process management), but the bulk of MPI programming utilizes only
the MPI-1 functions. The use of the MPI-2 extensions is more limited, but usage
is increasing, especially for parallel I/0.

2.3. The PGAS Languages

In contrast with the message passing model, the Partitioned Global Address Space
(PGAS) languages provide each process direct access to a single globally addressable



Languages for High-Productivity Computing 91

space. Each process has local memory and access to the shared memory.*This model
is distinguishable from a symmetric shared-memory model in that shared memory
is logically partitioned, so there is a notion of near and far memory explicit in each
of the languages. This allows programmers to control the layout of shared arrays
and of more complex pointer-based structures.

The PGAS model is realized in three languages, each presented as an extension
to a familiar base language: UPC (Unified Parallel C) [6] for C; Co-Array Fortran
(CAF) [14] for Fortran, and Titanium [17] for Java. The three PGAS languages
make references to shared memory explicit in the type system, which means that
a pointer or reference to shared memory has a type that is distinct from references
to local memory. These mechanisms differ across the languages in subtle ways, but
in all three cases the ability to statically separate local and global references has
proven important in performance tuning. On machines lacking hardware support
for global memory, a global pointer encodes a node identifier along with a memory
address, and when the pointer is dereferenced, the runtime must deconstruct this
pointer representation and test whether the node is the local one. This overhead
is significant for local references, and is avoided in all three languages by having
expressions that are statically known to be local, which allows the compiler to
generate code that uses a simpler (address-only) representation and avoids the test
on dereference.

These three PGAS languages share with the strict message-passing model a
number of processes fixed at job start time, with identifiers for each process. This
results in a one-to-one mapping between processes and memory partitions and allows
for very simple runtime support, since the runtime has only a fixed number of
processes to manage and these typically correspond to the underlying hardware
processors. The languages run on shared memory hardware, distributed memory
clusters, and hybrid architectures.

Each of these languages is the focus of current compiler research and implemen-
tation activities, and a number of applications rely on them. All three languages
continue to evolve based on application demand and implementation experience, a
history that is useful in understanding requirements for the HPCS languages. UPC
and Titanium have a set of collective communication operations that gang the pro-
cesses together to perform reductions, broadcasts, and other global operations, and
there is a proposal to add such support to CAF. UPC and Titanium do not allow
collectives or barrier synchronization to be done on subsets of processes, but this
feature is often requested by users. UPC has parallel 1/O support modeled after
MPT’s, and Titanium has a bulk I/O facilities as well as support to checkpoint data
structures based on Java’s serialization interface. All three languages also have
support for critical regions and there are experimental efforts to provide atomic
operations.

The distributed array support in all three languages is fairly rigid, a reaction to

“Because they access shared memory, some languages use the term “thread” rather than “process.”



92 E. Lusk & K. Yelick

the implementation challenges that plagued the High Performance Fortran (HPF)
effort. In UPC distributed arrays may be blocked, but there is only a single blocking
factor that must be a compile-time constant; in CAF the blocking factors appear in
separate “co-dimensions;” Titanium does not have built-in support for distributed
arrays, but they are programmed in libraries and applications using global point-
ers and a built-in all-to-all operation for exchanging pointers. There is an ongoing
tension in this area of language design, most visible in the active UPC commu-
nity, between the generality of distributed array support and the desire to avoid
significant runtime overhead.

2.4. The HPCS Languages

As part of the Phase II of the DARPA HPCS Project, three vendors—Cray, IBM,
and SUN-—were commissioned to develop new languages that would optimize soft-
ware development time as well as performance on each vendor’s HPCS hardware be-
ing developed over the same time period. Each of the languages—Cray’s Chapel [5],
IBM’s X10 [15], and Sun’s Fortress [1]—provides a global view of data (similar to
the PGAS languages), together with a more dynamic model of processes and so-
phisticated synchronization mechanisms. Salient features of the HPCS languages
are considered in Section 4.

The original intent of these languages was to exploit the advanced hardware
architectures being developed by the corresponding vendors, and in turn to be
particularly well supported by these architectures. However, in order for these
languages to be adopted by a broad sector of the community, they will also have to
perform reasonably well on other parallel architectures, including the commodity
clusters on which much parallel software development takes place. (And, in turn,
the advanced architectures will have to run “legacy” MPI programs well in order
to facilitate the migration of existing applications.)

Until recently, the HPCS languages were developed quite independently by the
vendors. In the past year and a half, DARPA has also funded a small, academically
based effort to consider the languages together, foster vendor cooperation, and per-
haps eventually develop a framework for convergence to a single high-productivity
language [9]. Recent activities on this front are described in Section 5.

2.5. Cautionary Experiences

The introduction of a new programming language for more than research purposes
is a speculative activity. Much effort can be expended without creating a permanent
impact. We mention two well-known cases.

In the late 1970s and early 1980s, an extensive community effort was mounted
to produce a complete, general-purpose language expected to replace both Fortran
and COBOL, the two languages in most widespread use at the time. The result,
called Ada, was a large, full-featured language and even had constructs to support
parallelism. It was required for many U.S. Department of Defense software con-



Languages for High-Productivity Computing 93

tracts, and a large community of programmers eventually developed. Today Ada is
used within the defense and embedded systems community, but it did not supplant
the established languages.

A project with several similarities to the DARPA HPCS program was the
Japanese “5th Generation” project of the 1980s. Like the DARPA program, it
was a ten-year project involving both a new programming model, presented as a
more productive approach to software development, and new hardware architec-
tures designed by multiple vendors to execute the programming model efficiently
and in parallel. The language realizing the model, called CLP (Concurrent Logic
Programming), was a dialect of Prolog specifically engineered for parallelism and
high performance. The project was a success in training a generation of young
Japanese computer scientists, but it has had no influence on the current parallel
computing landscape.

2.6. Lessons

Programmers do value productivity, but reserve the right to define it. Portability,
performance, and incrementality seem to have mattered more in the recent past than
elegance of language design, power of expression, or even ease of use, at least when
it comes to programming large scientific applications. Successful new sequential
languages have been adopted in the past twenty-five years, but each has been a
modest step beyond an already established language (from C to C++, from C++ to
Java). While the differences between each successful language have been sigificant,
both timing of the language introduction and judicious use of familiar syntax and
semantics were important. New “productivity” languages have also emerged (Perl,
Python, and Ruby); but some of their productivity comes from their interpreted
nature, and they are neither high-performance nor particularly suited to parallelism.

The PGAS languages, being smaller steps beyond established languages, thus
present serious competition for the HPCS languages, despite the advanced, and
even elegant, features provided in Chapel, Fortress, and X10. The most serious
competition, however, comes from the fact that the current status quo based on
MPI appears adequately productive for a wide range of applications. In the next
section we describe some of the “productive” features of MPI, as a way of setting
the bar for the HPCS languages. That is, new approaches to scalable parallel
programming must be at least as good as MPI + Fortran, so in looking at MPI we
are reviewing some of the features that the HPCS languages must eventually have.

3. MPI and Productivity

MPI [11,12] is a standard definition of a library interface implementing the message-
passing model and (in MPI-2) extending that model to include parallel I/O, remote
memory access, and dynamic process management. It was defined by the MPI
Forum, a voluntary collection of parallel computer vendors, computer scientists,
and application developers who participated in an intensive sequence of meetings,



94 E. Lusk & K. Yelick

first in 1992-93 (for the original MPI) and again in 1995-97 (for MPI-2). Once
the standard was defined, multiple implementations appeared quickly, both from
the vendors who had participated (and some who had not) and from open source
research and development groups.

MPT has the advantage of representing a complete definition of a well-understood
model, and it was not conceptually difficult for multiple implementations to appear.
As a library rather than a language, it is orthogonal to compiler issues and works
immediately with existing optimizing compilers for its sequential host languages,
performance monitors, and debuggers.

MPI was not designed with convenience in mind; rather, it was intended to
provide the portability layer for its message-passing programming model. It also
provided explicit support for parallel libraries through its communicator feature,
with the idea that convenience would be provided by application-oriented libraries,
whose development was encouraged by MPI’s portability.

Despite this intention, which does make MPI programming cumbersome at
times, MPI provides a number of productivity-oriented features. It was designed for
portability, even to heterogeneous networks of machines, and this portability not
only has provided leverage to applications, which can run on multiple large-scale
machines, but also has enabled a development path from laptops to commodity clus-
ters to the largest computers available. MPI provides performance transparency in
the sense that the execution model for an MPI program, in which transmission of
data from one address space to another is a relatively expensive operation, is easy to
understand and is likely to reflect the hardware architecture of current scalable ma-
chines. MPTI’s collective operations provide an opportunity for implementations to
supply sophisticated scalable algorithms for a wide variety of global communication
and computation patterns.

MPI may appear complicated, but its core is essentially simple. Its roughly 275
functions (including all of MPI-2) implement variations on a relatively small number
of concepts, and serious applications can be written with as few as six functions.
The message passing model also has a semantic simplicity because all intereactions
between processes are visible with explicit communication.

MPI provides integrated parallel I/O, building on concepts that it shares with
message passing for describing noncontiguous data both in memory and in files,
nonblocking operations, and collective calls to enable scalable performance.

All of these properties of MPI contribute to its current popularity as a way
to develop large-scale applications for scalable supercomputers. This is not to say
that a new model and language is impossible or even undesirable, but to point out
features that a new language must have in order to lure application developers away
from MPI.

4. The HPCS Languages as a Group

The detailed, separate specifications for the HPCS languages can be found at [8].



Languages for High-Productivity Computing 95

In this section we consider the languages together and compare them along several
axes in order to present a coherent view of them as a group.

4.1. Base Language

The HPCS languages use different sequential bases. X10 uses an existing object-
oriented language, Java, inheriting both good and bad features. It adds to Java
support for multimensional arrays, value types, and parallelism, and it gains tool
support from IBM’s extensive Java environment. Chapel and Fortress use their own,
new object-oriented languages. An advantage of this approach is that the language
can be tailored to science (Fortress even explores new, mathematical character sets),
but the fact that a large intellectual effort is required in order to get the base
language right has slowed development and may deter users.

4.2. Creating Parallelism

Any parallel programming model must specify how the parallelisin is initiated. All
three HPCS languages have parallel semantics; that is, there is no reliance on auto-:
matic parallelism, nor are the languages purely data parallel with serial semantics,
like the core of HPF. All of them have dynamic parallelism for loops as well as
tasks, and encouragement for the programmer to express as much parallelism as
possible, with the idea that the compiler and runtime system will control how much
is actually executed in parallel. There are a variety of mechanisms for expressing
different forms of task parallelism, including explicit spawn, asynchronous method
invocation, and futures. Fortress is unusual in making parallelism the default se-
mantics for both loops and for argument evaluation; this encourages programmers
to “think in parallel” which may result in more highly parallel code, but could also
prove to be surprising to programmers.

The use of dynamic parallelism is the most significant semantic difference be-
tween the HPCS language and the existing PGAS languages with their static par-
allelism model. It presents the biggest opportunity to improve performance and
ease of use relative to these PGAS languages and MPI. Having dynamic thread
support along with data parallel operators may encourage a higher degree of par-
allelism in the applications, and allows the simplicity of expressing this parallelism
directly rather than mapping it to a fixed process model in the application. The
fine-grained parallelism can be used to mask communition latency, reduce stalls at
synchronization points, and take advantage of hardware extensions such as SIMD
units and hyperthreading within a processor.

The dynamic parallelism is also the largest implementation challenge for the lan-
guages, since it requires significant runtime support to manage the parallelism. The
experience with Charm++ shows the feasibility of such runtime support for a class
of very dynamic applications with limited dependencies [10]. A recent UPC project
to apply multithreading to a matrix factorization problem reveals some of the chal-
lenges that arise with more complex dependences between tasks. In that UPC code,



96 FE. Lusk & K. Yelick

the application level scheduler manages user level threads on top of UPC’s static
process model: it must select tasks on the critical path to avoid idle time, delay
allocating memory for noncritical tasks to avoid running out of memory, and ensure
that tasks run long enough to gain locality benefits in the memory hierarchy. The
scheduler uses application-level knowledge to meet all of these constraints, and per-
formance depends critically on the quality of that information; it is not clear how
such information would be communicated to one of the HPCS language runtimes.

4.3. Communication and/or Data Sharing

All three of the HPCS languages use a global address space for sharing state rather
than an explicit message passing model. They all support shared multidimensional
arrays as well as pointer-based data structures. X10 originally allowed only remote
method invocations rather than direct reads and writes to remote values, but this
restriction has been relaxed with the introduction of “implicit syntax,” which is
syntactic sugar for a remote read or write method invocation.

Global operations such as reductions and broadcasts are common in scientific
codes and while their functionality can be expressed easily in shared memory us-
ing a loop, they are often provided as libraries or intrinsics in parallel programming
models. This allows for tree-based implementations and the use of specialized hard-
ware that exists on some machines. In MPI and some the existing PGAS languages,
these operations are performed as “collectives”: all processes invoke the global op-
eration together so that each process can perform the local work associated with
the operation. In data parallel languages global operations may be converted to
collective operations by the compiler. The HPCS languages provide global reduc-
tions without explicitly involving any of the other threads as a collective: a single
thread can execute a reduction on a shared array. This type of one-sided global
operation fits nicely in the PGAS semantics, as it avoids some of the issues related
to processes modifying the data involved in a collective while others are performing
the collective [6]. However, the performance implications are not clear. To pro-
vide tree-based implementation and allow work to be performed locally, a likely
implementation will be to spawn a remote thread to reduce the values associated
with each process. Since that thread may not run immediately, there could be a
substantial delay in waiting for such global operations to complete.

4.4. Locality

The languages use a variation of the PGAS model to support locality optimizations
in shared data structures. X10's “places” and Chapel’s “locales” provide a logical
notion of memory partitions. A typical scenario maps each memory partition at
program startup to a given physical compute node with one or more processors and
its own shared memory. Other mappings are possible, such as one partition per
processor or per core. Extensions to allow for dynamic creation of logical memory
partitions has been discussed, although the idea is not fully developed. Fortress



Languages for High-Productivity Computing 97

has a similar notion of a “region”, but regions are explicitly tied to the machine
structure rather than virtualized, and regions are hierarchical to reflect the design
of many current machines.

All three languages support distributed data structures, and in particular dis-
tributed arrays that include user-defined distributions. These are much more general
than in the existing PGAS languages. In Fortress the distribution support is based
on the machine-dependent region hierarchy and is delegated to libraries rather than
being in the language itself.

4.5. Synchronization among Threads and Processes

The most common synchronization primitives used in parallel applications today
are locks and barriers. Barriers are incompatible with the dynamic parallelism
model in the HPCS languages, although their effect can be obtained by waiting for
a set of threads to complete. X10 has a sophistcated synchronization mechanism
called “clocks,” which can be thought of as barriers with attached tasks. Clocks
provide a very general form of global synchronization that can be applied to subsets
of threads.

In place of locks, which are viewed by many as cumbersome and error prone,
all three languages support atomic blocks. Atomic blocks are semantically more
elegant than locks, because the syntactic structure forces a matching begin and end
to each critical region, and the block of code is guaranteed to be atomic with respect
to all other operations in the program (avoiding problems of acquiring the wrong
lock or with deadlock). Atomic blocks place a larger burden on runtime support:
one simple legal implementation involves a single lock to protect all atomic blocks?
but the performance of such an implementation is probably unacceptable. More
aggressive implementations will use speculative execution and rollback, possibly
relying on hardware support within shared memory systems. The challenge comes
from the use of a single global notion of atomicity, whereas locks may provide
atomicity on two seperate data structure using two seperate locks. The information
that the two data structures are unaliased must be discovered dynamically in a
setting that relies on atomics. The support for atomics is not the same across
the three HPCS languages. Fortress has abortable atomic sections, and X10 limits
atomic blocks to a single place, which allows for a lock per place implementation.

The languages also have some form or a “future” construct that can be used for
producer-consumer parallelism. In Fortress if one thread tries to access the result
of another spawned thread, it will automatically stall until the value is available.
In X10 there is a distinct type for the variable on which one waits and the contents,
so the point of potential stalls is more explicit. Chapel has the capability to declare
variables as “single” (single writer), and “sync” (multiple readers and writers).

bThis assumes atomic blocks are atomic only with respect to each other, not with respect to
individual reads and writes performed outside and atomic block.



98 FE. Lusk & K. Yelick

5. Moving Forward

In July 2006 a workshop was held at Oak Ridge National Laboratory bringing
together the three HPCS language vendors, computer science researchers represent-
ing the PGAS languages and MPI, potential users from the application community,
and program managers from DARPA and the Department of Energy’s Office of
Advanced Scientific Computing. In this section we describe some of the findings
of the workshop at a high level and present the tentative plan for further progress
that evolved there. A workshop report will soon be available.

The workshop was organized in order to explore the topic of converging the
HPCS languages to a single language. Briefings were presented on the status of each
of the three languages and an effort was made to identify the common issues involved
in completing the specifications and initiating the implementations. Potential users
offered requirements for adoption, and computer science researchers described recent
work in compilation and runtime issues for PGAS languages. One high-level finding
of the workshop was the considerable diversity in the overall approaches being taken
by the vendors, in the computer science research being undertaken relevant to the
HPCS language development, and in the application requirements.

5.1. Diversity in Vendor Approaches

Although the three vendors are all well along the path to complete designs and
prototype implementations of languages intended to increase the productivity of
software developers, they are not designing three versions of the same type of object.
X10, for example, is clearly intended to fit into IBM’s extensive Java programming
environment. As described in Section 1, it uses Java as a base language, allowing
reuse of multiple existing tools for parsing, compiling, and debugging to be extended
to encompass the new parallel language. Cray’s approach is more revolutionary,
with the attendant risks and potential benefits; Chapel is an attempt to design a
parallel programming language from the ground up. Sun is taking a third approach,
providing a framework for experimentation with parallel language design, in which
many aspects of the language are to be defined by the user and many of the features
are expected to be provided by libraries instead of by the language itself. One novel
feature is the option of writing code with symbols that, when displayed, can be
typeset as classical mathematical symbols, improving the readability of the “code.”

5.2. Diversity in Application Requirements

Different application communities have different expectations and requirements for
a new language. Although only a small fraction of potential HPC applications were
represented at the workshop, there was sufficient diversity to represent a wide range
of positions with respect to the new languages.

One extreme is represented by those applications for which the current program-
ming model—MPI together with a conventional sequential language—is working
well. In many cases MPI is being used as the MPI Forum intended: the MPI calls



Languages for High-Productivity Computing 99

are in libraries written by specialists, and the application programmer sees these
library interfaces rather than MPI itself, thus bypassing MPI’s ease-of-use issues. In
many of the applications content with the status quo, the fact that the application
may have a long life (measured in decades) amortizes the code development effort
and makes development convenience less of an issue.

The opposite extreme is represented by those for whom rapidity of application
development is the critical issue. Some of these codes are written in a day or two
for a special purpose and then discarded. For such applications the MPI model is
too cumbersome and error prone, and the lack of a better model is a genuine barrier
to development. Such applications cannot be deployed at all without a significant
advance in the productivity of programmers.

Between these extremes is, of course, a continuously variable range of appli-
cations. Such applications would welcome progress in the ease of application de-
velopment and would adopt a new language in order to obtain it, but any new
approach must not come at the expense of qualities they find essential in the status
quo: portability, completeness, support for modularity, and at least some degree of
performance transparency.

5.3. Diversity in Relevant Computer Science Research

The computer science research most relevant to the HPCS language development is
that being carried out in the various PGAS language efforts. These languages also
offer a global view of data, with explicit control of locality in order to provide per-
formance. Their successful implementation has involved research into compilation
techniques that are likely to be useful as the HPCS languages finalize language de-
sign and begin developing production compilers, or at least serious prototypes. The
PGAS languages, and associated research, also share with the HPCS languages the
need for runtime systems that support lightweight communication of small amounts
of data. Such portable runtime libraries are being developed in both the PGAS and
MPI implementation research projects [4,3].

The PGAS languages are being used in applications to a limited extent, while
the HPCS languages are still being tested for expressibility on a number of example
kernels and benchmarks.

The issue of the runtime system is of particular interest, because standardizing
it would bring multiple benefits. A standard syntax and semantics for a low-level
communication library that could be efficiently implemented on a variety of cur-
rent communication hardware and firmware would benefit the entire programming
model implementation community: HPCS languages, PGAS languages, MPI im-
plementations, and others. A number of such portable communications exist now
(GASNet 2], ADI-3, ARMCI), although most have been developed with a particular
language or library implementation in mind.



100 E. Lusk & K. Yelick

5.4. Immediate Needs

Despite the diversity in approaches to the languages being taken by the vendors,
some common deficiencies were identified. These are areas that have been postponed
while the initial language designs have been formulated, but now really need to
be addressed if the HPCS languages are to catch the attention of the application
community.

5.4.1. Performance

The Fortress [7] and X10 [16] implementations are publicly available and an imple-
mentation of Chapel exists, but is not yet released. So far these prototype imple-
mentations have focused on expressivity rather than performance. This direction of
effort has been appropriate up to this point, but now that one can see how various
benchmarks and kernels can be expressed in these languages, one wants to see how
they can be compiled for performance competitive with existing approaches, espe-
cially for scalable machines. While the languages may not reach their full potential
without the HPCS hardware being developed by the same vendors, the commu-
nity needs some assurance that the elegant language constructs, such as those used
to express data distributions, can indeed be compiled into efficient programs for
current scalable architectures.

5.4.2. Completeness

The second deficiency involves completeness of the models being presented. At
this point none of the three languages has a parallel I/O model embedded in the
languages. At the very least the languages should define how to read and write
distributed data structures from and into single files, and the syntax for doing so
should enable an efficient implementation that can take advantage of parallel file
systems.

Another feature that is important in multiphysics applications is modularity
in the parallelism model, which allows subsets of processors to act independently.
MPI has “communicators” to provide isolation among separate libraries or separate
physics models. The PGAS languages are in the process of introducing “teams”
of processes to accomplish the same goals. Because the HPCS languages have
a dynamic parallelism model combined with data parallel operators, this form of
parallelism should be expressible, but more work is needed to understand the inter-
actions between the abstraction mechanisms used to create library interfaces and
the parallelism features.

5.5. A Plan for Convergence

On the last day of the workshop a plan for the near future emerged. It was con-
sidered too early to force a convergence on one language in the near term, given
that the current level of diversity seemed to be beneficial to the long term goals of
the HPCS project rather than harmful. The level of community and research in-
volvement could be increased by holding a number of workshops over the next few



Languages for High-Productivity Computing 101

years in specific areas, such as memory models, data distributions, task parallelism,
parallel I/0, types, tools, and interactions with other libraries. Preliminary plans
were made to initiate a series of meetings, loosely modelled on the MPI process, to
explore the creation of a common runtime library specification.

An approximate schedule was proposed at the workshop. In the next eighteen
months (i.e., by the end of the calendar year 2007) the vendors should be able to
freeze the syntax of their respective languages. In the same time frame, workshops
should be held to address the research issues described above. Vendors should
be encouraged to establish “performance credibility” by demonstrating competi-
tive performance of some benchmark on some high-performance architecture. This
would not necessarily involve the entire language, nor would it necessarily demand
better performance of current versions of the benchmark. The intent would be to
put to rest the notion that a high-productivity language precludes high performance.
Also during this time, a series of meetings should be held to determine whether a
common communication subsystem specification can be agreed upon.

The following three years should see the vendors (at least those funded in Phase
IIT) improve performance of all parts of their languages. Inevitably, during this
period the languages will continue to evolve independently as experience is gained.
At the same time, aggressive applications should get some experience with the
languages. After this period, when the languages have had an opportunity to evolve
in both design and implementations while applications have had the chance to
identify strengths and weaknesses of each, would come the consolidation period.
At this point (2010-2011) an MPI forum like activity could be organized to take
advantage of the experience now gained, in order to cooperatively design a single
HPCS language with the DARPA HPCS languages as input (much as the MPI
Forum built on, but did not adopt any of, the message-passing library interfaces of
its time).

By 2013, then, we could have a new language, well vetted by the application
community, well implemented by HPCS vendors and even open-source developers,
that could truly accelerate productivity in the development of scientific applications.

6. Conclusion

The DARPA HPCS language project is active, healthy, and on schedule. Excellent
work is being carried out by each of the vendor language teams, and it is to be
hoped that Sun’s language effort will not suffer from the end of Sun’s hardware
development contract with DARPA. Now is the time to get the larger commu-
nity involved in the high-productivity programming model and language develop-
ment effort, through workshops targeted at outstanding relevant research issues
and through experimentation with early implementations of all the “productivity”
languages. In the long run, acceptance of any new language for HPC is a specu-
lative proposition, but there is much energy and enthusiasm for the project, and a
reasonable plan is in place by which progress can be made.



102 E. Lusk & K. Yelick

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Dept. of Energy, under Contracts DE-AC02-06 CH11357
and DE-ACO03-76SF00098. It was also supported by the Defense Advanced Research
Program Agency.

References

[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. Steele, and

S. Tobin-Hochstadt. The Fortress language specification. Available from http://
research.sun.com/projects/plrg/.

D. Bonachea. GASNet specification. Technical Report CSD-02-1207, University of
California, Berkeley, October 2002.

Darius Buntinas and William Gropp. Designing a common communication subsystem.
In Beniamino Di Martino, Dieter Kranzluiiller, and Jack Dongarra, editors, Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, volume LNCS
3666 of Lecture Notes in Computer Science, pages 156-166. Springer, September
2005. 12th European PVM/MPI User’s Group Meeting, Sorrento, Italy.

Darius Buntinas and William Gropp. Understanding the requirements imposed by
programming model middleware on a common communication subsystem. Technical
Report ANL/MCS-TM-284, Argonne National Laboratory, 2005.

Chapel: The Cascade high productivity language. http://chapel.cs.washington.
edu/.

UPC Consortium. UPC language specifications v1.2. Technical report, Lawrence Berke-
ley National Lab, 2005.

Project Fortress code.

HPCS Language Project Web Site. http://hpls.1bl.gov/.

HPLS. http://hpls.1lbl.gov.

L.V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent object ori-
ented system based on C++. In Proceedings of the Conference on Object Oriented
Programming Systems, Languages and Applications, Sep-Oct 1993. ACM Sigplan
Notes, Vol. 28, No. 10, pp. 91-108.

Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4):165-414, 1994.

Message Passing Interface Forum. MPI2: A Message Passing Interface standard. In-
ternational Journal of High Performance Computing Applications, 12(1-2):1-299,
1998.

mpiJava home page. http://www.hpjava.org/mpiJava.html.

R. Numrich and J. Reid. Co-Array Fortran for parallel programming. In ACM Fortran
Forum 17, 2, 1-31., 1998.

The X10 programming language. http://www.research.ibm.com/x10.

The X10 compiler. http://x10.sf.net.

Katherine Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind
Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phillip Colella, and Alexan-
der Aiken. Titanium: A high-performance Java dialect. Concurrency: Practice and
Ezxperience, 10:825-836, 1998.



