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ABSTRACT
In this paper, we address the problem of guaranteeing the
absence of physical deadlock in the execution of a parallel
program using the async, finish, atomic and place con-
structs from the X10 language. First, we extend previous
work-stealing memory bound results for fully strict multi-
threaded computations to terminally strict multithreaded
computations in which one activity may wait for comple-
tion of a descendant activity (as in X10’s async and finish

constructs), not just an immediate child (as in Cilk’s spawn

and sync constructs). This result establishes physical dead-
lock freedom for SMP deployments. Second, we introduce a
new class of X10 deployments for clusters, which builds on
an underlying Active Message network and the new concept
of Doppelgänger mode execution of X10 activities. Third,
we use this new class of deployments to establish physical
deadlock freedom for deployments on clusters of uniproces-
sors.

Together these results give the user the ability to execute
a rich set of programs written with async, finish, atomic
and place constructs without worrying about the possibility
of physical deadlock due to computation, memory and com-
munication resources. A major open topic for future work is
to extend these results to deployments on clusters of SMPs.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming, parallel programming

General Terms
Algorithms, Languages, Theory

Keywords
X10, Deadlock-free scheduling, Active Messages
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1. INTRODUCTION
Driven by the ever-increasing levels of hardware paral-

lelism and the need to mask memory and network latencies,
the DARPA HPCS languages all combine dynamic paral-
lelism with locality control. This raises the question of how
to map dynamic parallelism onto a fixed set of processor
and memory resources while obeying the locality properties
of the program. X10 is a novel object-oriented programming
language designed for high-performance, high-productivity
programming of parallel computers [6] as part of the DARPA
HPCS program. X10 differentiates itself from multithreaded
programming models such as Cilk [7] through its explicit
reification of locality in the form of places, which serve as
virtual locations for distributed activities and data. X10 also
differentiates itself from Partitioned Global Address Space
(PGAS) languages [10, 14, 16] and other Single Program
Multiple Data (SPMD) programming models through its
integration of loop parallelism, task parallelism, and asyn-
chronous communication in a single unified execution model.

X10 creates parallel activities using an async statement,
forces their completion with finish, supports mutual exclu-
sion with atomic, and provides a generalized form of barrier
synchronization called clocks. The async statement gener-
alizes other dynamic threading models by allowing the pro-
grammer to specify a place at which the computation should
be performed. In past work [15], it was shown that X10 pro-
grams written with async, finish, atomic and clocked are
guaranteed to be free of logical deadlock i.e., they are guar-
anteed to never deadlock when executed with unbounded
computation, memory, and communication resources.

This paper studies the problem of deadlock-free sched-
uling of X10 programs on physical nodes with bounded com-
putation, memory, and communication resources. For sim-
plicity, we focus on a core subset of the X10 language con-
sisting of async, atomic and finish. In general, physical
nodes have bounded computation resources (which limit the
maximum number of activities that can execute simultane-
ously), bounded memory resources (which limit the number
of live activities that can be suspended), and bounded com-
munication resources (which limit the maximum number of
entries in a node’s input/output communication queue).
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In Section 2, we restrict our attention to single-place X10
computations which correspond to SMP deployments for
which communication resource bounds do not apply. We
address the use of bounded computation and memory re-
sources for this case through the use of work stealing and
show that for an SMP with P processors, X10 programs writ-
ten with async and finish will use space no greater than
S1 ∗ P , where S1 is the space used by a single processor ex-
ecution. This generalizes previous work-stealing results for
the Cilk language [3] to admit more general synchronization
patterns in which one activity may wait for completion of a
descendant activity, not just an immediate child as in Cilk.

In Section 3, we introduce the notion of X10 deployments
which formalize the mapping of virtual places to physical
nodes by adding bounded communication resources. Un-
fortunately, a simple one-to-one mapping from places to
nodes for data and activities may lead to physical deadlock
due to the bounds on stalled activities and communication
queues. To address this problem, we propose a communica-
tion framework built on Active Messages and an extension
of X10 deployments with a Doppelgänger capability (Sec-
tion 3.3), which enables an X10 activity to run on a node
other than the node specified by the programmer. Dop-
pelgänger mode enables us to create deployments for clus-
ters of uniprocessors that are guaranteed to never exhibit
physical deadlock by exploiting deadlock-free communica-
tion protocols such as Active Messages.

In Section 4, we discuss a set of scheduling algorithms
for multi-place X10 computations using async, finish and
atomic that are proved to a) never exhibit physical deadlock,
and b) stay within the memory bounds of work stealing al-
gorithms. The scheduling algorithms include heuristics that
attempt to obey the place directives provided by the X10
programmer as far as possible, and only ignore them by en-
tering Doppelgänger mode when necessary to satisfy a) and
b).

Finally, Sections 5 and Section 6 summarize related work
and the conclusions, and Appendix A includes proofs and
additional technical details.

2. BOUNDED-MEMORY SCHEDULING OF
X10 PROGRAMS ON SMP’S

In this section, we show how a single place deployment
of an X10 program on a SMP with P physical processors
can be executed in a deadlock-free manner, while satisfying
per-processor memory bounds. Recall that inter-processor
communication resources are not an issue in this single place
scenario.

2.1 X10 computations
As in Cilk [3], an X10 computation can be represented as a

dag in which each node corresponds to a dynamic execution
instance of an X10 instruction/statement, and each edge de-
fines a precedence constraint between two nodes. The first
instruction of the main activity 1 serves as the root node
of the dag (with no predecessors). Any instruction which
spawns a new activity will create a child node in the dag
with an edge from the spawn instruction to the first instruc-
tion of that child activity. These edges are called spawn
edges. In addition, execution instances of instructions from

1The terms “activity” and “thread” are used interchange-
ably in this paper.

the same activity are sequenced in the dag by the use of
continue edges.

X10 activities may wait on descendant activities by exe-
cuting a finish statement. We model these dependencies
by introducing start fin and end fin nodes in the dag for
each instance of a finish construct and then create depen-
dence edges from the last instruction of the spawned activi-
ties within the scope of finish to the corresponding end fin

instruction. Figure 1 shows an example X10 code fragment
and its computation dag.

l1: S0;

l2: finish async {

l3: S1;

l4: async {

l5: S2;}

l6: S3;}

l7: S4;

l1 l2start l2end

l3 l4

l5

l6

l7

Γ0

Γ1

Γ2

Figure 1: X10 computation dag

While there are many similarities between an X10 compu-
tation dag and a Cilk computation dag, there are also some
interesting differences. For example, the direct dependence
edge from activity Γ2 to activity Γ0 in Figure 1 is not al-
lowed in Cilk because Γ0 is not Γ2’s parent in the dag. The
only way to establish such a dependence in Cilk is via Γ1.
In X10 it is also possible for a descendant activity (e.g., Γ2)
to continue executing even if its ancestor activity (e.g., Γ1)
has terminated. This degree of asynchrony can be useful in
parallel divide-and-conquer algorithms so as to permit sub-
computations at different levels of the divide-and-conquer
tree to execute in parallel without forcing synchronization
at the parent-child level.

We now show how the Work-Stealing Algorithm from [3]
for fully strict multithreaded computations can be extended
to terminally strict multithreaded computations in which
one activity may wait for completion of a descendant activ-
ity.

2.2 Work-Stealing Algorithm: Overview
In this section, we summarize key definitions and results

from [3] that provide relevant background for our paper.

• An execution schedule, denoted by X , for a multi-
threaded computation determines which processors of
a parallel computer execute which instructions at each
step.

• The space required by a P-processor execution sched-
ule, X , is denoted by S(X ).

• The space required by a 1-processor execution schedule
is denoted by S1.
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• Smax denotes the size in bytes of the largest activation
frame in the computation.

• The stack depth of an activity is defined to be the sum
of the sizes of the activation frames of all its ancestors,
including itself.

• The stack depth S, expressed in bytes, of a multi-
threaded computation is the maximum stack depth of
any activity.

• The busy-leaves property: At every time step, every
living thread that has no living descendant has a pro-
cessor working on it.

• In a strict multithreaded computation, every depen-
dency edge goes from a thread to one of its ancestor
threads.

• In a fully strict multithreaded computation, every de-
pendency edge goes from a thread to its parent thread.

Every strict multithreaded computation is a depth first com-
putation and obviously, fully strict computations are a proper
subset of strict computations.

Theorem 2.1. For any depth-first multithreaded compu-
tation with stack depth S, we have S1 = S.
Refer to [3] for proof.

Lemma 2.2. For any multithreaded computation with stack
depth S1, any P-processor execution schedule, X , that main-
tains the busy-leaves property uses space bounded by S(X ) ≤
S1P .
Refer to [3] for proof.

Theorem 2.3. For any fully strict multithreaded compu-
tation with stack depth S1, the Work-Stealing Algorithm run
on a computer with P processors uses at most S1P space.
Refer to [3] for proof.

2.3 Extending Work-Stealing for X10
The difference between Cilk and X10 computations is that

unlike Cilk, X10 does not fall into the class of fully strict mul-
tithreaded computations and, therefore, we cannot directly
apply the result from Theorem 2.3. However, X10 computa-
tions fall in the class of strict multithreaded computations
because dependence edges can only occur from descendants
to ancestors. Further, X10 computations that use async,
finish and atomic constructs form a proper subset of strict
computations that we refer to as terminally strict multi-
threaded computations. We use “terminally” to emphasize
the fact that dependencies from descendants to ancestors
only occur on termination of descendant activities, as deter-
mined by X10’s finish construct.

Specifically, a terminally strict multithreaded computa-
tion must satisfy the following properties, where Γ0, Γ1, Γ2,
. . . Γn represents a chain of activities such that Γj+1 is a
child of Γj for j = 1 . . . n:

1. In case of dependencies on descendants of a child, it
is always the case that a dependency on the child also
exists.

2. All the descendants created within the immediate scope
of finish will have a dependence edge going to the end
fin node of that finish.

3. There can be at most one outgoing dependence edge
from a node. Note that in absence of dependence edge
between two activities, they can complete in any order.

4. When an activity, say Γ0, with an outgoing depen-
dence edge completes, the dependency on Γ0 is re-
solved. An activity with incoming dependence edges
can progress only when all the edges get resolved. For
example, in Figure 1, Γ0 can progress past its end fin

instruction only when Γ1 and Γ2 complete. Note that
Γ1 and Γ2 can complete in any order.

5. A finish block completes only when all its descendant
activities complete. In case of nested finish blocks,
this will imply transitive dependency.

The Work-Stealing algorithm for scheduling X10 compu-
tations provably uses bounded space and can be shown not
to have any cyclic dependencies thus guaranteeing that com-
putation will not exhibit deadlock due to resource constraints.
Furthermore, the overall space bound will be demonstrated
to scale no greater than linearly with increasing processor
count, which is generally a precondition for practical imple-
mentation.

Each processor maintains a ready deque data structure of
threads. The ready deque has two ends: a top and a bottom.
Threads can be inserted in the bottom and removed from
either end. A processor treats its ready deque like a call
stack, pushing and popping from the bottom. Threads that
are migrated to other processors are removed from the top.

In general, a processor obtains work by removing the
thread at the bottom of its ready deque. It starts working
on the thread, call it Γa, and continues executing Γa’s in-
structions until Γa spawns, blocks, dies, or enables a blocked
thread, in which case, it performs according to the following
rules:

1. Async: If the thread Γa spawns an async child Γb,
then Γa is placed on the bottom of the ready deque,
and the processor commences work on Γb.

2. Blocks: If the thread Γa blocks due to a finish con-
struct, its processor begins work stealing. A thread
can block if there exists some live descendants from
which it has incoming dependence edges. The only
possible reason that this thread got separated from its
descendants is that it was stolen.

3. Terminates: If the thread Γa terminates, it first checks
if it enables thread Γb i.e., if Γa is the last dependency
for Γb’s finish operator. If so, Γb is inserted as the
bottommost thread in deque of Γa’s processor. Next,
Γa’s processor checks its ready deque. If the deque
contains any threads, then the processor removes and
begins work on the bottommost thread. If the ready
deque is empty, the processor begins work stealing: it
steals the topmost thread from the ready deque of a
randomly chosen processor and begins work on it.

Having outlined the rules of work stealing on a thread (activ-
ity) in X10 we now arrive at the space bound in the following
manner. We apply the rules of work stealing for fully-strict
computations in [3] to terminally-strict X10 computations
without much modification, and obtain an analogous space
bound.

Lemma 2.4. In the execution of any terminally-strict (X10)
computation by the Work-Stealing Algorithm, let us consider
any processor p and at the beginning of a given time step let
there be k number of activities in p’s ready deque. Let Γ0 be
the activity that p is working on. Let Γ1, Γ2, . . . Γk denote
the k activities ordered from bottom to top, that is, Γ1 is

231



X10 Places

Physical Nodes

X10 language defines m apping from  
X10 objects & activities to X10 places

X10 Activities + Data

X10 deploym ent defines m apping from  
virtual X10 places to physical nodes

Figure 2: X10 deployments

the bottommost and Γk is the topmost. If k > 0, then the
activities in p’s ready deque satisfy the following properties:

1. For i = 1, 2, . . . , k, activity Γi−1 is the child of Γi.
2. For i = 1, 2, . . . , k, activity Γi has not been worked

upon since it spawned Γi−1.

See section A.1 in appendix for proof.
Lemma 2.5. The Work-Stealing Algorithm for terminally-

strict X10 computations preserves the busy-leaves property.
See section A.1 in appendix for proof.

Theorem 2.6. For an X10 computation, which is a termi-
nally-strict multithreaded computation, with stack depth S1,
the Work-Stealing Algorithm run on a computer with P phys-
ical processors uses at most S1 bytes for the deque per pro-
cessor. That is, it uses total space of S1 ∗ P bytes.
Proof. Follows from Lemma 2.5 and 2.2. �

This theorem states clearly that using bounded space we
can handle any terminally-strict computation, provided that
computation requires finite stack depth. This result implies
that given S1 ∗P space in our system, we can guarantee the
progress of the X10 computation using the Work-Stealing
Algorithm and will not observe any deadlocks due to insuf-
ficient activity memory resources.

3. X10 DEPLOYMENTS, ACTIVE
MESSAGES, DOPPELGANGER MODE

3.1 X10 Deployments
As described in [6], a key feature of the X10 programming

model is the concept of a place which establishes a binding
between a set of activities and a set of shared mutable loca-
tions in a partitioned global shared address space. Places
are a virtual concept. The mapping of places to physical
processors and memories is called a deployment, as shown
in Figure 2. A deployment for an X10 program execution is
specified separately from the X10 program – it may be spec-
ified by the programmer or application end-user through the
run-time environment, or it may be selected automatically
by an X10 implementation. Though objects and activities
do not migrate across places in an X10 program, an X10
implementation is free to adaptively optimize a deployment
at run-time by migrating places across physical locations as
it sees fit.

In this section, we focus our attention on the case where
the deployment target is a cluster of uniprocessors intercon-
nected with a communication network. Even though this
case represents a restricted subset of potential X10 deploy-
ment targets, it serves as a good foundation for establishing
deadlock avoidance in the presence of bounded resources.
Figure 3 outlines a standard cluster deployment where there

R = max # 
entries in 
IN/OUT
queues 

for
Activity
Network

MEMCPU ...

Active Messages

MEMCPU

. . .
Node N0

Local + 
Shared

Data

Activ-
ities

Local + 
Shared

Data

Activ-
ities

Place P0 Place PM-1

I
N

O
U
T

Node NM-1

Activity Network

Active Messages

I
N

O
U
T

Activity Network
Interconnect
Hardware

Figure 3: Standard Cluster Deployment; One-to-one
mapping of activities and data from places to nodes

is a one-to-one mapping between X10 places P0 . . . PM−1 and
physical nodes N0 . . . NM−1 — each activity from place Pi

in the X10 program is assigned to run on node Ni’s proces-
sor in the cluster, and each object or array subregion from
place Pi is allocated in node Ni’s memory.

As indicated in Figure 3, we partition the communica-
tion software stack into an Activity Network and an Active
Message Network. The Active Message Network is used to
implement the Activity Network, and also to support im-
plicit place-remote accesses in the partitioned global address
space. Active Messages (AM)2 is a low-level lightweight
RPC mechanism that supports unordered, reliable delivery
of matched request/reply messages. The AM communica-
tion pattern is strictly Request/Reply — the only communi-
cation permitted within an AM Request handler is to send
at most one AM Reply message to the Request initiator,
and AM Reply handlers are not permitted to communicate
at all. Message injection is the only blocking operation per-
mitted within a handler. The AM model imposes a number
of usage restrictions relative to more general mechanisms
such as X10’s async, which enables it to be efficiently imple-
mented in a deadlock-free manner using a bounded amount
of buffering and minimal copying of data. Section 3.2 con-
tains a theorem proving that an Active Message network
can be implemented without deadlock and with bounded re-
source utilization. Though this deadlock-freedom guarantee
for Active Messages has been mentioned informally in the
past, we are not aware of a prior publication that contains
a proof of this result.

The Activity Network in Figure 3 is used to support the
more general inter-place interactions required by X10’s async
and finish constructs. Each node has an IN queue and OUT

queue of bounded size, R. As discussed in Section 3.3, this
resource bound can lead to physical deadlock scenarios for
certain schedules of X10 programs that are guaranteed to
never exhibit a logical deadlock.

3.2 Deadlock Freedom in Active Messages
In this section, we show how Active Messages can be im-

plemented with provable deadlock freedom and bounded re-

2The term, “active message” has been used in a number of
contexts, but for the purposes of this paper we refer to the
variant of Active Messages defined by the AM-2 [12] and
GASNet [4] specifications.
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source utilization by using two virtual networks, one for AM
Requests and one for AM Replies. Virtual networks [8] pro-
vide independent communication channels, ensuring that re-
source starvation (e.g., lack of buffer space) on one virtual
network does not prevent communication progress on the
other virtual network. Virtualization is often implemented
by multiplexing over a single physical network and maintain-
ing logically independent buffers, but other strategies are
possible. The buffer space required by each virtual network
is assumed to be fixed and usually established at program
initiation.

Generalizing, we define an AM(N) communication proto-
col to be a handler-based communication protocol which de-
livers messages of a bounded size and is implemented using a
fixed number of virtual networks V0, . . . , VN−1 of increasing
priority, and adheres to the following rules:

• All message injection operations executed outside the
dynamic context of a handler inject messages on the
lowest priority virtual network, V0.

• A handler running in response to a message received on
Vi can only inject messages on the next-higher priority
network Vi+1.

• Handlers running in response to a message received on
the highest-priority virtual network, VN−1 may never
inject messages.

• Message injection is the only blocking operation per-
mitted within a handler. Handlers are otherwise never
permitted to block indefinitely (e.g., to await resources
or communication arrival) — they must run to com-
pletion independently of other system activities, con-
suming a bounded amount of resources and issuing a
bounded number of message injections.

• Message injection operations block until resources are
available to accept the message, and any attempt to
inject a message on Vj which cannot complete immedi-
ately (e.g., due to resource starvation on that network)
must service any incoming messages on Vj , . . . , VN−1

while blocking. Incoming messages are otherwise never
serviced from within handler context.

• Each virtual network makes independent progress on
message delivery and consumes bounded resources.

Theorem 3.1. An AM(N) protocol can be implemented
without deadlock and with bounded resource utilization.

See Section A.2 in appendix for proof.
Corollary 3.1.1. Active Messages can be implemented

without deadlock and with bounded resource utilization.
Proof. Active Messages is just a special case of Theo-
rem 3.1 where N = 2:
- All AM Request messages travel on virtual network 0 (low
priority network)
- All AM Reply messages travel on virtual network 1 (high
priority network)
- AM Request handlers may inject at most one AM Reply,
and otherwise may never block.
- AM Request injections poll both networks, AM Reply in-
jections poll only the AM Reply network.
- AM Reply handlers may never inject messages or block.
�

3.3 Physical Deadlock and Doppelganger Mode
We now move from Active Messages to more general X10

activities. To illustrate the possibility of a physical deadlock

void foo (place p, ...) {

if (...) {

... // recursion termination condition

} else {

l1: finish {

l2: async (p.next()) { foo (here, ...); }

l3: async (p.next()) { foo (here, ...); }

l4: }

}

... // Other computation

}

void main () {

l5: finish async { foo (here, ...); };

}

Figure 5: Example X10 Code Fragment for Physical
Deadlock Scenario

with a simple one-to-one mapping from places to nodes, con-
sider the dynamic activity creation tree in Figure 4, for an
execution of the X10 code fragment shown in Figure 5 on
two places named P0 and P1. In this scenario, the p.next()

operator alternates between places P0 and P1. Assume that
each node has I slots available in its incoming message queue
(each of which can hold one activity while it is being pushed
over the network from a peer) and furthermore that each
node has M slots in local memory which can hold a stalled
activity while it awaits a response from a child activity
pushed to a remote node. For the sake of concreteness, as-
sume that I = M = 2 in this example.

The dynamic activity creation tree for this X10 program is
shown in Figure 4. We assume that this simple deployment
has no support for throttling the creation of remote activi-
ties. Initially P0 starts the execution of activity A0 created
in the main() method (Statement l5) with 2 empty slots for
I and M each. A0 then creates two child activities at P1

and subsequently awaits their completion (Statements l1-
l4). A0 is now placed in the Stalled Activity Buffer at place
P0, thereby reducing the number of empty slots for M to 1.
At Level 1, P1 now has 2 incoming activities (A1 and A2),
each of which again creates 2 child activities at P0 and waits
for their completion. For P1, the number of empty slots for
I is 2, but the number of empty slots for M reduces to 0
(as A1 and A2 move to stall buffer). Activities A3, A4, A5

and A6 created at Level 2 subsequently create 8 activities
at P1. Thus the number of empty slots for I and M now
becomes 0 at P0. These 8 activities recursively create 16
activities at P1 and make the number of empty slots in I
and M also equal 0 at P1. At this point the system is dead-
locked - all incoming queues are full of non-leaf activities,
and there is no remaining memory for non-leaf activities to
stall while waiting for remote children to terminate. Both
nodes are attempting to inject newly-created activities and
there is nowhere for them to go, and none of the existing
activities can be drained or retired.

Consider an activity, Ai, that was created at place Pj in
an X10 program. Note that the physical deadlock scenario
in Figure 5 arose for the case of a standard cluster deploy-
ment in which activity Ai must be scheduled at the physical
node, Nj , corresponding to Ai’s place. We will now con-
sider a modified cluster deployment in which activity Ai is
executed on some other physical node, Nk �= Nj , while still
preserving the illusion that Ai is executing at its designated
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Figure 4: Dynamic Activity Creation Tree for Physical Deadlock Scenario
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Figure 6: Cluster Deployment with Doppelgänger
Mode; One-to-many mapping of activities and one-
to-one mapping of data from places to nodes

place. As shown in Figure 6, this kind of deployment works
by allowing activities to execute in Doppelgänger Mode. As
indicated by the dotted arrow in Figure 6, when an activity
executes in Doppelgänger Mode, it is permitted to run on a
different node from the one where its place’s data is located.
Doppelgänger Mode only impacts the mapping of activities
to nodes; the mapping of data from places to nodes remains
unchanged from Figure 3 to Figure 6. Note that the map-
ping of activity Ai to remote node Nk is a deployment step
that does not impact the logical identity of Ai’s place in
the X10 program. In particular, the expression, here, will
continue to refer to place Pj for activity Ai, even when Ai

is executing on node Nk. Further details on Doppelgänger
mode are discussed in Section 3.3.

We now briefly discuss the four cases that can lead to
inter-node communication in Doppelgänger mode:

Place-local data accesses (Case 1).
All place-local data accesses in Ai executing at node Nk

(i.e., accesses to data in place Pj , which will be located at
node Nj) will have to be performed remotely via the Ac-
tive Message network since Ai is not running on node Nj .
For example, a read operation on an object field p.x or ar-
ray element A[i] that could have been performed locally
if Ai was executing on Nj will now have to be performed
remotely. Since the extra number of remote messages may
degrade performance, the heuristic algorithm in Section 4
uses Doppelgänger mode as a last resort for deadlock avoid-

ance. Note that all activity-local data for Ai can be allo-
cated and accessed at node Nk without requiring any remote
communication.

Activity creation (Case 2).
When Ai creates a child activity, the destination place

(Px, say) for the activity is specified by the X10 program’s
semantics. The heuristic algorithm in Section 4 will attempt
to create the activity at node Nx. However, if resource con-
straints do not permit this inter-node communication for
activity creation, then the heuristic algorithm will instead
create the activity at node Nk so that it too will execute in
Doppelgänger mode if Nx �= Nk.

Finish notification (Case 3).
If activity Ai enters a finish statement, the fact that Ai is

executing on node Nk will be propagated to all descendant
activities created in the scope of the finish so that their
termination notifications will be sent to node Nk rather than
node Nj .

Atomic blocks (Case 4).
Atomic blocks need special handling in Doppelgänger Mode.

If activity Ai contains an atomic statement, the implemen-
tation needs to ensure that its combination of operations on
activity-local data (on node Nk) and place-local data (on
node Nj) is performed atomically. This can be accomplished
by the following steps:

1. Copy-in: Activity Ai makes a copy of all activity-
local variables that may be read in the atomic state-
ment, for transmission from node Nk to node Nj .

2. Active Message request: Ai then sends a request
message to node Nk with a copy of the local vari-
ables from Step 1 and a pointer to the code for the
atomic statement, and blocks waiting for the reply.
Atomic statements in X10 are guaranteed to satisfy all
the constraints for active message handlers outlined in
Section 3.2, including no place-remote accesses.

3. Active Message reply: After completion of the ac-
tive message handler for the atomic statement, node
Nj sends a reply to node Nk with a copy of all activity-
local variables that may have been written in the atomic
statement.

4. Copy-out: Activity Ai copies values of the local vari-
ables received in the reply message, and then resumes
execution.
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4. DEADLOCK-FREE SCHEDULING OF
MULTI-PLACE X10 COMPUTATIONS

The multi-place scheduling algorithm (outlined in Fig-
ure 7) is a novel distributed algorithm that governs the
scheduling of X10 activities at multiple places, while main-
taining provable bounds on resource utilization at each place.
In this paper, we restrict our attention to the case where
there is exactly one processor per place, which corresponds
to a cluster of uniprocessors. Furthermore, for simplicity,
we assume the multi-place algorithm never performs work-
stealing across the cluster — once created, activities run
to completion on a given processor, although that processor
may or may not correspond to the place expression (depend-
ing on the decisions made by the scheduling algorithm at ac-
tivity creation). Future work includes expanding the multi-
place algorithm to allow work-stealing while still maintain-
ing provable resource utilization bounds per place. The com-
plete details of the algorithm cannot be covered here due to
space restrictions, so we shall focus on the portions relevant
to the proof of bounded resource utilization.

X10 supports dynamic creation of activities, and in gen-
eral the values of the place expressions associated with ac-
tivity creation are only discovered at runtime as the com-
putation unfolds – therefore scheduling decisions are made
online using a greedy heuristic. We shall use the terms local
activity and remote activity to indicate an activity which is
spawned with a place expression which respectively equals or
differs from the place of the processor executing the parent
activity.

By default, the heuristic assigns activities to the processor
hosting their semantically-specified place – local activities
are always executed on the local place, and remote activi-
ties are pushed to their target place upon creation. Once
a remote activity is successfully pushed to a remote place,
the local processor is free to continue executing the parent
activity and servicing its local deque, as the depth-first ex-
ploration of the remote activity subtree has effectively been
handed off to the remote processor. When there is resource
contention at the source or target place, the heuristic exer-
cises flow control by running remote activities on the local
processor in Doppelgänger mode.

As in the single-place scheduling algorithm, each processor
has an associated ready deque of activities which govern the
order in which the activities are processed. One important
difference we shall see is this deque allows for insertion at
a well-defined point in the middle, although this paper will
still refer to the data structure as a deque for consistency
with existing literature. Except where otherwise noted, the
processor services the deque as described in section 2.3 –
in the absence of remote async operations, activities are
serviced by the processor in depth-first order.

Additionally associated with each processor is a stalled ac-
tivity buffer (SAB), an area of memory which holds activities
that have stalled upon a finish operation waiting for the
completion of a descendant activity. Due to the depth-first
nature in which local activities are processed, an activity
can only enter the SAB if it has stalled awaiting the com-
pletion of a descendant activity that has been pushed to a
remote processor, but not yet completed.

At all times, every live activity in the system will reside in
exactly one of three areas: the processor (which executes at
most one activity at a time), the deque (where it awaits ser-

vicing by the processor) or the SAB (where a stalled activity
awaits to be reenabled by one or more remote descendant ac-
tivities). The scheduling algorithm manages the movement
of activities between these locations at each node, and the
system resource utilization at each node can be captured by
summing the contributions of activities in each area.

4.1 Useful Notations
Some useful notations as used by the algorithm in Figure 7

are defined here.

• Ai where i ∈ {1, 2, . . .} stands for an activity.

• finish(Ai) denotes the activity that contains the finish
instruction to which Ai must report completion.

• Pi denotes a place, Ni denotes a node.

• node(Ai) denotes the node hosting the activity Ai.
node(Pi) denotes the node hosting the place Pi. deque(Ni),
SAB(Ni) denote the deque and Stalled Activity Buffer
respectively for node Ni.

• Count in(Ni) denotes the counter which keeps track
of the bound R on fresh activities in the deque.
Count out(Ni) checks for the bound R on the stalled
activities in the SAB.

• The predicate Fresh(Ai) is set if Ai is a fresh activity
and it is initialized to false;

4.2 Algorithm Outline
The algorithm in Figure 7 is based on the following ideas.

Consider an activity A1 at place Pj executing at node Nj .
At an execution step, any one of the following is possible.

1. A1 creates a local activity A2 at Pj . Following the
depth-first execution rule, A1 will be pushed to bottom
of the local deque at Nj and A2 will start executing.

2. A1 creates a remote activity A2 to be executed at Pr

(where r ! = j). There are two possibilities in this case:
either the system has enough resources for Nr to accept
A2 or it does not have. In case it has enough resources,
A2 is pushed to the top of Nr’s deque. Otherwise, A2

is executed at Nj in Doppelgänger mode.

3. A1 stalls because of a finish instruction which is wait-
ing for a descendant activity to complete. Note that
due to the depth-first processing of local activities, this
can only occur when some descendant was pushed to
a remote node. In this case, A1 is moved to the SAB.

4. A1 completes its execution. It sends a completion no-
tification to activity A2 = finish(A1). If A1 was the
last dependency for the finish in A2, then A2 is en-
abled and moved out from SAB to the middle-insertion
point of the deque at the corresponding processor.

5. A1 performs a finite computation.

It is clear that at any node, the deque and SAB structures
are manipulated for managing the activities. Therefore, to
show that the X10 computation needs bounded resources
assuming bounded S1 and Smax as defined in section 2,
we should show that we will never require the deque or the
SAB to be unbounded. In the following, we outline the
ideas incorporated in the algorithm to keep the deque and
the SAB bounded.

• A deque at any node consists of activities that have
been either created locally or pushed by remote nodes.
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In case of locally created activities, they follow depth-
first execution rules thus ensuring that a bounded deque
suffices for local activities. However, we need to limit
the activities being pushed by remote nodes, otherwise
remote nodes could go on pushing activities without
regard to resource limitations at the target. The way
to handle incoming activities from remote nodes is that
the activities in the deque are distinguished as fresh or
worked-on based on the follow definition: an activity
is considered fresh if it has not moved to the processor
even once, otherwise it is considered worked-on. The
middle-insertion point is defined to be the point below
the bottommost fresh activity (if any) and the topmost
worked-on activity (if any). The activities from the
SAB that are inserted at this middle-insertion point
fall in the class of worked-on activities. Incoming ac-
tivities are accepted if and only if the number of fresh
activities is less than or equal to R, where R is a pre-
defined constant positive integer. In case an activity is
not accepted by this node, then the activity will run in
Doppelgänger mode at the remote source node. This
is taken care of by parts (B) and (D) of the algorithm
in Figure 7.

• The SAB for a node contains the stalled activities, and
therefore if we do not limit the movement of activities
to SAB, we may need an unbounded SAB. To bound
the SAB, we bound with R the number of activities
that are waiting for the completion of remote activities
(activities that were pushed to remote nodes). Note
that they should not be waiting for completion of any
local activity. These activities exactly correspond to
those activities rooting a spawn subtree that executed
one or more remote push operations and contain the
innermost finish instruction for those remote pushes.
Whenever there are R such activities in SAB and a
remote activity is created within a local finish scope,
then the node resorts to Doppelgänger mode. This is
incorporated in parts (A), (C), and (F) of the algo-
rithm in Figure 7.

• Finally, we have to consider the case when an ac-
tivity is moved to the middle-insertion point of the
deque from SAB after getting enabled. The decision
of putting the activity at the middle-insertion point
ensures that the deque cannot process any fresh activ-
ity until all the worked-on activities at that processor
have either stalled or completed. This ensures no extra
demand on the resources deque or SAB.

The only thing left to be shown is that no deadlock can
arise, if we hit the resource bounds by following the multi-
place algorithm as in Figure 7. As we have seen, whenever
the bound R is reached on deque or SAB, it is appropriately
handled by using the Doppelgänger mode where deadlock-
free Active Messages are used to perform any place-local
data accesses using fine-grained messages. Thus progress is
always ensured and no deadlock can arise in spite of the
bounded resource setup.

Theorem 4.1. The multi-place algorithm in Figure 7 uses
at most 2 ∗ R ∗ Smax + R ∗ S1 + S1 bytes of space per node
and ensures deadlock freedom.
See Section A.3 in appendix for proof.

5. RELATED WORK
While UPC [16], Titanium [10] and Co-Array Fortran [14]

follow an SPMD style control-flow model where all threads
execute the same code [9], Cilk [7], Chapel [11], Fortress [1]
and X10 choose a more flexible model and allow more gen-
eral forms of control flow among concurrent activities. This
flexibility removes the implicit co-location of data and pro-
cessing that is characteristic of the SPMD model. X10’s
async and finish are conceptually similar to Cilk’s spawn

and sync constructs. However, X10 is more general than
Cilk in that it permits a parent activity to terminate while
its child/descendant activities are still executing, thereby
enabling an outer-level finish to serve as the root for excep-
tion handling and global termination. Fortress offers library
support that enables the runtime system to distribute arrays
and to align a structured computation along the distribution
of the data. X10 is somewhat different, in that it introduces
places as a language concept and abstraction used by the
programmer to explicitly control the allocation of data and
processing. A place is similar to a locale in Chapel and a site
in Obliq [5]. Like X10, each object in Obliq is allocated and
bound to a specific site and does not move; objects are ac-
cessed though “network references that can be transmitted
from site to site without restrictions” [5]. In Obliq, arrays
cannot be distributed across multiple sites. Chapel’s model
of allocation is different from X10 and Obliq because Chapel
does not require that an object be bound to a unique place
during its lifetime or that the distribution of an array remain
fixed during its lifetime.

The Cilk-NOW project [2] explored the use of work-stealing
algorithms in a distributed-memory environment, with adap-
tive parallelism and fault-tolerance. In that system task mi-
gration was entirely pull-based (via a randomized work steal-
ing algorithm), in contrast to our algorithm which pushes
work to specific places guided by linguistically-explicit lo-
cality expressions (which Cilk lacks). To the best of our
knowledge, no formal proof for the deadlock-freedom or re-
source utilization properties in the distributed version of Cilk
has been published thus far.

The concept of Active Messages was first introduced in [17]
and later standardized in the AM-2 specification [12], and
the ideas have subsequently appeared in various forms in
a number of systems. One recent example is the GASNet
communication system [4], which serves as the communica-
tion layer for several global-address-space language compil-
ers. GASNet includes an Active Message interface modeled
on AM-2, and augmented with extensions to allow handler
concurrency through explicit atomicity control (handler-safe
locks and no-interrupt sections). The deadlock-freedom guar-
antee from Section 3.2 can be extended to other, more gen-
eral variants of Active Messages as well.

There is extensive literature on deadlock-freedom in rout-
ing algorithms for interconnect hardware and the use of
virtual networks - see [13] for a good survey. Proofs of
deadlock-freedom in routing algorithms rely upon the as-
sumption that messages arriving at a destination node are
eventually consumed – our proof can be seen as a verification
that this property is always maintained under an AM(N)
protocol, which still maintains bounded resource utilization.
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(A) Activity A1 at node N1 creates activity A2:

1. FA := finish(A2); FN := node(FA);
2. if node(A2) == N1 then // local activity

(a) Create A2 at N1. Push A1 to bottom of deque(N1) and start executing A2.

else // remote activity

(a) // Initialize doPush to true if local conditions permit a remote push operation for creating A2

doPush := (FN �= N1) || hasRemoteChildren(FA) || (Count out(N1) < R);
(b) if doPush then

i. Send AM request to create A2 as a fresh activity on node(A2)
ii. Block to await AM reply; (see (B))
iii. if reply == failure then doPush := false;

(c) if doPush then hasRemoteChildren(FA):= true; // Remember a child activity was pushed to remote node else Execute
activity A2 at node N1 in Doppelgänger mode

(B) Node N2 receives an AM request to create A2:

1. if Count in(N2) < R then

(a) Count in(N2)++ ; Fresh(A2) := true ; Put activity A2 at the top of deque(N2) ;
(b) Send success reply in response to AM request.

else Send failure reply in response to AM request.

(C) Activity A1 at N1 stalls to wait for descendants to complete:

1. if (hasRemoteChildren(A1)) then Count out(N1)++; // A1 is innermost finish for remote push
2. Move A1 to SAB(N1).

(D) Activity A2 is removed from the deque by the processor to work on:

1. if Fresh(A2) then Count in(node(A2))--; // Allow more incoming activities to be accepted.
2. Fresh(A2) := false;

(E) Activity A2 completes, and is the last living local activity in a subtree pushed from a remote node:

1. FA:= finish(A2); FN := node(FA);
2. Send completion notification for A2 to activity FA on node FN .

(F) Activity FA at Node FN receives completion notification for A2:

1. if FA is enabled then

(a) hasRemoteChildren(FA):= false; //FA is enabled means that all its descendants have completed.
(b) Move FA to middle-insertion point of deque(FN) ;

When the processor next picks up FA to work on, it will do Count out(FN)--

Figure 7: Multi-place Deadlock-free Heuristic Scheduling Algorithm

6. CONCLUSIONS
X10 provides a general dynamic parallelism model in the

setting of a virtualized partitioned memory model, and there-
fore gives programmers the ability to have dynamic paral-
lelism along with locality control. The X10 runtime system
is responsible for resource management and, as shown in this
paper, there are potential pitfalls that can lead to physical
deadlock due to unbounded resource consumption.

We addressed the problem of guaranteeing the absence
of physical deadlock in the execution of a parallel program
using the X10 async, finish and atomic constructs. We
extended previous work-stealing memory bound results for
the Cilk language [3] for a single-place execution on an SMP
to admit more general synchronization patterns in which one
activity may stall for completion of a descendant activity,
not just an immediate child as in Cilk. We introduced a new
heuristic multi-place algorithm (with a Doppelgänger mode)
for deployment on a cluster of uniprocessors that guarantees
the absence of physical deadlock in the presence of bounded
communication resources. While several language groups
have proposed constructs for combining locality control with
dynamic threading, we believe that this paper contains some
of the first results guaranteeing deadlock-free execution in
the presence of bounded resources. For future work, we
plan to combine both results to obtain a physical-deadlock-
freedom guarantee for deployments on clusters of SMPs.
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A. APPENDIX: TECHNICAL DETAILS

A.1 Deadlock Free Scheduling for Single Place
X10 Computations (Section 2)

Lemma A.1. In the execution of any terminally-strict (X10)
computation by the Work-Stealing Algorithm, let us consider
any processor p and at the beginning of a given time step let
there be k number of activities in p’s ready deque. Let Γ0 be
the activity that p is working on. Let Γ1, Γ2, . . . Γk denote
the k activities ordered from bottom to top, that is, Γ1 is
the bottommost and Γk is the topmost. If k > 0, then the
activities in p’s ready deque satisfy the following properties:

1. For i = 1, 2, . . . , k, activity Γi−1 is the child of Γi.
2. For i = 1, 2, . . . , k, activity Γi has not been worked upon

since it spawned Γi−1.

Proof. We focus on the case where a stalled activity is en-
abled in a terminally-strict (X10) computation, since the
other cases have already been addressed in the proof of
Lemma 4 in [3].

If Γ0 enables a stalled activity Γx, then either k = 0 or
the bottommost activity in p’s ready deque is Γx. This is
because an activity can be enabled only when all the de-
pendencies on descendants are resolved. A dependency is
resolved only when the activity from which there is a de-

pendence edge completes (dies). Thus, if Γ0 enables Γx, it
means that all ancestors, if any, of Γ0 between itself and
Γx have completed. If Γ0 and Γx are in same p and Γ0 en-
ables Γx, then by induction we conclude that Γx must be
the parent of Γ0 and also the bottommost. If Γ0 and Γx do
not belong to same p and Γ0 enables Γx, then by induction
the deque should have k = 0. These two statements imply
that either k = 0 or Γx is parent and bottommost. Note
that since Γ0 can enable Γx only after completing its last
instruction (due to terminally-strict property), by the end
of this time step, Γx would have been brought to p according
to the rules of the Work-Stealing Algorithm.

These conditions on the deque derived for terminally-strict
computation exactly correspond to that for fully-strict com-
putation. Therefore, we claim that the Property (1) and (2)
of the lemma are preserved for terminally-strict computa-
tions in the case when an activity is enabled. �

Lemma A.2. The Work-Stealing Algorithm for terminally-
strict X10 computations preserves the busy-leaves property.

Proof. The proof is straightforward induction on execu-
tion time. Let k, Γ0, Γ1, . . . , p be as defined in Lemma A.1.
For k=0, the lemma is vacuously true at the outset. Let
Γ′

0 denote the activity being worked on by p after the step.
Let Γ′

1, Γ
′
2 . . . Γ′

k′ denote the k′ activities in p’s ready deque
after the step. We now use Lemma A.1 and the rules of
Work-Stealing Algorithm to prove that lemma is preserved.
That is, we will show either k′ = 0 or the property holds.

If Γ0 spawns a child, then p pushes Γ0 onto the bottom of
the ready deque and commences work on the child. Γ′

0 de-
notes the child which is being worked upon. By Lemma A.1,
Γ′

0 is the leaf node of the current spawn subtree and thus
busy-leaves property is maintained.

If Γ0 stalls, then we know that Γ0 was the only activity
running on processor and k = 0. Therefore, the proces-
sor commences work stealing. The busy-leaves property is
maintained by default.

If Γ0 dies, then we have to consider two cases. If k = 0,
then the ready deque is empty, so the processor commences
work stealing and when it steals and commences work on an
activity, we have k′ = 0. Thus the lemma holds in this case.
If k > 0, the ready deque is not empty, so the processor pops
the bottommost activity off the deque and commences work
on it. Thus, by virtue of being bottommost, we can deduce
from Lemma A.1, that this is the leaf node of current spawn
subtree and thus the busy-leaves property holds.

If Γ0 enables a stalled activity Γx, then either k = 0 or
the bottommost activity in p’s ready deque is Γx. This is
because an activity can be enabled only when all the de-
pendencies on descendants are resolved. A dependency is
resolved only when the activity from which there is a de-
pendence edge completes (dies). Thus, if Γ0 enables Γx, it
means that all ancestors, if any, of Γ0 between itself and
Γx have completed. This in conjunction with Lemma A.1
implies that either k = 0 or Γx is bottommost.
If Γx is the bottommost activity in p’s ready deque, this
implicitly means that Γ0 was the last descendant with a de-
pendence edge to Γx’s next instruction. Thus, when Γx is
enabled it does not have any living descendants and thus the
busy-leaves property holds true. If k = 0, then the enabled
activity Γx is brought to the p’s ready deque and made the
bottommost in the deque. This means that Γx starts ex-
ecuting from next step, thus maintaining the busy-leaves
property.
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It is clear that all living activities for which there are no
living descendants are getting worked upon by some proces-
sor. Thus we prove the busy-leaves property.

A.2 Deadlock Freedom in Active Messages
(Section 3.2)

Theorem A.3. An AM(N) protocol can be implemented
without deadlock and with bounded resource utilization.
Proof. By definition, deadlock occurs when two or more
processes are blocked with no ability to make progress. The
only blocking operation permitted in an AM(N) protocol
is message injection, therefore it suffices to prove deadlock
cannot occur when two or more processes are blocked while
injecting messages.

The proof is by induction on decreasing virtual network
number, with the base case of VN−1. All message injec-
tion operations that block must service incoming messages
on VN−1, and handlers running in response to messages re-
ceived on VN−1 must execute and complete without con-
suming additional messaging resources. Therefore, by the
independent progress guarantee of virtual networks, VN−1

is guaranteed to eventually make progress, allowing injec-
tion operations on VN−1 to eventually succeed, proving the
base case. For the inductive case, handlers executing in
response to messages received on Vi may only block while
injecting a message on Vi+1. By the inductive hypothesis,
that injection operation will eventually succeed allowing the
handler to make progress towards completion, ensuring that
it will eventually retire and allow progress on injections into
Vi. Therefore, all message injection operations are guaran-
teed to eventually make progress, implying deadlock cannot
occur.

The resource utilization of an AM(N) protocol is com-
prised of the resources needed to implement virtual networks
V0, . . . , VN−1, plus the resources needed for any handlers si-
multaneously active on the program stack of each process.
The resource utilization of each virtual network is assumed
to be bounded at a fixed value. Handlers for messages on
Vi inject messages on Vi+1 and therefore may only be pre-
empted to service incoming messages on higher-priority net-
works Vi+1, . . . , VN−1 — therefore at most N handlers may
be active on the program stack at any time. Each such
handler consumes bounded resources, therefore the total re-
source utilization of the AM(N) protocol is bounded. �

A.3 Space Bounds for Multi-Place
Algorithm (Section 4)

Lemma A.4. A fresh activity is picked by a processor at a
node from the deque only when all the worked-on activities in
that node until that instant are either completed or stalled.
Proof. To begin with, let us recall what is a fresh activity.
A fresh activity is a term associated with an activity that
has been pushed on the deque by a remote node and has not
been executed by the processor even once. When an activity
is picked by a processor to work on, then the spawn subtree
rooted at this activity is explored in a depth first manner.
Note that the activities created locally during the course
of processing the spawn subtree are regarded as worked-on
and not fresh. The activities in SAB automatically fall in
the class of worked-on by definition.

Suppose at some instant in time at a node n, the deque
has some fresh activities denoted by set F and some worked-
on activities denoted by W. Note that fresh activities are

pushed onto the top of the deque. Therefore, the set F
is placed above the set W in the deque. Another point to
note is that the activities in SAB upon getting enabled are
inserted between F and W in the deque and are added to
the set W.

Let us now see the progress at node n from this instant
onwards. As mentioned earlier, the processor picks activities
from the bottom of deque which implies that in our case it
will pick an activity w, where w ∈ W. The case where
W is empty is similar to Case 1 below. The case F = φ
vacuously holds for all the following cases. Let W ′ = W\w.
The possible cases that may arise are as follows:

1. w completes and W ′ = φ and no activity moves to
deque from SAB: In this case, an activity in F be-
comes bottommost in the deque and is picked by the
processor.

2. w completes and W ′ �= φ: In this situation, the bot-
tommost activity will be from W ′. Hence, a worked-on
and not fresh activity will be picked by the processor.

3. w stalls and W ′ = φ and no activity moves to deque
from SAB: Here, w is moved to SAB and an activity
from F is picked to work on.

4. w stalls and W ′ �= φ : In this case, w is moved to SAB
and an activity from W ′ is picked to work on.

5. w spawns a child say wc: The activity w is pushed to
the bottom of deque and added to set W if it is not
a member already. The processor starts executing the
child activity wc.

All the cases above show that a fresh activity is picked by
a processor only when the worked-on activities in deque get
completed or stalled. �

Lemma A.5. The algorithm requires at most R ∗S1 bytes
of space per node for the SAB.
Proof. For a node N , the value of Count out(N) is incre-
mented whenever an activity has to stall waiting for comple-
tion of its descendants at remote nodes. Note that Count out
never exceeds R as can be seen from the algorithm. This
implies that at any point in time, we can have at most R
activities that are waiting for completion of their remote
descendants.

A stalled activity in SAB may also have its ancestors in
that SAB. Suppose A is an activity in the SAB at N such
that it has some ancestors in the SAB too. Then the oldest
such ancestor in the SAB will be referred to as root of A
or root(A). The ancestors may also have immediate remote
children in which case they will contribute to Count out,
otherwise if they are in SAB because of their descendants
that are waiting for remote children to finish, then they do
not contribute to Count out.

As we have seen, an upper bound of R has been enforced
on the number of activities in N that have remote descen-
dants. The fact that Count out gets decremented only when
an enabled activity that had moved to deque reaches the
processor ensures this bound. We now have to bound the
activities that reside in the SAB but do not have remote
descendants. We have the following cases to consider:

1. Count out = R and for all R activities in SAB at N ,
their root is different: In the worst possible case, the
stack depth for each of the R activities in SAB is S1.
(since the stack depth can have the maximum size of
S1 bytes by definition.) Since Count out is R, no new
activities will be moved to SAB as per the algorithm
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and, therefore, the upper bound in this case is R ∗ S1

bytes.
2. Count out = R and some activities among the R ac-

tivities share their root. In this case, the total number
of root activities for these R activities will be less than
R. Then by an argument similar to Case 1, it is clearly
seen that the upper bound on the size of SAB is smaller
than R ∗ S1 bytes.

3. Count out < R: It is straightforward to see in this case
that the size of SAB is less than R ∗ S1 bytes.

These cases cover all possibilities and therefore, the upper
bound on size of SAB at a node is R ∗ S1 bytes. �

Lemma A.6. The size of the worked-on activities in the
deque is bounded by S1 + R ∗ Smax bytes of space per node.
Proof. According to the algorithm, there are three sources
of worked-on activities in the deque at a node:

1. SAB
2. The activities spawned by worked-on activities are also

considered worked-on.
3. A fresh activity gets picked by a processor and, there-

fore, its status changes to worked-on.

Let us first consider the source of SAB. Any activity that
moves to deque from SAB after getting enabled, is pushed at
the top of current set of worked-on activities at that node.
These enabled activities can enable their ancestors in SAB
only when they are picked by processor at that node. We
know that a SAB can have a maximum of R∗S1 size, that is
at most R leaf activities. This implies that there can be no
more than R such activities in the deque that have moved
from SAB to deque but have not been picked by processor.
This implies that the size required by this set of activities is
bounded by R ∗ Smax.

Now let us consider the remaining two sources (2 and
3) above. The processor picks the bottommost activity in
the deque. It can be either a worked-on activity or a fresh
activity in case the condition of lemma A.4 is met.

During exploration of the spawn subtree rooted at bot-
tommost activity, the size of deque can grow by at most S1

bytes which is the maximum possible depth of the spawn
subtree. The Count out value at the instant when explo-
ration begins decides the number of activities that can be
pushed to SAB. If Count out value reaches R, then the node
switches to Doppelgänger mode. Thus, we see that in all
situations, sources 2 and 3 above require a maximum of S1

bytes.
We thus conclude that the space required by worked-on

activities is bounded by S1 + R ∗ Smax. �

Theorem A.7. The multi-place algorithm in Figure 7 uses
at most 2 ∗ R ∗ Smax + R ∗ S1 + S1 bytes of space per node
and ensures deadlock freedom.
Proof. We need to account for following activities in a
node:

1. Fresh activities in deque
2. Worked-on activities in deque and SAB

There is an upper bound of R on the number of fresh ac-
tivities in a deque and the size of each activity has been
bounded by Smax. Therefore, the space required by fresh
activities in the deque is bounded by R ∗ Smax bytes.

Let us consider the worked-on activities now. As shown in
lemma A.6, they are bounded by S1 + R ∗ Smax. According
to Lemma A.5, they are bounded by R ∗ S1 in SAB. Hence,
we prove the total bound of 2 ∗ R ∗ Smax + R ∗ S1 + S1 per
node.

The multi-place scheduling algorithm ensures freedom from
deadlocks that may arise due to resource bounds in case of
normal scheduling. This assurance comes from the Dop-
pelgänger mode by which we ensure that a node does not
wait on another node to accept its remote activity. Since
there is no such wait involved at any node, an activity that
has been spawned already is guaranteed to complete either
normally or by using Active Messages (which have also been
shown to be deadlock free). �
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