AstroGK: Astrophysical Gyrokinetics Code [arXiv: 1004.0279]

R. Numata^{A,*}, G. G. Howes^B, T. Tatsuno^A, M. Barnes^{C,D}, W. Dorland^A

*) rnumata@umd.edu

- A) CSCAMM & IREAP, Univ. Maryland
- B) Dept. Phys. & Astron., Univ. Iowa
- C) Rudolf Peierls Centre for Theor. Phys., Oxford Univ.
- D) EURATOM/CCFE

Gyrokinetics

AstroGK is a continuum δf gyrokinetics code

Vlasov-Landau-Maxwell

Gyrokinetic-Maxwell

Gyrokinetic Ordering

Existence of mean magnetic field allows us to reduce phase-space dimension from 6 to 5

$$(x, y, z, v_x, v_y, v_z) \rightarrow (x, y, z, v_\perp, v_\parallel)$$

Throw away gyrophase θ dependence

Gryokinetic Equation

$$\frac{\partial h}{\partial t} + \frac{\partial h}{\partial z} + \frac{1}{B_0} \{ \langle X \rangle_{\mathbf{R}}, h \} + L(h) = \frac{q f_0}{T_0} \frac{\partial \langle X \rangle_{\mathbf{R}}}{\partial t} + C(h)$$

•Field χ is obtained by taking velocity moment of *h* (Maxwell's eqns). We use a Green's function technique to solve the field equation, thus field is given.

•The Poisson bracket term is nonlinear.

•The collision operator *C* includes second order derivatives w.r.t. velocity coordinates.

5D nonlinear differential eqn

Algorithm

$$\frac{\partial h}{\partial t} + \frac{\partial h}{\partial z} + \frac{1}{B_0} \{ \langle X \rangle_{\mathbf{R}}, h \} + L(h) = \frac{q f_0}{T_0} \frac{\partial \langle X \rangle_{\mathbf{R}}}{\partial t} + C(h)$$

Implicit except nonlinear term
Compact finite difference in *z*

Inversion of bi-diagonal $N_{_{_{7}}}$ size matrix

•Fourier spectral method for nonlinear Poisson bracket FFTW2

•Finite difference and integrals for velocity derivatives in *C*

•+ Field solver: Inversion of dense N_{j} size matrix Matrix is fixed for given Δt

4

Parallelization Scheme

$$h = h(k_x, k_y, z, \lambda, E, s)$$

•Distribute distribution function data on processors

- •Number of grids varies depending on problems
 - 2D in configuration space (N ignorable)
 - Linear problem (N_{kx} , N_{ky} ignorable)

•Number of grids in each dimension is not very large

• Usually < 256

•Combined grid is used to parallelize

•Order of combination depends on user input

$$\frac{N_{k_x}N_{k_y}N_{\lambda}N_EN_s}{N_p}$$

Bottlenecks

Performance Scaling

UNIVERSITY OF

CScADS Workshop, Snowbird, Utah July 19, 2010