
MPIT Breakout Group @ CScADS 2010

Participants: 
Dorian Arnold, Bronis de Supinski, Markus Geimer, David Montoya, Heidi Poxon, Martin Schulz

During the MPIT breakout discussion the group focused on two main issues: (1) the definition of 
use cases that help to further motivate the inclusion of MPIT into the MPI standard and (2) a 
discussion on the actual API to understand its impact on tool design and possible extensions to 
cover additional needs from tool developers.

For the first part, the group collected several use cases, mainly driven by real-world experiences 
from the group participants, in which information like the one provided by MPIT would have 
been helpful. In particular we discussed the use of counters in “low-efficiency” paths in MPI (i.e., 
code segments in MPI that have to use lower efficient mechanisms or algorithms to work around 
resource contentions or similar constraints). This would help analysts to understand the 
segments of the code that stress the MPI implementation. Further, we discussed the option to 
time internal operations such as matching times or startup times between the call to MPI and 
the actual start of a message transfer. In particularly for timings, high watermarks, as intended 
by MPIT would be useful.
During the second part of the working group discussions, we looked at several of the API calls 
of MPIT with the goal of how tools could make use of them (and whether they are adequate) 
and how tools could transparently extend the offerings through MPIT, e.g., through additional 
instrumentation – a requirement voiced by several tool groups.

For the latter, we decided to suggest the inclusion of a profiling interface also for MPIT 
functions. This, combined with some extensions in the handle interface and a simplification of 
the variable detection mechanism, will allow tools to extend the MPIT offerings without much 
effort, but yet without increasing the complexity of the interface.

Second, the group felt that the option to set configuration and control variables is useful and 
should be included as well. We devised an enhanced scheme to deal with both read-only 
variables that cannot be set as well as with variables that require a global (or communicator 
specific) synchronization.

Additionally, we discussed many details of the MPIT proposal and suggested changes to 
namings (to reach a higher consistency), to allow a more flexible verbosity setting and to 
simplify the initialization and finalization. Finally, the group also addressed the question of 
whether Fortran bindings should be included. We concluded that we will need more feedback 
from the MPI/Fortran community through the MPI forum.

Moving forward, Martin Schulz will take these suggestions, use cases and comments back to 
the MPI working group on tools and will try to get them included into the MPIT draft, which will 
be presented later this year to the MPI forum. Further, discussions at CScADS have lead to 
plans to provide a prototype implementation through OpenMPI as well as an MPIT component 
for PAPI (in discussions with the PAPI group). The latter is the best path to common names for 
events across MPI implementations, which is a high priority concern for both tool developers 
and the MPI forum.


