Exceptional service in the national interest

Oh, \$#*@! Exascale!

The effect of emerging architectures on data science

CScADS Panel, August 2, 2012

Kenneth Moreland, Sandia National Laboratories

System Parameter	2011 "2018"		Factor Change	
System Peak	2 PetaFLOPS	1 ExaFLOP		500
Power	6 MW	≤ 20 MW		3
System Memory	0.3 PB	32 – 64 PB		100 – 200
Total Concurrency	225K	1B × 10	1B × 100	40,000 – 400,000
Node Performance	125 GF	1 TF	10 TF	8 – 80
Node Concurrency	12	1,000	10,000	83 – 830
Network BW	1.5 KB/s	100 GB/s	1000 GB/s	66 – 660
System Size (nodes)	18,700	1,000,000	100,000	50 – 500
I/O Capacity	15 PB	300 – 1	000 PB	20 – 67
I/O BW	0.2 TB/s	20 – 6	0 TB/s	10 – 30

System Parameter	2011	"2018"		Factor Change
System Peak	2 PetaFLOPS	1 ExaFLOP		500
Power	6 MW	≤ 20 MW		3
System Memory	0.3 PB	32 – 64 PB		100 – 200
Total Concurrency	225K	1B × 10	1B × 100	40,000 – 400,000
Node Performance	125 GF	1 TF	10 TF	8 – 80
Node Concurrency	12	1,000	10,000	83 – 830
Network BW	1.5 KB/s	100 GB/s	1000 GB/s	66 – 660
System Size (nodes)	18,700	1,000,000	100,000	50 – 500
I/O Capacity	15 PB	300 – 1	000 PB	20 – 67
I/O BW	0.2 TB/s	20 – 6	0 TB/s	10 – 30

System Parameter	2011	"2018"		Factor Change
System Peak	2 PetaFLOPS	1 ExaFLOP		500
Power	6 MW	≤ 20 MW		3
System Memory	0.3 PB	32 – 64 PB		100 – 200
Total Concurrency	225K	1B × 10	1B × 100	40,000 – 400,000
Node Performance	125 GF	1 TF	10 TF	8 – 80
Node Concurrency	12	1,000	10,000	83 – 830
Network BW	1.5 KB/s	100 GB/s	1000 GB/s	66 – 660
System Size (nodes)	18,700	1,000,000	100,000	50 – 500
I/O Capacity	15 PB	300 – 1000 PB		20 – 67
I/O BW	0.2 TB/s	20 – 6	0 TB/s	10 – 30

Exascale Programming Challenges

- At some point, domain decomposition fails
 - Too many halo cells, too much communication
- Possible new architectures and programming models
 - GPU accelerators hate decomposition
- Threaded (OpenMP) programming is easier than distributed (MPI) programming.
 - Threading needs careful planning for memory affinity (inherent in distributed)
 - Sharing memory locations invites read/write collisions (explicit in distributed)
 - PGAS will save us? I'm skeptical.
- Best practice approach: Parallel Functor application (Map, Visitor)
 - Multiple DOE projects underway: Dax (ASCR), PISTON (ASC), EAVL (LDRD)
 - If successful, minimal impact on applications
 - Might be some changes in scope of what can be done

System Parameter	2011	"2018"		Factor Change
System Peak	2 PetaFLOPS	1 ExaFLOP		500
Power	6 MW	≤ 20 MW		3
System Memory	0.3 PB	32 – 64 PB		100 – 200
Total Concurrency	225K	1B × 10	1B × 100	40,000 - 400,000
Node Performance	125 GF	1 TF	10 TF	8 – 80
Node Concurrency	12	1,000	10,000	83 – 830
Network BW	1.5 KB/s	100 GB/s	1000 GB/s	66 – 660
System Size (nodes)	18,700	1,000,000	100,000	50 – 500
I/O Capacity	15 PB	300 – 1	000 PB	20 – 67
I/O BW	0.2 TB/s	20 – 6	0 TB/s	10 – 30

Computation 1 EB/s

Node Memory 400 PB/s

Interconnect 10PB/s – 100PB/s

Computation 1 EB/s

Node Memory 400 PB/s

Interconnect (10% Staging Nodes) 10 PB/s

Computation 1 EB/s

Node Memory 400 PB/s

Interconnect (10% Staging Nodes) 10 PB/s

Off-Line Visualization

Embedded Visualization

Computation 1 EB/s

Node Memory 400 PB/s

Co-Scheduled Visualization

Interconnect (10% Staging Nodes) 10 PB/s

Off-Line Visualization

Space of Solutions

	Capability	Coupling	Footprint	Transfer	Interactive
Tightly Integrated	Low	Tight	Low	None	No
Embedded	High	Tight	High	Possible memcpy	No
Hybrid	High	Tight	Medium	Subset Hi Speed Transfer	Yes
Co- Scheduled	High	Loose	~5% Extra Nodes	Hi Speed Transfer	Yes
Off-Line	High	Loose	None	Slow Persistent Storage Cost	Yes