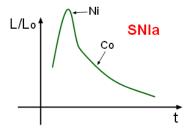
Simulations of Detonating White Dwarfs


Rainer Moll

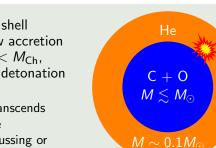
Department of Astronomy & Astrophysics University of California at Santa Cruz

CScADS workshop on data-intensive science July 30, 2012

Type 1a supernova

= nuclear reaction powered explosion of a white dwarf star (which is the remnant of a star that has completed its normal life cycle, likely consisting of carbon and oxygen in a degenerate state)

light from decay $^{56}\mathrm{Ni} \rightarrow ^{56}\mathrm{Co} \rightarrow ^{56}\mathrm{Fe}$

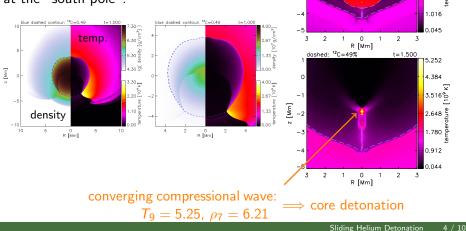


expanding blast wave

SN 1a formation channels

involving a binary companion and accretion:

- Traditional: companion spills material onto white dwarf until $M \approx M_{\text{Chandrasekhar}} = 1.4 M_{\odot}$, increase in central T and ρ \Rightarrow convection \Rightarrow thermonuclear runaway (deflagration \rightsquigarrow detonation)
- Merger of two CO white dwarfs
- Sub- $M_{\rm Ch}$ models: helium shell accumulated through slow accretion ($\sim 10^{-8} M_{\odot} \, {\rm yr}^{-1}$), $M_{\rm total} < M_{\rm Ch}$, detonation in He triggers detonation of the core
 - directly: detonation transcends the core/shell interface
 - indirectly: through focussing or collision of compressional waves


Numerical methods

CASTRO

- multi-D Eulerian hydrodynamics code
- 3D Cartesian and 2D cylindrical for axisymmetric problems
- adaptive mesh refinement
- gravity: monopole approximation using (time-dependent) radial density average
- stellar EoS based on the Helmholtz free energy, contributions from ions, radiation and electron degeneracy (Timmes & Arnett 1999, Timmes & Swesty 2000)
- nuclear reaction network: 19 isotopes
- initial models from KEPLER
 - 1D implicit Lagrangian hydrodynamics code for stellar evolution
 - C+O white dwarf merging with a helium main sequence star, helium accretion rates $\sim 10^{-8} M_\odot \, yr^{-1}$ (Woosley & Weaver 1994, Woosley & Kasen 2011)
 - convection: mixing length model

Sliding helium detonation with one detonator

⁴He detonation is set off at the "north pole", wraps around the star and converges at the "south pole":

dashed: ¹²C=49%

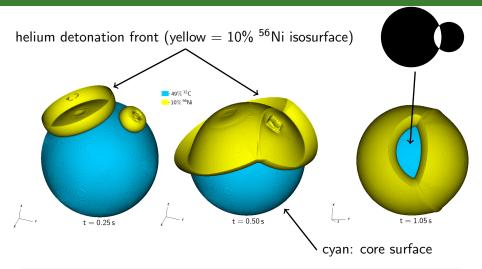
0

- 1

-3

[w] -2

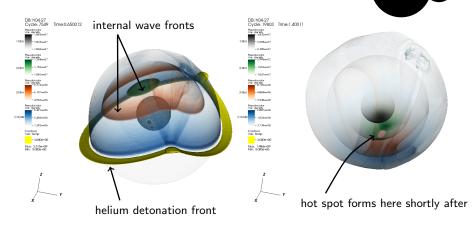
t=1.600

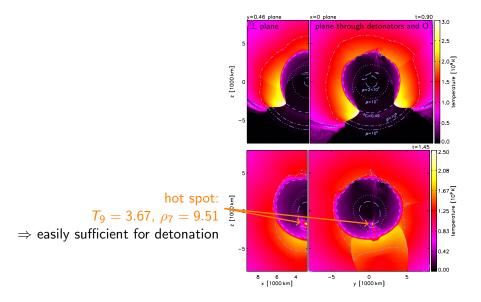

4.904

3.932

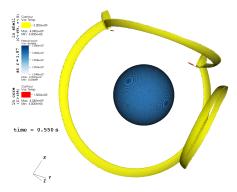
2.960

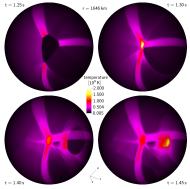
1.988


Two detonators (separation 54°, delay 0.15 s)

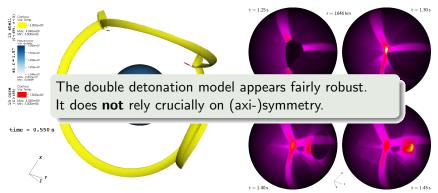

Shape of converging front depends on size: smaller \Rightarrow more elongated; i.e., it converges along a line rather than a point

Two detonators (separation 54°, delay 0.15 s)


The same shape is present when the wave fronts in the core converge:


Two detonators (separation 54°, delay 0.15s)

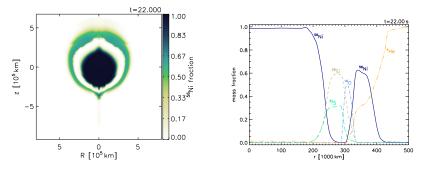
Three asynchronous detonators (90°, 100° and 120°)


detonation front (yellow) and density on a sphere through the hot spot

temperature on a sphere through the hot spot

primary hot spot: $T_9 = 5.27$, $\rho_7 = 2.19$ wave induced by first detonator converging with itself 0.15 s later: $T_9 = 1.71$, $\rho_7 = 3.82$

Three asynchronous detonators (90°, 100° and 120°)



detonation front (yellow) and density on a sphere through the hot spot

temperature on a sphere through the hot spot

primary hot spot: $T_9 = 5.27$, $\rho_7 = 2.19$ wave induced by first detonator converging with itself 0.15 s later: $T_9 = 1.71$, $\rho_7 = 3.82$

Complete detonations and yields

⁵⁶Ni mass fraction after complete core detonation

elements with mass fractions >10% along the equatorial plane

- $(1.001 + 0.078)M_{\odot}$ dwarf: $0.52M_{\odot}$ of ⁵⁶Ni, 90% produced in core
- $(0.801+0.143)M_{\odot}$ dwarf: $0.38M_{\odot}$ of 56 Ni, 80% produced in core

Computational cost and data

- Largest 3D run: $640 \times 640 \times 640$ zones, full snapshot: 64 GB, appr. 59 hours on 8000 MPI cores = 472 000 core hours
- Other hi-res 3D runs produced 16 GB or 32 GB per full snapshot (depending on symmetries), 2000 or 4000 cores for \sim 1–2 days
- $\bullet\,$ Many 2D runs, producing data on the order of hundreds of MB per snapshot, running on ${\sim}128$ cores

Big jobs at NERSC (Oakland, CA) and ORNL (Oak Ridge, TN). Small jobs at local (UC Santa Cruz) Linux cluster (total 828 cores).

Challenges:

- Data analysis (IDL): limited memory requires careful handling of data
- Visualization (Vislt): tedious, sluggish, difficult lots of tinkering necessary to find good settings, fighting with the visualization eats a lot of time!