Questions for Discussion (1)

What do users want from libraries that they don’t have now?
— Functionality
» Operations
» Types/precisions/data layouts/
* New algorithms / helping users with algorithm choice
— Automatic choice vs consulting vs education
— Ease of use
* Portability
 Interoperability
— Mixing MPI / Shared memory
* Reproducibility
¢ Maintainability
— Spend 50% time helping users. Automation will not help.
« Installability
* Languages (native vs wrappers)
» Fault tolerance
* Memory models (Distributed, shared, PGAS)
— Scalability
* Target platforms (petascale, multicore, clusters, ...)
» Fraction of peak
* Memory hierarchies / Out-of-core
¢ Hierarchical machines -> hierarchical algs & SW
— Standards to simplify...
* Interfaces
* _Mixed shared / distributed memory

Questions for Discussion (2)

* Role of Automatic code generation and
tuning?
— When is it worth starting over to write a library
generator rather than a library?
 Dealing with hiearchical machines
— Maintainability
* Invest now for longer term reduction in costs/effort
— Adapting to new architectures

— How much are users willing to accommodate
runtime tuning in their applications?

8/9/2007



Questions for Discussion (3)

* Role of vendors / SW companies
— What do they build, what do we build?
— What do they support us to build?
— Multicore as opportunity to fund building some kernels
— Open source and/or proprietary
* Licensing (LGPL vs mBSD)
* Tools for future
— Scalability testbed (eg RAMP)
— Reproducibility

Maintainability
 Hong:
—50% time helping users.
— Automation will not help.
— 3 people continuous for PETSc.
— Mike H: 3 people for Trilinos.
— Documentation alone does not eliminate.
— One-to-one is very important.

— Users are testers. Provide ideas for new
development.

8/9/2007



Maintainability, 2

e Marc:

— Tutorial for users starting from the class of problem
they want to solve.

— Database of what is available to solve my problem.
» Jack: Coordination of the libraries: DOE,

Vendors.

— How the libraries install, work together.

— Common look & feel, common accessibility.

Maintainability,3

 List of libraries minimally needed on a CSE
system.
— Include public libraries and vendor libraries.
— Guidance on the choice and use.

e Coordination of communication:
— Release announcements.
— Netlib forum for announcements.

— Single meta-site for users of CSE libraries.

* BLOG, Wiki, interactive environment, RSS feed for
announcements.

» Archive of discussions.

8/9/2007



Maintenance, 4

» Model of support is broken.

— Mature, used but not actively developed,
software is not well supported.

— DOE has large collection of very valuable
software.

— Stewardship: little is done.

— Should be an incentive to continue
development of successful SW.

— Currently penalized, since new development
IS given priority.

Coordination

» Coordination of communication:
— Is already good, and improving, can do more.
— Release announcements.
— Netlib forum for announcements.

— Single meta-site for users of CSE libraries.
« BLOG, Wiki, interactive environment, RSS feed for announcements.
* Archive of discussions.

» Workshops, events.

— ACTS Toolkit workshop:
¢ but more accessible.
< Bigger event.
— Coordinated slide show at SCXY.

e Ron:

— Coordinated distribution of CSE libraries:
¢ Single distribution. Reduce incompatibility problems.
¢ E.g, Linux distribution approach.

8/9/2007



Jack’s 4 challenges

Manycore: no contention.

Autotuning: no contention.

— Addressing several axes of performance:
» Speed, memory use, accuracy, etc.
» Saving power, reduce clock speed dynamically.

Fault-tolerance (at algorithm level).

Use of mixed precision:
— For performance & accuracy.

— For memory use & and power consumption.

System Interrogation

 Information:
— Memory available.
— CPU features: FP units, L/S overlap
— $ info: size, hierarchy, r/w policies.
— DGEMM peak.
— More.

» PAPI-like approach for uniformity.

8/9/2007



What Apps need

» Serguei:

— Standard CSE software environment:
 Autotools, BLAS, LAPACK, etc.
 Fortran compiler.

* Minimal set: RedHat package set.
* Would enable binary distribution.

— Installability

* Windows install tool.
 Binary distribution.

Matlab-like APIs

Needed for Petascale?

How seriously should we think about Matlab

(Star-P, Python, Octave) as the API? YES!
Productivity issue.

Used natively or to generate code, or both?

8/9/2007



8/9/2007

Apps needs
e Tools:

— Are our internal tools (autotuning, utilities)
useful to you?

* Debugging, optimized (speed, memory)
version of code.
* Reproducibility of results option:

— Debug mode.
— MPI_AlIReduce differences.

Apps needs
* Rich:
— Global sparse triangular solve is present bottleneck.
— Can we develop an alternative at any level:
< Better implementation.
* Brand new algorithmic approach.
* Marc: Standard benchmark targets for some critical
functionalities:
— Global sparse triangular solve.
— SpMV for several app areas.
— Bakeoffs?

» Improved feedback loop from users:
— Usage, problems.
— Formal observation events of usage.

o Julien:

— Good software engineering practices need to be transmitted to
apps developers.

— From library developers to apps developers: good design, best
nractices etc




Transition to Manycore

* Libraries migrate first.

— Need a standard mechanism to go from flat
MPI to MPI+shared, dynamically.

— App will be running MPI-only.
» Translation tools for app:
— Help migration.
— Can it be transparent to the app?

Manycore concerns

 HW model is still vague:
— Shared memory, local memory, cache coherent?

 SW model not clear.

» Parallel changes ubiquitous:

— Transition from serial to MPI: MPI forced app
framework changes, but left vast majority of complex
physics code unchanged.

— Vectorization: Happened automatically.
— Manycore parallel will not be automatic (?).

— Transition from MPI-only to MPIl+manycore: Changes
will be more disruptive, pervasive.

8/9/2007



Manycore concerns

Large-scale regeneration of libraries is easy to justify:
— impacts thousands of users

— only so many libs.

— Small relative total cost.

Similar rewrite of apps less broad impact:

— may impact fewer users,

— 100s or 1000s of apps.

— Large total cost.

— Need tools to reduce this cost.

Typical programmer in MPI code does not need expert
knowledge of MPI.

Can we abstract the parallelism of manycore so the
average programmer does not need to think in parallel?

Autotuning

Need both static and dynamic tuning.

— Need mechanism for informing tuning: e.g.,
number of iterations. See Zoltan.

Language support (e.g., C++) helpful for:
Polymorphism.
Code generation (esp for fine-grain).

8/9/2007



MPI needs

Better support for overlapping comm &
and comp.

Becomes more important for manycore
because of bandwidth issues.

Asynch doesn’t work all the time.

Even parallel language extensions (CAF,
UPC) don’t give user control over process
for most efficient execution.

Memory Requirements

Memory size is scalability limiting factor.
— Max/node is the issue.
— Doubling the number of nodes for a fixed size

problem should halve the node memory use (ideally).

Out of core is an acceptable solution?

— Is it possible on a petascale system?

— Presumes a collection of local disks.

New algorithms should have optimal memory
usage (scalable use).

Can data compression be used?

— Provided easily to users? MPI tools?

— Both lossy and non-lossy. User tunable.

8/9/2007

10



Complete app rewrite?
E.g. In Chapel/Fortress

e Ron:

— Small codes:
 Common in some areas:
— Dynamics (chem), 100s-1000s LOC.
» Possible. Weeks to months to rewrite.

— Large codes:
» Gaussian comps.
* O(100K-1M) LOC. (GAUSSIAN - O(2M) LOC)
* NWCHEM - O(1M) LOC. Requires 50 man-years to rewrite.

* Rich:

— Too large, too costly to verify correctness.
e Serguei:

— Just a few small codes.

— Most important codes too expensive.

Debugging/profiling parallel
codes

o Still really hard.

» Especially large-PE-count-only failures.
— Runs on 10s or 100s of Pes, not on 1000s or
more.
 Profiling:
— Performance.
— Memory use: Sampling capabilities.
* Esp. non-virtual memory machines.

8/9/2007

11



