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Why Performance Modeling

Understand application behavior on current
systems

Understand how applications will perform at
different scales or on future systems

Gain insight into performance bottlenecks

Identify barriers to scalability



Performance Modeling Challenges

* Performance depends on:
—architecture specific factors
—application characteristics
— memory access patterns
— instruction mix and schedule dependencies
— communication frequency and bandwidth
—input data parameters

* Analyzing performance at scale is expensive



Approach
Separate contribution of application characteristics

* Measure the application-specific factors
—static analysis
—dynamic analysis

°* Construct scalable models

* Explore interactions with hardware



Single Node Performance Modeling
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How to Extend to Parallel Programs?

* Performance scales with
—input size
—processor count
* MPI traces not suited for scalable modeling

—number and type of MPI events in the trace
vary with input size and processor count

* Prior work looked at
—identifying patterns in traces

—apply regression on the time spent in
communication and computation



A Statistical Approach
Think of program execution as a series of
computation intervals

Computation intervals bounded by two
consecutive communication events

Collect and aggregate data at interval level

Model the frequency and cost of intervals as
a function of

—input size
—processor count



An Early Preliminary Prototype
* Implemented on top of mpiP

* Modified mpiP to collect data at interval level
—intervals uniquely defined by the stack
unwinds of the two delimiting MPI primitives
 For each interval collect
—information about computation cost

—message size and communication cost for the
MPI primitive closing the interval

* Aggregate information into histograms

—histograms provide more insight than any
single value statistic (e.g. median, mean+stde\g)



Preliminary Results
* Collected data for Sweep3D on a Cray XT4 machine

* Solves a 3D cartesian geometry iq loop
neutron transport problem MPI communication

node computation

\ MPI communication




Flow Chart of Computation Intervals

* Nodes correspond to distinct MPI calls

* Edges represent different computation intervals
— labels correspond to execution frequency
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Data Collection

* For each interval collect

—distribution of message sizes
—distribution of communication times
—distribution of computation times
—several other scalar values

* Collect data for multiple input sizes and
multiple processor counts

* Goal: model the structure and scaling of data
histograms as a function of problem size and
processor count
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Distribution of Message Sizes
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Distribution of Communication Times

* Interval Recv 0x418c9a - Send 0x418c35
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Results for SMG2000

* Parallel semicoarsening multigrid solver

* Modified solver to execute a fixed number of
iterations

* Collected data at interval level for different grid
sizes and different processor counts
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Distribution of Message Sizes
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* As a funct
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Distribution of Communication Times

* As a function of grid size
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Distribution of Message Sizes

ion of processor count

* As a funct
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Distribution of Communication Times

* As a function of processor count
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Summary
* This is a work in progress

—no end-to-end predictions

—preliminary results do not contradict the
approach

—Sweep3D results show that understanding
topology is important

* Not a replacement for tracing and network
simulators

* Wants
—StackWalkerAPl and SymtabAPI
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