
Scott Biersdorff, Chee Wai Lee, Allen D. Malony, Sameer Shende, Wyatt Spear
{scottb,cheelee,malony,shende,wspear}@cs.uoregon.edu

Dept. Computer and Information Science
Performance Research Laboratory

University of Oregon

TAU Potpourri
and Working with Open Components,

Interfaces, and Environments

Potpourri: a mixture of dried petals and
spices placed in a bowl, origin 17th century,

from French, literally ‘rotten pot’

TAU Potpourri CScADS 2010

Petal and Spices

 Binary instrumentation: DyninstAPI and tau_run
 Hybrid performance measurement: TAUebs
 Library wrapping/interposition: tau_wrap, tau_exec,

PARMCI
 Heterogeneous performance measurement: TAUcuda
 HPC program development and tools: Eclipse and TAU
 Monitoring running applications: TAUmon
 Potpourri smell test

2

TAU Potpourri CScADS 2010

The Pot

3

TAU Potpourri CScADS 2010

Binary Instrumentation: DyninstAPI and tau_run

 TAU and DyninstAPI are mature technologies for
performance instrumentation, measurement and analysis

 TAU has been a long-time user of DyninstAPI
 Using DyninstAPI’s recent binary re-writing capabilities,

created a binary re-writer tool for TAU (tau_run)
 Supports TAU's performance instrumentation
 Works with TAU instrumentation selection

  files and routines based on exclude/include lists
 TAU’s measurement library (DSO) is loaded by tau_run

 Runtime (pre-execution) and binary re-writing are both supported
 Simplifies code instrumenation and tool usage greatly!
 Included on POINT LiveDVD (tau.uoregon.edu/point.iso)

4

TAU Potpourri CScADS 2010

 tau_run with NAS PBS

5

TAU Potpourri CScADS 2010

Going Forward

 Currently, tau_run only supports dynamic executables
(v6.1)

 Would like support for static binary rewriting
 Would like support for rewriting shared objects
 Validation for compilers other than gcc

 XLC, PathScale, Cray CCE, Intel, PGI,…
 Availability for more platforms

 Apple Mac OS X, Windows, IBM BG/P, AIX, …
 Instrumentation at the loop level
 Interaction with generic binary instrumentation

6

TAU Potpourri CScADS 2010

Hybrid Performance Measurement: TAUebs

7

 Integrate sampling-based and probe-based measurement
 TAUebs combines TAU, PerfSuite, and HPCToolkit

 TAU for probe-based instrumentation and measurement
 PerfSuite technology for timer-based sampling
 HPCToolkit for call stack unwinding on fully-optimized codes

 problems with StackWalkerAPI at the time ... will retry
 Foundation is TAU with linked SBM capabilities

 "Context" linking between event stack and call stack
 Augment PBM with SBM performance views

 TAUebs measurement
 Capture a trace of EBS samples, each containing:

 Timestamp, TAUkey, PCkey, hardware counters, delta time

TAU Potpourri CScADS 2010

TAUebs Data Analysis (Profile)

 Process EBS trace in two ways: profile, trace
 Merged profile analysis with ParaProf

 Augments TAU profile with PC call stack information
 Merge stacks for each sample and update TAU profile
 For all samples that match on TAUkey:

 distribute TAU inclusive time across PC locations
  Intermediate routine parent nodes will be inserted in profile

 only compute inclusive time
 Can aggregate callsites or show explicitly

 Instrumentation spectrum
 Top-level on (main) then get profile entirely from EBS
 All routines then get PC locations merged in profile

8

TAU Potpourri CScADS 2010

TAUebs Data Analysis (Trace)

 EBS to OTF trace converter
 Analyze EBS trace with powerful trace analysis tools
 For each sample

 Place timestamp in trace record
 Merge TAU event stack and PC call stack into merged call path
 Create event ID for merged call path and put in trace record
 Put collected PAPI metrics in trace record
 Can store PC locations in trace record

9

TAU Potpourri CScADS 2010

Real World Examples

 MADNESS (quantum chemistry application)
 Heavy use of C++ templates and new features
 Assembly regions/files and lots of code in header files
 Makes source instrumentation a challenge

 TAU source instrumenter could handle a fair amount
  Instrumentation overhead kicks TAU's butt

 GNU compiler instrumentation saw 2901% overhead
 many small routines (getter/setter)

 TAU source instrumentation with selection (<6%)
 introduces potential blind spots

 GPAW
 FLASH

10

TAU Potpourri CScADS 2010

TAUebs Profile for MADNESS

 11 minute run on 8 threads produces 67 MB per thread
 Significant time in .TKLOOP16 which is an assembly file
 Profile for each thread

11

uninstrumented
routines between
sample and event

TAU Potpourri CScADS 2010

TAUebs Trace for MADNESS

 Vampir call stack color-coded by file name
 Flops rate

12

TAU Potpourri CScADS 2010

GPAW (Grid-Based Projector-Augmented Wave)

 Mixed Python, C, MPI run on 128 processes
 Python performance interface and LD_PRELOAD

13

Python routines

LAPACK

TAU Potpourri CScADS 2010

Library interposition/wrapping: tau_exec, tau_wrap

 Performance evaluation tools such as TAU provide a wealth
of options to measure the performance of an application

 Need to simplify TAU usage to easily evaluate performance
properties, including I/O, memory, and communication

 Designed a new tool (tau_exec) that leverages runtime
instrumentation by pre-loading measurement libraries

 Works on dynamic executables (default under Linux)
 Substitutes I/O, MPI, and memory allocation/deallocation

routines with instrumented calls
  Interval events (e.g., time spent in write())
 Atomic events (e.g., how much memory was allocated)

 Measure I/O and memory usage
14

TAU Potpourri CScADS 2010

TAU Execution Command (tau_exec)

 Uninstrumented execution
 % mpirun –np 256 ./a.out

 Track MPI performance
 % mpirun –np 256 tau_exec ./a.out

 Track I/O and MPI performance (MPI enabled by default)
 % mpirun –np 256 tau_exec –io ./a.out

 Track memory operations
 % setenv TAU_TRACK_MEMORY_LEAKS 1
 % mpirun –np 256 tau_exec –memory ./a.out

 Track I/O performance and memory operations
 % mpirun –np 256 tau_exec –io –memory ./a.out

15

TAU Potpourri CScADS 2010

POSIX I/O Calls Supported

 Unbuffered I/O
 open, open64, close, read, write, readv, writev, creat, creat64

 Buffered I/O
  fopen, fopen64, fdopen, freopen, fclose
  fprintf, fscanf, fwrite, fread

 Communication
 socket, pipe, socketpair, bind, accept, connect
 recv, send, sendto, recvfrom, pclose

 Control
  fcntl, rewind, lseek, lseek64, fseek, dup, dup2, mkstep, tmpfile

 Asynchronous I/O
 aio_{read,write,suspend,cancel,return}, lio_listio

16

TAU Potpourri CScADS 2010

HELIOS Rotorcraft Simulation

 HPC Institute for Advanced Rotorcraft
Modeling and Simulation (HIARMS)
 Andy Wissink, US Army, Aeroflight

Dynamics Directorate, Ames Research
 Multi-language framework

 Python (SIF)
 C/C++
 Fortran

17

TAU Potpourri CScADS 2010

HELIOS OBE Test

 I/O and memory measurements with Python wrapper

18

TAU Potpourri CScADS 2010

Helios OBE Profile

19

TAU Potpourri CScADS 2010

Volume of I/O by File and Memory

20

TAU Potpourri CScADS 2010

Memory Leaks in MPI

21

TAU Potpourri CScADS 2010

Library wrapping: tau_wrap

 How to instrument an external library without source?
 Source may not be available
 Library may be too cumbersome to build (with instrumentation)

 Build a library wrapper tools
 Used PDT to parse header files
 Generate new header files with instrumention files

 Application is instrumented
 Add the -I<wrapper> directory to the command line
 C pre-processor will substitute our headers

 Redirects references at routine callsite to a wrapper call
 Wrapper internally calls the original
 Wrapper has TAU measurement code

22

TAU Potpourri CScADS 2010

HDF5 Library Wrapping

23

[sameer@zorak]$ tau_wrap hdf5.h.pdb hdf5.h -o hdf5.inst.c -f select.tau -g hdf5!

Usage : tau_wrap <pdbfile> <sourcefile> [-o <outputfile>] [-r runtimelibname] [-
g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]!
•  instrumented wrapper library source (hdf5.inst.c)!
•  instrumentation specification file (select.tau)!
•  group (hdf5)!
•  creates the wrapper/ directory!

NODE 0;CONTEXT 0;THREAD 0:!
---!
%Time Exclusive Inclusive #Call #Subrs Inclusive Name!
 msec total msec usec/call!
---!
100.0 0.057 1 1 13 1236 int main(void) C!
 70.8 0.875 0.875 1 0 875 hid_t H5Fcreate()!
 9.7 0.12 0.12 1 0 120 herr_t H5Fclose()!
 6.0 0.074 0.074 1 0 74 hid_t H5Dcreate()!
 3.1 0.038 0.038 1 0 38 herr_t H5Dwrite()!
 2.6 0.032 0.032 1 0 32 herr_t H5Dclose()!
 2.1 0.026 0.026 1 0 26 herr_t H5check_version()!
 0.6 0.008 0.008 1 0 8 hid_t H5Screate_simple()!
 0.2 0.002 0.002 1 0 2 herr_t H5Tset_order()!
 0.2 0.002 0.002 1 0 2 hid_t H5Tcopy()!
 0.1 0.001 0.001 1 0 1 herr_t H5Sclose()!
 0.1 0.001 0.001 2 0 0 herr_t H5open()!
 0.0 0 0 1 0 0 herr_t H5Tclose()!

TAU Potpourri CScADS 2010

NWChem and One-sided Communication

 NWChem relies on Global Arrays (GA)
 GA is a PGAS programming model
 provides a global view of a physically distributed array
 one-sided access to arbitrary patches of data
 developed as a library
  fully interoperable with MPI

 Aggregate Remote Memory Copy Interface (ARMCI) is the
 GA communication substrate forone-sided communication
 portable high-performance one-sided communication library
  rich set of remote memory access primitives

 Difficult to test representative workloads for NWChem
 Lack of use cases for one-side programming models

24

TAU Potpourri CScADS 2010

NWChem Characterization

 Strong-scaling of modest problems helps to understand the
behavior of larger scientifically significant problems
  represent behavior of real calculations on future systems

 Understand interplay between data-server and compute
processes as a function of scaling
 Large numerical computation per node at small scale can obscure

the cost of maintaining passive-target progress
 Larger scale decreases numerical work per node and increases

the fragmentation of data, increasing messages
 Vary #nodes, cores-per-node, and memory buffer pinning

 Understand trade-off of core allocation
 all to computation versus some to communication

25

TAU Potpourri CScADS 2010

NWChem Instrumentation

 Source-base instrumentation of NWChem application
routines

 Developed an ARMCI interposition library (PARMCI)
 defines weak symbols and name-shifted PARMCI interface
 similar to PMPI for MPI

 Developed a TAU PARMCI library
  intervals events around interface routines
 atomic events to capture communication size and destination

 Wrapped external libraries
 BLAS (DGEMM)

 Need portable instrumentation to conduct cross-platform
experiments

26

TAU Potpourri CScADS 2010

FUSION Tests with Varying Cores

 Scaling on 24, 32, 48, 64, 96 and 128 nodes
 Test on 8 and 7 cores with pinning disabled

 Dedicated data server with 7 cores
 Relative ARMI communication overhead increases with

greater number of nodes (cores)

27

TAU Potpourri CScADS 2010

Intrepid Tests

 Scaling on 64, 128, 256 and 512 nodes
 Tests with interrupt or communication helper thread (CHT)

 CHT requires a core to be allocated
 ARMCI calls are barely noticeable
 DAXPY calculation shows up more
 CHT performs better in both SMP and DUAL modes

28

TAU Potpourri CScADS 2010

Heterogeneous Systems Measurement: TAUcuda

 Want to create performance views that capture
heterogeneous concurrency and execution behavior
 Reflect interactions between heterogeneous parts
 Capture performance semantics relative to computation model
 Assimilate performance for all execution paths for shared view

 What perspective do we have of the parts?
 Determines the semantics of the measurement data
 Determines assumptions about behavior and interactions
 Performance views may have to work with reduced data

 Need to work with heterogeneous system components
 Developed TAUcuda for CUDA performance measurement

 TAUcuda v1 discussed at CScADS 2009
29

TAU Potpourri CScADS 2010

TAUcuda Performance Measurement (Version 2)

 Overcome TAUcuda (v1) deficiencies
 Required source code instrumentation
 Event interface only perspectives

 could not see memory transfer or CUDA system execution
 CUDA system architecture

  Implemented by CUDA libraries
 driver and device (cuXXX) libraries
  runtime (cudaYYY) library

 Tools support (Parallel Nsight (Nexus), CUDA Profiler)
 not intended to integrate with other HPC performance tools

 TAUcuda (v2) built on experimental Linux CUDA driver
 Linux CUDA driver R190.86 supports a callback interface!!!

30

TAU Potpourri CScADS 2010

TAUcuda Architecture

TAU
events

TAUcuda
events

31

TAU Potpourri CScADS 2010

CUDA Linpack Profile (4 processes, 4 GPUs)

 Measure performance of heterogeneous parallel applications
 GPU-accelerated Linpack benchmark (M. Fatica, NVIDIA)

32

TAU Potpourri CScADS 2010

CUDA Linpack Trace

33
MPI communication (yellow) CUDA memory transfer (white)

TAU Potpourri CScADS 2010

SHOC Stencil2D (512 iterations, 4 CPUxGPU)

 Scalable HeterOgenerous Computing benchmark suite
 CUDA / OpenCL kernels and microbenchmarks (ORNL)

34

CUDA memory transfer (white)

TAU Potpourri CScADS 2010

TAU and Eclipse

 How to make performance measurement, analysis, and
tuning a part of the software development cycle?

 Multi-year work with Eclipse IDE (www.eclipse.org)
 Benefits: portable, project transition: familiar interface, supports

multiple languages (Java, C/C++, Fortran, …)
 Features: syntax highlighting, refactoring, code management
 Modular plug-in based architecture allows for easy extension
 Environments: JDT, CDT, PTP (www.eclipse.org/{jdt,cdt,ptp})

 High-performance software development environments
  IDE features for parallel programming + parallel tools
 Eclipse PTP: integrate features and interface with parallel tools

35

TAU Potpourri CScADS 2010

TAU and Eclipse

 Provide an interface for configuring TAU’s automatic
instrumentation within Eclipse’s build system

 Manage runtime configuration settings and environment
variables for execution of TAU instrumented programs

36

TAU Potpourri CScADS 2010

Integration Features

 Chose different TAU configurations
 Select options for control of

instrumentation and compilation
 Integrated interface for generating and

choosing selective instrumentation
 PAPI counter selection
 Profile data generated in Eclipse

is stored in a PerfDMF database
 Performance databases can be

browsed from within Eclipse
 Trials loaded in the ParaProf

 Source callback allows quick navigation
37

TAU Potpourri CScADS 2010

Dynamic Tool Definitions

 Developed External Tools Framework (ETFw)
  Initially to extend and generalize the TAU plug-ins
 Considered for general tool integration in Eclipse

 TAU plug-ins’ functionality was generalized to XML for:
 Portability and ease of modification
 Simpler alternative to Eclipse plug-in for tool integration
 Use additionally for workflow creation

 Tools selected /configured in a launch configuration
window

 ETFx adds Eclipse support for analysis tools including:
 Valgrind, PerfSuite, Scalasca, VampirTrace

 Other tool developers are leveraging the ETFw
38

TAU Potpourri CScADS 2010

Monitoring running Applications: TAUmon

 Scalable access to a running application’s performance
information is valuable

 Access can happen after an application completes (but
before parallel teardown) or while an application is still
running

 Two-way access needed for support of advanced operations
 TAUmon

 Design as a transport-neutral application monitoring framework
 Base on prior /existing work with various transport systems:

 Supermon, MRNet, MPI
 Recent work by Chee Wai Lee

39

TAU Potpourri CScADS 2010

Overall design principles

40

 Modular and transparent access to parallel transport systems
 Support for minimal user intervention with different system-

specific launch mechanisms
 Modular support for scalable monitoring operations

 Based on aggregation algorithms and techniques
 Simple overall statistics: mean, min, max, standard deviation
 Histograms
 Clustering results (various types)

 Modular support for data delivery to output locations
 Local or remote visualization/analysis tools
 Local or remote storage

TAU Potpourri CScADS 2010

Current implementation and API

 TAU_ONLINE_DUMP() collective operations in
application
 Called by all thread / processes
 Works with parallel profiles

 Appropriate version of TAU selected for transport system
 User instruments application with TAU support for desired

monitoring transport system
 User submits instrumented application to parallel job system
 Other launch systems must be submitted along with the

application to the job scheduler as needed
 Currently supported through different machine-specific job-

submission scripts
41

TAU Potpourri CScADS 2010

TAUmon and MRNet

 Overview
 Scripts set up runtime

infrastructure
 TAU frontend coordinates

gathering operations when
requested

 Application backends
collectively initiate operations
in a push-based approach

 MRNet tree nodes facilitate
scalable gather operations

42

TAU Potpourri CScADS 2010

MRNet Network Configuration

 Scripts used to set up MRNet network configuration
 Given P = number of cores for the application, the user can

choose an appropriate N = number of tree nodes and K =
fanout for deciding how to allocate sufficient computing
resources for both application and MRNet

 Number of network leaves can be computed as (N/K)*(K-1)
 Probe processes discover and partition computing resources

between the application and MRNet
 mrnet_topgen utility will write a topology file given K and N

and a list of processor hosts available exclusively for MRNet
 TAU frontend reads topology file to create the MRNet tree and

then write a new file to inform application how it can connect
to the leaves of the tree

43

TAU Potpourri CScADS 2010

Monitoring Operation with MRNet

 Application collectively invokes
TAU_ONLINE_DUMP() to start
monitoring operations using
current performance information

 TAU data is accessed and sent
through MRNet’s
communication API via streams
and filters

 Filters perform appropriate
aggregation operations on data

 TAU frontend is responsible for
collecting the data, storing it, and
eventual delivery to a consumer

44

TAU Potpourri CScADS 2010

Experiences with MRNet - 1

 Parallel system-specific (e.g. Cray XT5 and BG/P) launch
mechanisms required

 Key technical challenges:
 Efficient data offload from application to MRNet tree
 Support for user control of MRNet tree for performance

 Other challenges:
 Current compiler-related incompatibility on the Cray
 Providing uniform launch scripts across different parallel

machines

45

TAU Potpourri CScADS 2010

Experiences with MRNet - 2

 Extra computing resources must be dedicated to MRNet tree
 This can be viewed as an advantage or limitation

 Resources required are system-dependent:
 On Cray systems, MRNet front-end resides on login node,

intermediate tree nodes reside on dedicated (set aside by user)
compute nodes, application processes (backends) reside on the
remaining compute nodes

 On BG/P systems, MRNet front-end (and possibly some tree
nodes) reside on login node, intermediate tree nodes reside on IO
nodes (not known a-priori until after compute nodes are
launched), backends reside on compute nodes

46

TAU Potpourri CScADS 2010

TAUmon and MPI

 Also developing TAUmon to use MPI-based transport
 No separate launch mechanisms required
 Parallel gather operations implemented as a binomial heap with

staged MPI point-to-point calls (Rank 0 serves as root)
 Limitations:

 Application shares the same parallel infrastructure with
monitoring transport

 Monitoring operations may cause performance intrusion
 Currently, no flexibility for user control of transport network

configuration

47

TAU Potpourri CScADS 2010

TAUMon: Early results with PFLOTRAN (Cray)

 MRNet as transport
 Only exclusive time is being monitored

48

XT5 Nodes
(Total)

Cores
(Total)

Cores
(Application Only)

Mean Aggregation
Time
(per iteration)

Histogram
Generation Time
(per iteration)

374 4,488 4,104 0.2204s 0.07313s

559 6,708 6,144 0.3308s 0.1411s

746 8,952 8,196 0.4586s 0.1864s

1,118 13,416 12,288 0.6439s 0.2839s

TAU Potpourri CScADS 2010

TAUMon: Early results with PFLOTRAN (Cray)

 MPI as transport
 Only exclusive time is being monitored

49

XT5 Nodes Cores Unification Time
(per iteration)

Mean
Aggregation
Time
(per iteration)

Histogram
Generation
Time
(per iteration)

Total Operation
Time
(per iteration)

342 4,104 0.02514s 0.01677s 2.339s 2.384s

512 6,144 0.02244s 0.02215s 2.06s 2.115s

683 8,196 0.04067s 0.03347s 3.651s 4.278s

1,024 12,288 0.07241s 0.02621s 0.8643s 0.9676s

1,366 16,392 0.03382s 0.01431s 1.861s 3.053s

2,048 24,576 0.02976s 0.03569s 0.6238s 0.6921s

TAU Potpourri CScADS 2010

TAUMon: Early results with PFLOTRAN (Cray)

 MRNet as transport
 4104 cores running with 374 extra cores for MRNet transport

 Each line bar shows the mean profile of an iteration

50

TAU Potpourri CScADS 2010

TAUmon: Early visualization with ParaProf

 A quick side-by-side look
at data monitored using
MPI (left column) and
MRNet (right column)

 MPI_Allreduce (blue
triangle) appears to grow
inordinately over time
when PFLOTRAN is
executed on 8,196 cores

51

TAU Potpourri CScADS 2010

Support Acknowledgements

 Department of Energy (DOE)
  Office of Science
  ASC/NNSA

 Department of Defense (DoD)
  HPC Modernization Office (HPCMO)

 NSF Software Development for Cyberinfrastructure (SDCI)
 Research Centre Juelich
 Argonne National Laboratory
 Technical University Dresden
  ParaTools, Inc.
 NVIDIA

52

