System Software Research for Extreme-Scale Computing

Approved for Public Release

CScADS Workshop

July 19-22, 2010

James H. Laros III Sandia National Labs

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Team Members

- · James Laros
- · Sue Kelly
- · Ron Oldfield
- · Ron Brightwell
- · Kevin Pedretti
- · Kurt Ferreira
- · Rolf Riesen
- · Todd Kordenbrock

Outline of Our Plans for the INCITE Allocation

INCITE provides platforms necessary to continue research in system software

- · Research Activities Briefly
 - Lightweight Kernel OS and Virtualization
 - · Kitten (Sandia) and Palacios VMM (from North Western University)
 - · Less than 5% performance impact on applications
 - Resilience
 - · Redundant MPI
 - · At very large scale reduces runtime and total resource usages
 - Scalable I/O
 - Leverage available compute/service node resources for I/O caching and data processing
 - Power Efficiency and Utilization
 - · Goal: Reduce power use while maintaining performance
 - Debugging
 - · Fast debugging capability for light-weight kernels

Application Power and Frequency Analysis

Motivation

- Power is one of or the most important considerations in fielding current and next generation HPC systems.
- HPC application power use and factors impacting this use are not well studied.
- Power saving techniques used in commodity operating systems will greatly impact HPC application performance.

Modifications to RAS and Catamount to support power savings

RAS

•

- Added instrumentation and collection capabilities to RAS
- Catamount
 - · Power savings during OS idle, per core
 - · OS-level frequency scaling capability
 - · User space library interface to frequency scaling
 - · MPI profiling layer instrumentation

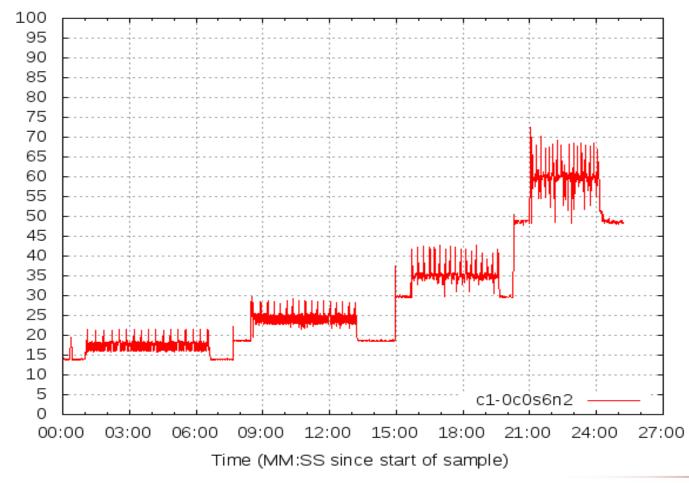
Power Frequency and Analysis Phase 1

Based on previous power analysis studies

Laros et.al. "Topics on Measuring Real Power Usage on High Performance Computing Platforms"

Analyze performance vs. power efficiency (at scale)

STATIC frequency modification during application run-time.


· Procedure

•

- Execute application suite using a range of Pstates defining both frequency and input voltage of CPU.
- Collect power usage during runs and analyze total energy use vs. application run-time
- · Our early results show a very favorable trade-off!!

Power Frequency Analysis: LAAMPs Small scale results of multiple LAAMPs runs

Watts (W)

Power Frequency and Analysis Phase 2

- Analyze performance vs. power efficiency (at scale)
 - **DYNAMIC** frequency modification during application run-time
 - DYNAMIC frequency modification defined as deterministic frequency change driven by application characteristics. Pstate change during MPI barrier for example

Phase 3 testing, if necessary, will be based on Phase 1 and 2 analysis

Additionally, power data will be collected during a range of other systems software testing accomplished as part of this overall project

Additional Information

For information about the other research topics mentioned see:

https://cfwebprod.sandia.gov/cfdocs/CCIM/main.cfm

