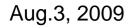
Multiresolution computing platform for nuclear energy density functional

Junchen Pei, George Fann, Witek Nazarewicz University of Tennessee / Oak Ridge National Lab

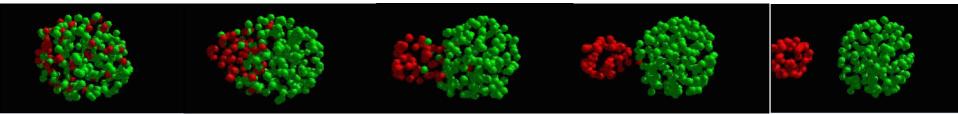
Supported by DOE's SciDAC UNEDF Project

CScADS 2009 Workshop, Tahoe, CA



Nuclear EDF computing

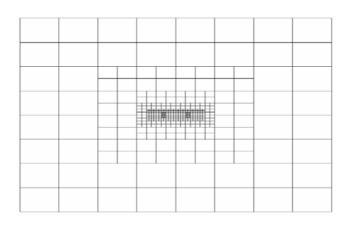
- Most nuclear physics codes are based on the HO basis expansion method. Precision not guaranteed in case of weakly-bound or very large deformations.
- Not suitable for leadership computing, not easily parallelizable
- 2D coordinate-space Hartree-Fock-Bogoliubov code was based on B-Spline techniques: HFB-AX
- 3D coordinate-space HFB is not available. Developing MADNESS-HFB
- Applications: complex nuclear fission, fusion process.



MADNESS

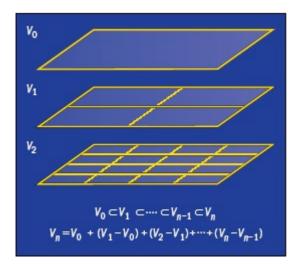
- Multiresolution ADaptive Numerical Environment for Scientific Simulation
- A collaborative endeavor of mathematics (George Fann) and computational chemistry (Robert Harrison)
- Computing using leadership-class supercomputers: high-precision, scalable, portable
- Applications include: chemistry, atomic and molecular physics.

material science, and nuclear structure.



Mathematics

Multiresolution



Approximation using Alpert's multiwavelets

Function represented by 2 methods: 1.scaling function basis

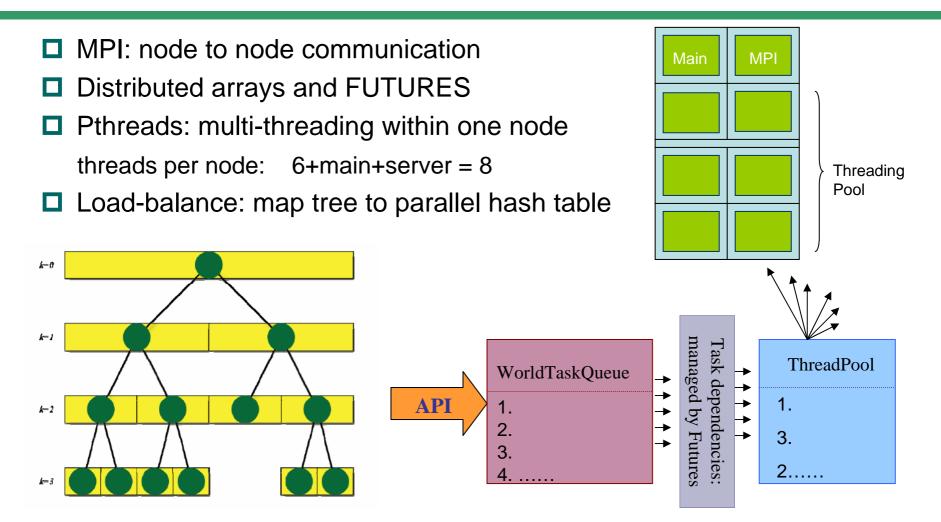
2. wavelet basis.

$$f^{n}(x) = \sum_{l=0}^{2^{n}-1} \sum_{i=0}^{k=1} s_{il}^{n} \phi_{il}^{n}(x)$$
$$f^{n}(x) = \sum_{i=0}^{k-1} s_{i0}^{0} \phi_{i0}^{0}(x) + \sum_{n=0\dots} \sum_{l=0}^{2^{n}-1} \sum_{i=0}^{k=1} \frac{d_{il}^{n}}{d_{il}^{n}} \psi_{il}^{n}(x)$$

Low-separation rank: (e.g., optimized approx of Green functions with Gaussians, Beylkin-Mohlenkamp, Harrison)

$$f(x_{1,...,x_{n}}) = \sum_{l=1}^{m} \sigma_{l} \prod_{i=1}^{n} f_{i}^{(l)}(x_{i}) + O(\epsilon)$$
$$\|f_{i}^{(l)}\|_{2} = 1 \qquad \sigma_{l} > 0$$

Parallel computing strategy



Solving Schrodinger Equation

Solving Schrödinger Equation (integral form, Kalos):

$$\begin{pmatrix} -\frac{1}{2}\nabla^2 + V \end{pmatrix} \Psi = E\Psi$$

$$\Psi = -2\left(-\nabla^2 - 2E\right)^{-1}V\Psi$$

$$= -2G^*\left(V\Psi\right)$$

$$\left(G^*f\right)(r) = \int ds \frac{e^{-k|r-s|}}{4\pi |r-s|}f(s) \text{ in } 3\text{D} \text{ ; } k^2 = -2E$$

Approximate the bound-state Helmholtz operator using Gaussians:

Spin-orbit coupling implemented in nuclear physics

r

Solving HFB

Superfluidity with pairing

$$\begin{pmatrix} h(\boldsymbol{r}) - \mu_{\uparrow} & \Delta(\boldsymbol{r}) \\ \Delta^{\dagger}(\boldsymbol{r}) & -h(\boldsymbol{r}) + \mu_{\downarrow} \end{pmatrix} \begin{pmatrix} u_{i}(\boldsymbol{r}) \\ v_{i}(\boldsymbol{r}) \end{pmatrix} = E_{i} \begin{pmatrix} u_{i}(\boldsymbol{r}) \\ v_{i}(\boldsymbol{r}) \end{pmatrix}$$

Particle number condition

$$N_{\uparrow} = \sum_{-E_{cut} < E_i < 0} \int |u_i(\mathbf{r})|^2$$

$$N_{\downarrow} = \sum_{0 < E_i < E_{cut}} \int |v_i(\mathbf{r})|^2$$

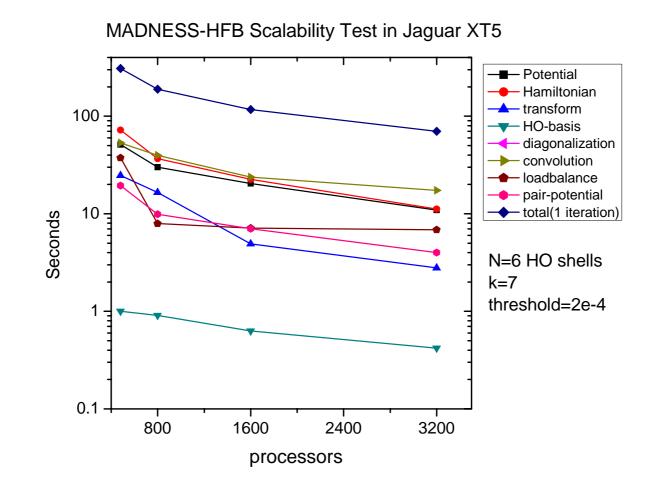
➢Initial guess Wavefunctions

- ➤Construct Hamiltonian
- Diagonalization
- Improve approximations by applications of BS Helmholtz kernel

>Iteration until convergence

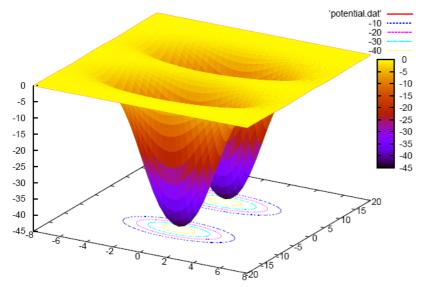
$$\begin{split} \text{SLDA density functional:} \quad \mathcal{E}(\mathbf{r}) &= \alpha \frac{\tau_c(\mathbf{r})}{2} + \beta \frac{3(3\pi^2)^{2/3}n^{5/3}(\mathbf{r})}{10} + g_{e\!f\!f}(\mathbf{r})|\nu_c(\mathbf{r})|^2 \\ &+ V_{ext}(\mathbf{r})n(\mathbf{r}), \end{split}$$

HFB (prelim, 8/2/2009)



Multiresolution Nuclear EDF -- J.C.Pei

Two-cosh potential test



Similar to nuclear fission problem

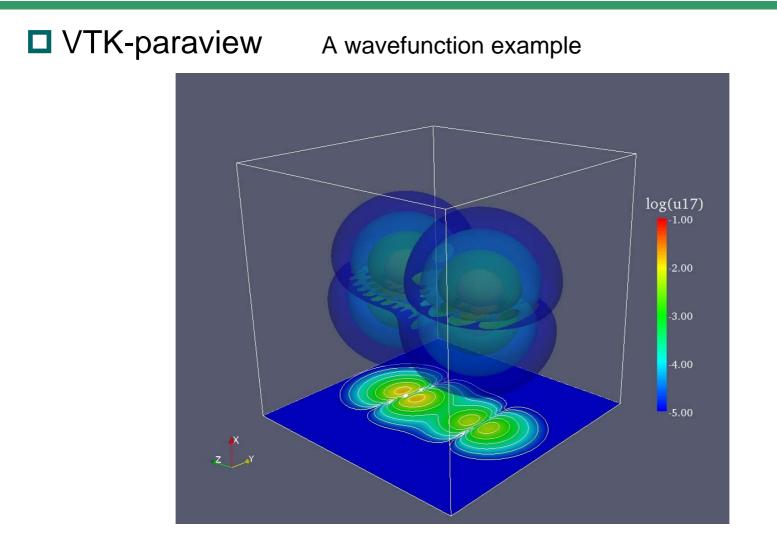
$$V_{so} = -\sqrt{-1}\lambda_0 \left(\frac{h}{2mc}\right)^2 \nabla V \bullet (\sigma \times \nabla)$$

$$h = -\frac{\hbar^2}{2m} \nabla^2 + V_{2\cosh}(x, y, z) + V_{so}(x, y, z)$$

Precision Test with spin-orbit					
State No.	Ω^{π}	HO	HO	B-spline	Wavelets
		$N_{sh}=20$	$N_{sh}=30$	h = 0.6	
1	$1/2^{+}$	-22.23916	-22.24008	-22.24011	-22.24011
2	$1/2^{-}$	-22.23816	-22.23995	-22.23998	-22.23998
3	$1/2^{+}$	-9.43145	-9.43659	-9.43663	-9.43662
4	$3/2^{-}$	-9.42314	-9.43199	-9.43203	-9.43202
5	$3/2^{+}$	-9.42561	-9.43078	-9.43081	-9.43080
6	$1/2^{-}$	-9.41931	-9.42783	-9.42788	-9.42788
7	$1/2^{+}$	-8.77250	-8.77825	-8.77828	-8.77828
8	$1/2^{-}$	-8.76475	-8.77380	-8.77384	-8.77383
9	$1/2^{+}$	-1.70727	-1.72405	-1.72506	-1.72516
10	$1/2^{-}$	-1.49222	-1.52490	-1.52675	-1.52693

Arional Laboratory

Visualization



Multiresolution Nuclear EDF -- J.C.Pei

Outlook

- 1. Target is to develop an accurate, scalable, portable 3D nuclear DFT solver. Preliminary two-cosh potential tests have done.
- 2. HFB solver with bound-state solutions has been implemented.
- 3. Outgoing boundary condition is being developing to describe continuum effects and resonance states.

UNEDF SciDAC

Thanks

- Robert Harrison.
- Judith Hill for the 3-D orbit VTK code and plots.

