
8/9/2007

1

Questions for Discussion (1)

– (3,3) Scalability (Ex: MHD)
Target platforms (petascale multicore clusters• Target platforms (petascale, multicore, clusters,
…) (beyond 1000, 10K procs, plan for more)

• Memory scalability, not just performance
– Important on Petascale

• Fraction of peak
• Memory hierarchies / Out-of-core
• Hierarchical machines -> hierarchical algs & SW

(PETSC scaling on Jaguar, multicore)
– Standards to simplify…

• Interfaces
• Mixed shared / distributed memory

Questions for Discussion (2)

• What do users want from libraries that they don’t
have now? (EX: MHD fusion transport)have now? (EX: MHD, fusion transport)
– Functionality

• Operations (many small matrices)
• Types/precisions/data layouts/ (quad for fusion transport)
• New algorithms / helping users with algorithm choice

– Automatic choice vs consulting vs education
• New preconditioners substitute user’s own• New preconditioners, substitute user s own
• Support for verification (condition estimates, error bounds,

whenever possible, how to express error bars (on error
bars…))

8/9/2007

2

Questions for Discussion (3)
• What do users want from libraries that they don’t have now? (EX:

MHD)
Ease of use– Ease of use

• (1,1) Portability, ubiquity (from development to production platforms)
• Interoperability

– Mixing MPI / Shared memory
– Need to mix libraries, legacy code, new code in new languages

• Reproducibility
• Maintainability
• (2,?) Instalability (easy build system, get right versions, impact on tuning)
• Languages (native vs wrappers, F77/F90, C, Python)
• Fault tolerance (~1 day enough?) (need user survey from NERSC,

ORNL)ORNL,…)
• Memory models (Distributed, shared, PGAS)
• Productivity:

– Easy to use, if slower version, for development, plus easy path to
substitute high performance versions

– Python to prototype
• Debug support

– Automatically capturing test cases that fail (correctness or
performance)

Questions for Discussion (4)
• Role of Automatic code generation and tuning?

– When is it worth starting over to write a library generator rather than a library?
• Dealing with hierarchical machines

– What notation/language/annotations do we use to express and explore the tuning space?
• What do we do, what do we leave to the compiler community? To the vendor?What do we do, what do we leave to the compiler community? To the vendor?

– Maintainability
• Invest now for longer term reduction in costs/effort

– Debuggability
• How to debug if generated code is unreadable?
• What is right level of abstraction, below which readability doesn’t matter

– The higher the better
• Debuggers need to deal with mixed languages (they do now)
• Role of assertions

– Adapting to new architectures
• Multicore, GPU (new memory bottlenecks), FPGA
• What are tech trends that we have to live with?
• New algorithms (bisection, any others?)g (y)

– How much are users willing to accommodate runtime tuning in their applications?
• Good idea if many simillar problems solved
• User annotates to help collection of workload information (including phases of workload)

– Integrate use of performance monitors to identify bottlenecks, help tuning
• Capture test cases automatically

– Sketching to generate correct optimized code from simple standard implementation
• Need to be confident of correctness
• “Torture test” code still needed

– Division of labor between compiler / library team

8/9/2007

3

Questions for Discussion (5)

• Role of vendors / SW companies
What do they build what do we build?– What do they build, what do we build?

– What do they support us to build?
– Multicore as opportunity to fund building some kernels
– Open source and/or proprietary

• Licensing (LGPL vs mBSD)

• Tools for futureTools for future
– Scalability testbed (eg RAMP)
– Reproducibility (need vendor/OS support!)

Conclusions (for DOE)
• You should invest in…

– Meet user goals
• Scalability, even if code mods necessary
• Incremental approach, with feedback, preserve ubiquity

– Do this by
• Automation…

– Kernels, based on past success
» Workshop with hands-on user code to tune

– Whole scale generation
– Will ultimately lower maintenance costs

• Tools to simplify rough performance modeling (2x good enough)
– Preparation for Petascale
– Libraries should come with performance models
– Integrate into tools like TAU, IMP, …

• Success metric: size of code base for multiple platforms, fraction of peak, other
performance metrics vs older hand-written code

– Code maintenance is expense, meanwhile keep funded
• Automation of

– Configuration, testing across environments, coverageg , g , g
– Reusable for application codes

• Success Metric: fewer FTEs, fewer bug reports
– Collect test cases (a la sparse matrix collections) for performance tuning, kernels

and full apps
– Need computer resources for testing, not just science (pre – INCITE)

– Workshops with application / library teams
• Tuning, performance modeling

