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Extreme Complexity = Ultrascale

e Scientific visualization faces problems more

complex than ever before by orders of magnitude
— Complexity: carbon, biogeochemical, evolution, coupling

— Number of variables: >100

— Temporal resolution + span: every 3 min, 1000 years (1.75e8)

— Spatial resolution: 22km -2 1km
— Size of ensemble runs : 50 - 1000
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What can you show me?

e A critical gap:
— What do you want to see?
— Show me what ever you find then.

 Too many variables to look at side by side
e« Too many time steps to examine one by one
e Too many models/run —to compare/contrast
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What can you show me?

e A critical gap:
— Often scientists know what they want to see

— But cannot provide a formal quantitative
description

~ SSULraVis L8 on\l




FUrURE
OFURE

User Concepts

e Qualitative user concepts:

— When does the growing season start?

e Domain specific programming language methods
— Specify events in an expressive, concise and powerful way
e Any persistent trends of event changes

— Has the beginning of the growing season shifted in time in recent
decades? How are different locations affected?
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“Green-Up": Northern Hemisphere colored by month of event in variable ELAI
Query: ELAI[-.4-.4]*T[.4-max]?*
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Concept-Driven Visualization

e Asvisual summaries, the benefits are:

— Data reduction

— Semantic meaning

— Focus

— Easily multivariate and temporal
— Iteratively refined and recorded

e Require infrastructural support:

— Parallelism
— Scalable data structures
— Optimal use of parallel 170
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Relational Patterns in Local Distribution )
1. Define neighborhood
2. Establish relevant data ranges
3. Draw up clauses

STEP 1: define neighborhood STEP 2: select distribution intervals STEP 3: formulate clauses

/rA\‘\/ mean(A) > mean(B)
B

skewness(B) < -100

A_'/I/\I\ covar(A, B) > 0
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Spatial Neighborhood Query

With typical 1D transfer Neighborhood Query
function freq(nonbackground) > freq(background)
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Temporal Neighborhood Query

Positive and negative covariance between
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Fuzzy Matching

We want to show locations that:

— match to a degree (score - opacity)
— match a subset of inequalities (combination - color)
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Evaluating a Query

e For each location

— For each clause
— If TRUE

score=1
tag bit set
— Otherwise
score = f(distance) <1
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bin 0 {

}

bin 1 {

}

bin 2

}

attribute 0
range 0.9 to 1.0

attribute 1
range < 0.5

attribute 4
range >= 0.9

SEELAB

clause 0 {
freg(bin 0) > 50%
weight 50%
dropoff 0.1

}

clause 1 {
var (bin 2)
weight 25%
dropoff 10

< var (bin 1)

}

clause 2 {
freg(bin 2) > 2 x freq(bin 1)
weight 25%
dropoff 10

(a) Bins }
(b) Clauses
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Visualizing a Query

e All locations scored and the rendered
e Sum of clause scores = opacity

e Clause bitfield - color
— Bitfield indexes into colormap on the GPU
— plelausesl hassible bitfield configurations
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mean temperatureand__:
precipitation between
decades 2000-2009:
and 2090-2099 '

mean temp. up >= 4, mean precip. up
mean temp. up >= 4, mean precip. down
mean temp. up >= 4, mean precip. stable
mean temp. up < 4, mean precip. up
mean temp. up < 4, mean precip. down
mean temp. up < 4, mean precip. stable
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Specifying Temporal features

e User concepts about temporal events are
often “story” like

e Uncertainty expressed via regular expression
e *mp3, %sale%, img[0-3][0-9].png

 Modeled after regex, but need to answers
where and when an event occurs
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TimeMarks

For example: [-.4, .4]1*T[.4, max]?*

— For each location, find time step T sandwiched
between zero or more changes in [-40%, 40%] and at
least one change of more than 40%

« T—TimeMark: when event occurs
e Automatic expansion into substantiated gueries
e Combine primitives in time sequence
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Meta-Queries

July

August

September
October

November

December . ", i _j_ " -".. " g 5

“Green-Up”: Northern Hemisphere colored by month of event in variable ELAL.

[-.4,.4]*T[.4, max]?*
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Meta-Queries

January
February
March
April

May

June

July
August
September
October

November

December

“First Snow”: Northern Hemisphere colored by month of event in variable FSNO

???[min, 0.7]*T[0.7, max]?*
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Feb Mar Apr May Jun  Jul Aug Sep Oct Nov Dec lat lon
(a) Year 2050 of ELALI, all discrete queries

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec lat lon
(b) Year 2050 of ELAI, discrete query #3

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec lat lon

1 2

(¢) Year 2050 of ELAI, discrete query #6

4 5 6 7 8 9

(d) Legend of discrete query numbers
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FECI'URE

Another look In parallel coordinates

“Green-Up” in 2050

Northern Hemisphere colored by month
of event in variable ELAI:

[-0.4,.4]*T[.4, max]?*
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Complexity of Meta Queries

e Many cases could lead to exponential problem spaces

e Fortunately, the data access patterns are not random
(except In rare cases)

ID | Query # Queries # Data blocks | # Voxels returned Running time
generated accessed (secs)

1 [0-10][0]?[0-1el0] = 1 5 3 3.168

2 [0-99]1[0]12([0-1el0] « 1 4] 3 26.522

3 [40-60]122[0-1el0] 1 10 342 6.067

- [50]122+2% 71 1 3,615,888 7.454

5 70]12[-5-1e10] *[5--1el0] 71 I 6,584 7.485

6 -20]122[0-1e10] »2« 71 10 3,593.696 159.97

7 [-100-1e10]*[100--1e10] % [-100-1e10]» 2,55¢ 1 16,994,091 248.87

8 -82]2[-100-1e10]*[100--1e10] * [-100-1e10] + | 2,556 3 50,565,859 757

9 -99]12[-100-1e10] *[100——1e10] x[-100-1e10] » 2,556 ~ 117,500 ~ 1,685,529,000 ~ 72,500
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Concept-Driven Visualization

e Asvisual summaries, the benefits are:

— Data reduction

— Semantic meaning

— Focus

— Easily multivariate and temporal
— Iteratively refined and recorded

e Require infrastructural support:

— Parallelism
— Scalable data structures
— Optimal use of parallel 170
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Backend Technical Requirements -

e Underlying data structures and management need to be optimized
for common data types in scientific research.

— Time-varying, multi-dimensional, multi-variate, potentially non-uniform
grids.

e Data management systems (DMS) for massive data sets must ...
— incur small storage costs,
— provide ad hoc query support,
— exhibit reasonable latency and throughput performance.

e Implications of these requirements are ...
— Nno unnecessary data duplication,
— atransparent, self-explanatory query structure,
— use of sophisticated underlying data structures and algorithms.
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Backend Technical Requirements

e Simplistic queries are not sufficient to describe features / subsets.

 Many features can generally be described as local events, I1.e.
spatially and temporally limited regions with characteristic
properties in value space.

e Scientists know what they are looking for in their data, but may be
unable to formally or definitively describe their concept, especially
when based on partially substantiated knowledge.

e Scientists need to query and extract such features or events directly
without having to rewrite their hypothesis into an inadequately
simple query language.

e A more sophisticated feature-oriented query language is required.
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Related Work =

e Large data management in visualization

— Data partitioning (blocks, “bricks”)

— Efficient searching using tree-based data structures:
e Interval tree, k-d tree quad-tree, octree, etc.
e Bitmap indexing

— Relational Database Management Systems (RDBMS)

e (Programming) languages in visualization:
— More versatile and flexible compared to GUIs.
— Alter GPU shader programs on the fly: “Scout”
— VTK provides Tcl/Tk and Python bindings.
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Data Organization

Large data sets need to be partitioned for data distribution
and load-balancing.

Break up data set into data items containing
— spatial and temporal location (x,y,z,t),
— avalue for each data variable.

e.g. {x=1; y=2; z=3; t=10; density=2.7; entropy=.7}

Implications
— Yields increase in total data size!

— Number of data items can be enormous!
— But: Load-balancing can be applied on the level of data items.
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Query-Driven Visualization

 Load-balancing by breaking up locality within the dataset.

e Optimized data access by using a B-tree like structure to skip
iIrrelevant data items on top of a linear search.

« Discard unwanted data items upon distribution (data items are
Independent of any structural meta-information)

e Compress blocks of data items to trade memory space vs. access
time, decompress on access.
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Data Selection

e Each data server hosts a portion of the data set as data
Iitems in a sorted list.

e On top, acomplete M-ary search tree of depth N << M
(e.g. M =256, N = 3) indexes into the list of data items.

e Search: Find first matching data item and initialize a
linear search from it. Use search tree to skip irrelevant
groups of data items.
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Enhancements

e Observation: Data items are independent of any structural
meta-information (e.g. a grid).
— Unwanted data items can be deleted before distribution to data
Servers.

— This counterbalances the increase of data set size.

e« Compress the linear list of data items.
— Trade-off: memory space vs. access time
— Blocks of data items are decompressed on the fly.

— Since linear list is sorted, high compression rates (20:1) are
possible in many cases.
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Scalability Tests: the data

e NASA's Moderate Resolution Imaging Spectro-
radiometer (MODIS) database, continuously updated

e Use 417 timesteps, 8-day interval, 02/2000 to 02/2009

e 500 meter resolution sampling of North and South
America, creating a 31,200x21,600 grid

e Compute variables from 7 wavelength bands

e Use MRT toolkit to reproject from sinusoidal grid to
equirectangular grid
e Total data used for scalability tests amount to 1.1TB
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Scalability Tests: the machine
e Jaguar, ORNL

e Cray XT4 consisting of 7,832 quad-core 2.1 GHz
AMD Opteron processors with 8 GB of memory.

e 31,328 cores with over 60 TB of main memory.

e Lustre parallel file system. One meta data server
(MDS), 72 OSSs (1/0 nodes), 144 OSTs (physical
disk systems)
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Infrastructural Diagram
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Measured 1/0 Bandwidth

I/0 Bandwidth Results
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Distribution and Query
Overheads

Distribution Overhead Average Time Per Query
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Climate Science - Drought Assessment =~/

« NDVI and NDWI can be good indicators of drought, and NDDI
(Normalized Difference Drought Index) can be computed by

NDDI = (NDVI - NDWI) 7 (NDVI + NDWI)

e We use a similar method of drought assessment by querying for:
NDVI <0.5and NDWI < 0.3

e After queries are issued, result is sorted in spatial order

e Temporal overlap can then be computed
— look for 0.5 < NDDI < 1 for at least 4 timesteps (1 month) in a row

 We also placed one more restriction and throw out the areas where the
event happened more than one time, finding only the areas where
abnormal drought conditions occur
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2006 Mexico Drought

Processes Read Filter Redistribution Query Sort Analysis Write Total Time
4096 60.12 6.15 12.24 2.25 2.26 0.35 4.84 85.44
8192 47.28 3.66 9.76 1.46 3.09 0.38 4.5 70.13
16384 50.35 1.82 7.01 2.13 4.01 0.45 7.0 A
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Climate Science: Time Lag Analysis

e Studying time lag is important for obtaining a better understanding of
how variables like NDVI are affected by other conditions

e Studying past and present droughts in relation to these conditions could
enhance the capability to develop early warning systems

e Inour example, we compute the time lag between when NDWI first
occurs in the 0.7 - 0.9 range (first snow) and when NDV!I first occurs in
the 0.4 - 0.6 range (vegetation green up)

Time-Lag of First Snowfall and Start of Green-Up ™ 7"

= NDV1

22 Timesteps (176 Days)

21 Timesteps (168 Days)

8 15 22 29 36 43 50 57 64 71 78 8BS 92 99 106 113

Timestep

J

example of time lag of first snowfall and veggtation green up
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365 Days

Processes Read Filter Redistribution Query Sort Analysis Write Total Time
4096 50.12 6.16  12.46 0.40 0.40 0.10 3.66 73.30
8192 67.28 3.70  10.00 0.20 1.21 0.14 4.51 87.03
16384 5235 193 7.13 0.04 341 0.26 7.00 72.11
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Conclusion

e Creating single images as summarizing visualization of a
high-level event to study climate change

e Feature specification that empowers “eye-balling” should be
studied in depth, in addition to feature extraction and
rendering

 Programming language type of methods have offered
encouraging results

e Itiscrucial to have truly scalable parallel infrastructure for
visualizing terascale data and beyond
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