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Extreme Complexity  Ultrascale 

• Scientific visualization faces problems more 
complex than ever before by orders of magnitude  
– Complexity: carbon, biogeochemical, evolution, coupling 

– Number of variables: >100 

– Temporal resolution + span: every 3 min, 1000 years (1.75e8) 

– Spatial resolution: 22km 1km 

– Size of ensemble runs : 50  1000 



What can you show me? 

• A critical gap: 

– What do you want to see? 

– Show me what ever you find then. 

• Too many variables to look at side by side 

• Too many time steps to examine one by one 

• Too many models/run – to compare/contrast 



What can you show me? 

• A critical gap: 

– Often scientists know what they want to see 

– But cannot provide a formal quantitative 

description 



Ph.D. Defense   •   Markus Glatter   •   March 27, 2009 5 

• Qualitative user concepts: 

– When does the growing season start? 

• Domain specific programming language methods 

– Specify events in an expressive, concise and powerful way 

• Any persistent trends of event changes 

– Has the beginning of the growing season shifted in time in recent 
decades? How are different locations affected? 

User Concepts 



Concept-Driven Visualization 

• As visual summaries, the benefits are: 
– Data reduction 
– Semantic meaning 
– Focus 
– Easily multivariate and temporal 
– Iteratively refined and recorded 

• Require infrastructural support: 

– Parallelism 

– Scalable data structures 

– Optimal use of parallel I/O 



1. Define neighborhood 

2. Establish relevant data ranges 

3. Draw up clauses 

Relational Patterns in Local Distribution 



Spatial Neighborhood Query 

With typical 1D transfer 

function 

Neighborhood Query  

freq(nonbackground) > freq(background) 



Temporal Neighborhood Query 

Positive and negative covariance between 

two timesteps 



Fuzzy Matching 

We want to show locations that: 

– match to a degree (score  opacity) 

– match a subset of inequalities (combination  color) 



Evaluating a Query 

• For each location 

– For each clause 

– If TRUE 

score = 1  

tag bit set 

– Otherwise  

score = f(distance) < 1 



Visualizing a Query 

• All locations scored and the rendered 

• Sum of clause scores  opacity 

• Clause bitfield  color 

– Bitfield indexes into colormap on the GPU 

– 2
|clauses|

 possible bitfield configurations 



mean temperature and 
precipitation between 
decades 2000-2009 

and 2090-2099 



Specifying Temporal features 

• User concepts about temporal events are 
often “story” like 

• Uncertainty expressed via regular expression 
• *.mp3, %sale%, img[0-3][0-9].png 

• Modeled after regex, but need to answers 

where and when an event occurs 



TimeMarks 

For example: [-.4,.4]*T[.4, max]?* 

– For each location, find time step T sandwiched 
between zero or more changes in [-40%, 40%] and at 
least one change of more than 40% 

• T – TimeMark: when event occurs 

• Automatic expansion into substantiated queries 

• Combine primitives in time sequence 



Meta-Queries  

“Green-Up”: Northern Hemisphere colored by month of event in variable ELAI. 

[-.4,.4]*T[.4, max]?* 

2050 

2051 

2052 



“First Snow”: Northern Hemisphere colored by month of event in variable FSNO 

???[min, 0.7]*T[0.7, max]?* 

2050 

2051 

2052 

Meta-Queries  



Another look in parallel coordinates 

“Green-Up” in 2050 

Northern Hemisphere colored by month 
of event in variable ELAI: 

[-0.4,.4]*T[.4, max]?* 



 Complexity of Meta Queries 

• Many cases could lead to exponential problem spaces 

• Fortunately, the data access patterns are not random 
(except in rare cases) 



Concept-Driven Visualization 

• As visual summaries, the benefits are: 
– Data reduction 
– Semantic meaning 
– Focus 
– Easily multivariate and temporal 
– Iteratively refined and recorded 

• Require infrastructural support: 

– Parallelism 

– Scalable data structures 

– Optimal use of parallel I/O 



Backend Technical Requirements 

• Underlying  data structures and management need to be optimized 
for common data types in scientific research. 

– Time-varying, multi-dimensional, multi-variate, potentially non-uniform 
grids. 

• Data management systems (DMS) for massive data sets must … 

– incur small storage costs, 

– provide ad hoc query support, 

– exhibit reasonable latency and throughput performance. 

• Implications of these requirements are … 

– no unnecessary data duplication, 

– a transparent, self-explanatory query structure, 

– use of sophisticated underlying data structures and algorithms. 



Backend Technical Requirements 

• Simplistic queries are not sufficient to describe features / subsets. 

• Many features can generally be described as local events, i.e. 
spatially and temporally limited regions with characteristic 
properties in value space. 

• Scientists know what they are looking for in their data, but may be 
unable to formally or definitively describe their concept, especially 
when based on partially substantiated knowledge. 

• Scientists need to query and extract such features or events directly 
without having to rewrite their hypothesis into an inadequately 
simple query language. 

• A more sophisticated feature-oriented query language is required. 



Related Work 

• Large data management in visualization 

– Data partitioning (blocks, “bricks”) 

– Efficient searching using tree-based data structures: 

• Interval tree, k-d tree quad-tree, octree, etc. 

• Bitmap indexing 

– Relational Database Management Systems (RDBMS) 

• (Programming) languages in visualization: 

– More versatile and flexible compared to GUIs. 

– Alter GPU shader programs on the fly: “Scout” 

– VTK provides Tcl/Tk and Python bindings. 
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• Large data sets need to be partitioned for data distribution 
and load-balancing. 

• Break up data set into data items containing 
– spatial and temporal location (x,y,z,t), 

– a value for each data variable. 

 e.g. {x=1; y=2; z=3; t=10; density=2.7; entropy=.7} 

• Implications 

– Yields increase in total data size! 

– Number of data items can be enormous! 

– But: Load-balancing can be applied on the level of data items. 

Data Organization 



• Load-balancing by breaking up locality within the dataset. 

• Optimized data access by using a B-tree like structure to skip 
irrelevant data items on top of a linear search. 

• Discard unwanted data items upon distribution (data items are 
independent of any structural meta-information) 

• Compress blocks of data items to trade memory space vs. access 
time, decompress on access. 

Query-Driven Visualization 
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• Each data server hosts a portion of the data set as data 
items in a sorted list. 

• On top, a complete M-ary search tree of depth N << M 
(e.g. M = 256, N = 3) indexes into the list of data items. 

• Search: Find first matching data item and initialize a 
linear search from it. Use search tree to skip irrelevant 
groups of data items. 

Data Selection 
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• Observation: Data items are independent of any structural 
meta-information (e.g. a grid). 
– Unwanted data items can be deleted before distribution to data 

servers. 

– This counterbalances the increase of data set size. 

• Compress the linear list of data items. 
– Trade-off: memory space vs. access time 

– Blocks of data items are decompressed on the fly. 

– Since linear list is sorted, high compression rates (20:1) are 
possible in many cases. 

Enhancements 
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Scalability Tests: the data  

• NASA's Moderate Resolution Imaging Spectro-
radiometer (MODIS) database, continuously updated 

• Use 417 timesteps, 8-day interval, 02/2000 to 02/2009 

• 500 meter resolution sampling of North and South 
America, creating a 31,200x21,600 grid 

• Compute variables from 7 wavelength bands 

• Use MRT toolkit to reproject from sinusoidal grid to 
equirectangular grid 

• Total data used for scalability tests amount to 1.1TB 
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Scalability Tests: the machine 

• Jaguar, ORNL 

• Cray XT4 consisting of 7,832 quad-core 2.1 GHz 
AMD Opteron processors with 8 GB of memory. 

• 31,328 cores with over 60 TB of main memory. 

• Lustre parallel file system. One meta data server 
(MDS), 72 OSSs (I/O nodes), 144 OSTs (physical 
disk systems)  
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Infrastructural Diagram 
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Measured I/O Bandwidth 
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Distribution and Query 
Overheads 



Climate Science - Drought Assessment 

• NDVI and NDWI can be good indicators of drought, and NDDI 
(Normalized Difference Drought Index) can be computed by  

   NDDI = (NDVI - NDWI) / (NDVI + NDWI) 

• We use a similar method of drought assessment by querying for: 

     NDVI < 0.5 and NDWI < 0.3 

• After queries are issued, result is sorted in spatial order 

• Temporal overlap can then be computed 
– look for 0.5 < NDDI < 1 for at least 4 timesteps (1 month) in a row 

• We also placed one more restriction and throw out the areas where the 
event happened more than one time, finding only the areas where 
abnormal drought conditions occur 



Drought Assessment 



Climate Science: Time Lag Analysis 

• Studying time lag is important for obtaining a better understanding of 

how variables like NDVI are affected by other conditions 

• Studying past and present droughts in relation to these conditions could 
enhance the capability to develop early warning systems 

• In our example, we compute the time lag between when NDWI first 
occurs in the 0.7 - 0.9 range (first snow) and when NDVI first occurs in 
the 0.4 - 0.6 range (vegetation green up) 

example of time lag of first snowfall and vegetation green up 



Time Lag Analysis 



Conclusion 

• Creating single images as summarizing visualization of a 
high-level event to study climate change 

• Feature specification that empowers “eye-balling” should be 
studied in depth, in addition to feature extraction and 
rendering 

• Programming language type of methods have offered 
encouraging results   

• It is crucial to have truly scalable parallel infrastructure for 
visualizing terascale data and beyond 
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