
Effective Performance Measurement and Analysis of
Multithreaded Applications

Nathan R. Tallent John M. Mellor-Crummey
Rice University

{tallent,johnmc}@rice.edu

Abstract
Understanding why the performance of a multithreaded program
does not improve linearly with the number of cores in a shared-
memory node populated with one or more multicore processors
is a problem of growing practical importance. This paper makes
three contributions to performance analysis of multithreaded pro-
grams. First, we describe how to measure and attribute parallel
idleness, namely, where threads are stalled and unable to work.
This technique applies broadly to programming models ranging
from explicit threading (e.g., Pthreads) to higher-level models such
as Cilk and OpenMP. Second, we describe how to measure and
attribute parallel overhead—when a thread is performing miscel-
laneous work other than executing the user’s computation. By em-
ploying a combination of compiler support and post-mortem analy-
sis, we incur no measurement cost beyond normal profiling to glean
this information. Using idleness and overhead metrics enables one
to pinpoint areas of an application where concurrency should be
increased (to reduce idleness), decreased (to reduce overhead), or
where the present parallelization is hopeless (where idleness and
overhead are both high). Third, we describe how to measure and at-
tribute arbitrary performance metrics for high-level multithreaded
programming models, such as Cilk. This requires bridging the gap
between the expression of logical concurrency in programs and its
realization at run-time as it is adaptively partitioned and scheduled
onto a pool of threads. We have prototyped these ideas in the con-
text of Rice University’s HPCTOOLKIT performance tools. We de-
scribe our approach, implementation, and experiences applying this
approach to measure and attribute work, idleness, and overhead in
executions of Cilk programs.

Categories and Subject Descriptors C.4 [Performance of sys-
tems]: Measurement techniques, Performance attributes.

General Terms Performance, Measurement, Algorithms.

Keywords Performance Analysis, Call Path Profiling, Multi-
threaded Programming Models, HPCTOOLKIT.

1. Introduction
Over the last several years, power dissipation has become a sub-
stantial problem for microprocessor architectures as clock frequen-
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cies have increased [19]. As a result, the microprocessor industry
has shifted its focus from increasing clock frequencies to deliver-
ing increasing numbers of processor cores. For software to benefit
from increases in core counts as new generations of microproces-
sors emerge, it must exploit threaded parallelism. As a result, there
is an urgent need for programming models and tools to support de-
velopment of efficient multithreaded programs. In this paper, we
address the challenge of creating tools for measuring, attributing,
and analyzing the performance of multithreaded programs.

Performance tools typically report how resources, such as time,
are consumed rather than wasted. For parallel programs, it is typi-
cally most important to know where time is wasted as a result of
an ineffective parallelization. To enable an average developer to
quickly assess the quality of the parallelization in a multithreaded
application, tools should pinpoint program regions where the par-
allelization is inefficient and quantify their impact on performance.
Two aspects of a parallelization in particular are important for ef-
ficiency: whether there is adequate parallelism in the program to
keep all of the processor cores busy, and whether the parallelism
is sufficiently coarse-grain so that the cost of managing the paral-
lelism does not become significant with respect to the cost of the
parallel work. In this paper, we describe novel techniques for as-
sessing both of these aspects of parallel efficiency.

For performance tools to be useful, they must apply to the mul-
tithreaded programming models of choice. Over the last decade,
high-level programming models such as OpenMP [22] and Cilk [10]
were developed to simplify the development of multithreaded pro-
grams. These programming models raise the level of abstraction of
parallel programming by partitioning the problem into two parts:
the programmer is responsible for expressing the logical concur-
rency in a program and a run time system is responsible for parti-
tioning and mapping parallel work efficiently onto a pool of threads
for execution. Without appropriate support for tools, the nature of
this run-time mapping of work to threads is obscure and renders
ineffective tools that measure and attribute performance directly to
threads in the run-time system.

In our work, we focus on using call path profiling [12] to at-
tribute costs in a program execution to the calling contexts in which
they are incurred. For modular programs, it is important to attribute
the costs incurred by each procedure to the different contexts in
which the procedure is called. The need for context is obvious if
one considers that string manipulation routines might be called
from many distinct places in a program. Of particular interest is
providing this capability for high-level multithreaded programming
models such as Cilk. However, for high-level multithreaded paral-
lel programming models, using call path profiling to associate costs
with the context in which they are incurred is not as simple as it
sounds. At each sample event, a call path profiler must attribute
the cost represented by the sample (e.g., time) to the current execu-
tion context, which consists of the stack of procedure frames active



when the event occurred. For programs written in a programming
model such as Cilk, which uses a work-stealing run-time system to
partition and map work onto a thread pool, the stack of native pro-
cedure frames active within a thread represents only a suffix of the
calling context. Cilk’s work-stealing run-time system causes call-
ing contexts to become separated in space and time as procedure
frames migrate between threads as work is stolen. As a result, a
standard call path profile of a Cilk program during execution will
show fragments of call paths mapped to each of the threads in the
run-time system’s thread pool. Since frames can be stolen, even the
mapping between even an individual procedure frame and a thread
may not be one to one. As a result, a standard call path profile
of a Cilk program will yield a result that is at best cumbersome
and at worst incomprehensible. For effective performance analysis
of multithreaded programming models with sophisticated run-time
systems, it is important to bridge the gap between the abstractions
of the user’s program and their realization at run time.

This paper makes the following contributions for understanding
the performance of multithreaded parallel programs:

• A technique for measuring and attributing parallel idleness—
when threads are idling or blocked and unable to perform useful
work. This technique applies broadly to programming models
ranging from explicit threading (e.g., Pthreads [7]) to higher-
level models such as Cilk, OpenMP and Threading Building
Blocks [23]. The technique relies on minor modifications to the
run-time systems of multithreaded programming models.

• A technique for measuring and attributing parallel overhead—
when a thread is performing miscellaneous work other than ex-
ecuting the user’s computation. This technique could be applied
to both library-based programming models such as Pthreads
and Threading Building Blocks, as well as compiler-based pro-
gramming models such as Cilk and OpenMP. By employing a
combination of compiler support and post-mortem analysis, we
incur no measurement cost beyond normal profiling to glean
this information.

• The definition of and a method for efficiently collecting logical
call path profiles—a generalization of call path profiles that
enables one to measure and correlate execution behavior at
different levels of abstraction. We develop this approach here
to relate the execution of a multithreaded program by a work-
stealing run-time system back to its source-level representation.

We believe these complementary techniques are necessary for ef-
fective performance measurement and analysis of high-level multi-
threaded programming models. Logical call path profiles are the
key for mapping measurements of work, idleness and overhead
back to the source-level abstractions in high-level multithreaded
parallel programming models. Our idleness and overhead metrics
enable one to pinpoint areas of an application where concurrency
should be increased (to reduce idleness), decreased (to reduce over-
head), or where the present parallelization is hopeless (where idle-
ness and overhead are both high). To show the utility of these tech-
niques, we describe their implementation for Cilk and show how
they bridge the gap between the execution complexity of a Cilk pro-
gram and the relative simplicity of the Cilk programming model.
Our tool attributes work, idleness, and overhead to Cilk source code
lines in their full logical user-level calling context.

This paper is organized as follows. First, Section 2 describes
parallel idleness and overhead. Then, Section 3 defines logical call
path profiles while Section 4 shows how to obtain them using
logical stack unwinding. Section 5 describes the application of
these ideas to Cilk. Finally, Section 6 discusses related work and
Section 7 concludes.

2. Pinpointing parallel bottlenecks
We describe two novel measurement and analysis techniques that
enable an average developer to quickly determine whether a multi-
threaded application is effectively parallelized. If the application is
not effectively parallelized, our techniques direct one’s attention to
areas of the program that need improvement.

2.1 Quantifying insufficient parallelism
To quantify insufficient parallelism, we describe how to efficiently
and directly measure parallel idleness, i.e., when threads are idle
and unable to perform useful work. Our measurements of idleness
are based on sampling of a time-based counter such as the wall
clock or a hardware cycle counter. Measurement overhead is low
and controllable by adjusting the sampling frequency. When a sam-
ple event occurs, a signal handler collects the context for the sample
and associates the sample count with its context.1 Collecting par-
allel idleness on a node with n processor cores requires minor ad-
justments to traditional time-based sampling. The first adjustment
is to extend the run-time system to always maintain nw and nw,
the number of working and idle processor cores, respectively. This
can be done by maintaining a node-wide counter representing nw.
When a core acquires a unit of useful work (e.g., acquiring a proce-
dure activation using work stealing or plucking a unit of work from
a task queue), it atomically increments nw. Similarly, when a core
finishes a unit of work, it atomically decrements nw to indicate that
it is no longer actively working. In this scheme, nw = n− nw.

Consider a run-time system that has one worker thread per core.
On a sample, each thread receives an asynchronous signal, resulting
in a per-thread sample event. If a sample event occurs in a thread
that is not working, we ignore it. When a sample event occurs in a
thread that is actively working, the thread attributes one sample to a
work metric for the sample context. It then obtains nw and nw and
attributes a fractional sample nw/nw to an idleness metric for the
sample context. Even though the thread itself is not idle, it is critical
to understand what work it is performing when other threads are
idle. Our strategy charges the thread its proportional responsibility
for not keeping the idle processors busy at that moment at that point
in the program.

For example, if three threads are active on a quad core processor,
whenever a sample event for the cycle counter interrupts a working
thread, the working thread will record one sample of work in its
work metric, and 1/3 sample of idleness in its idleness metric. The
1/3 sample of idleness represents its share of the responsibility for
the core that is sitting idle.

After measurement is completed, idleness can be computed
for each program context. Since samples are accumulated during
measurement, the idleness value for a given thread and context isP

nwi over all samples i for that context. It is often useful to ex-
press this idleness metric as a percentage of the total idleness for
the program. Total idleness may be computed post-mortem by sum-
ming idleness metric over all threads and contexts in the program.
The idleness value may be converted to a time unit by multiplying
by the sample period. One can also divide the idleness for each con-
text by the application’s total effort—the sum of work and idleness
everywhere across all threads—to understand the fraction of total
effort that was wasted in each context.

A variant of this strategy applies to situations where the number
of threads nT may not equal the number of cores (such as with
Pthreads programs or OpenMP’s nested parallelism). If nT > n,
then nw may not exceed n; if nT < n, then nw cannot exceed nT .

1 As mentioned in Section 1, we attribute costs to their full calling context
using call path profiling. In this section, we use the term context rather than
calling context since idleness can be measured with or without full calling
context.



parallel
idleness overhead interpretation

low low effectively parallel; focus on serial performance
low high coarsen concurrency granularity
high low refine concurrency granularity
high high switch parallelization strategies

Table 1. Using parallel idleness and overhead to determine if the
given application and input are effectively parallel on n cores.

2.2 Quantifying parallelization overhead
Parallel overhead occurs when a thread is performing miscella-
neous work other than executing the user’s computation. Sources
of parallel overhead include costs such as those for synchroniza-
tion or dynamically managing the distribution of work.

For library-based programming models such as Pthreads, iden-
tifying parallel overhead is easy: any time spent in a routine in the
Pthreads library can be labeled as parallel overhead. For language-
based parallel programming models, one must rely on compiler
support to identify inlined sources of parallel overhead. A com-
piler for a multi-threaded programming model, such as OpenMP
or Cilk, can tag statements in its generated code to indicate which
are associated with parallelization overhead. In Section 5.2, we de-
scribe how we mark sources of parallel overhead for Cilk. In a post-
mortem analysis, we recover compiler-recorded information about
overhead statements, identify instructions associated with overhead
statements and run-time library routines, and attribute any samples
of work (as defined in Section 2.1) associated with them to par-
allelization overhead. The tags therefore partition the application
code into instructions corresponding to either useful work or over-
head (distinct from idleness).

A benefit of this scheme is that tags are only meta-information:
they can be inserted and overhead can be associated with them us-
ing post-mortem analysis without affecting run time performance
in any way. In addition, the tags may be refined to partition sources
of overhead into multiple types. For example, it may be useful to
distinguish between synchronization overhead and all other over-
head. Such a refinement would provide more detailed information
to users or analysis tools.

In particular, tags do not have any associated instrumentation.
While the mapping between instructions and tags consume space,
it need not induce any run time cost. For example, the mapping can
be located within a section of a compiled binary that is not loaded
into memory at run time or maintained in a separate file.

The tags we propose could take several forms, but one particu-
larly convenient one is to associate overhead instructions with spe-
cial unique procedure names within the line map. For example, syn-
chronization code could be tagged with the special procedure or file
name parallel-overhead:sync.

2.3 Analyzing efficiency
In a parallel program, we must consider two kinds of efficiency:
parallel efficiency across multiple processor cores and efficiency
on individual processor cores. With information about parallel idle-
ness and overhead attributed hierarchically over loops,2 procedures,
and the calling contexts of a program, we can directly assess paral-
lel efficiency and provide guidance for how to improve it (see Ta-
ble 1). If a region of the program (e.g., a parallel loop) is attributed
with high idleness and low overhead, the granularity of the paral-

2 Because we collect performance metrics using statistical sampling of hard-
ware performance counters, which associates counts directly with instruc-
tions, and use binary analysis to associate instructions with higher-level pro-
gram structures such as loops, we can directly compute and attribute metrics
at the level of individual loops.

lelism could profitably be reduced to enhance parallel efficiency.
If the overhead is high and the idleness low, the granularity of the
parallelism should be increased to reduce overhead. If the overhead
is high and there is still insufficient parallelism, the parallelism is
inefficient and no granularity adjustment will help; keeping the idle
processors busy requires a different parallelization. For instance,
one might use a combination of data and functional parallelism
rather than one alone.

One can assess the efficiency of work and identify rate limit-
ing factors on individual processor cores by using metrics derived
from hardware performance counter measurements. Many differ-
ent factors can limit an application’s performance such as instruc-
tion mix, memory bandwidth, memory latency, and pipeline stalls.
For each of these factors, information from hardware performance
counters can be used to compute derived metrics that quantify the
extent to which the factor is a rate limiter. Consider how to assess
whether memory bandwidth is a rate limiter. During an execution,
one can sample hardware counter events for total cycles and mem-
ory bus transactions. By multiplying the sampling period by the
sample count for each instruction, one can obtain an estimate of
how many bus transactions are associated with each instruction.
By multiplying the number of bus transactions by the transaction
granularity (e.g., the line size for the lowest level cache), one can
compute the amount of data transferred by each instruction. By di-
viding the amount of data transferred by instructions within a scope
(e.g., loop) by the total number of cycles spent in that scope, one
can compute the memory bandwidth consumed in that scope. By
comparing that with a model of peak bandwidth achievable on the
architecture, one can determine whether a loop is bandwidth bound
or not. Attributing metrics to static scopes such as loops and dy-
namic contexts such as call paths to support such analysis of mul-
tithreaded programs is the topic of the next section.

3. Logical call path profiles
To enable effective performance analysis of higher-level program-
ming languages it is necessary to bridge the gap between the user’s
abstractions and their implementation. A key aspect of this is recov-
ering user-level calling contexts. As mentioned previously, when
Cilk programs execute, user-level calling contexts are separated in
space and time by work stealing. Mapping measurements during
execution back to a source program requires reassembling user-
level contexts, which have been fragmented during execution. The
next two sections extend the notion of call path profiling by defin-
ing logical call paths and describing how to generally and effi-
ciently obtain logical call path profiles using a logical calling con-
text tree. Logical call path profiling applies to both parallel and
serial applications. In Section 5, we describe how this technique
forms an essential building block for measurement and analysis of
multithreaded Cilk program executions by a work-stealing run-time
system.

3.1 Logical call paths
A sampling-based call path profiler obtains a call path by unwind-
ing the call stack at a sample point to obtain a list of active pro-
cedure instances, or frames. Such a call path may not correspond
directly to a user-level calling context. We introduce the notion of
logical call paths to bridge this gap. We obtain logical call paths by
logically unwinding the call stack. To support a precise discussion
of this concept, we introduce and define the following terminology.

A bichord is a pair 〈Pi, Li〉 consisting of a p-chord Pi and a
l-chord Li where each p-chord (or l-chord) is is a sequence of p-
notes (l-notes), e.g.:

〈Pi, Li〉 = 〈(pi,1, . . . , pi,m1), (li,1, . . . , li,m2)〉



A note represents a frame; a chord a grouping of frames; and a
bichord the association of a group of physical stack frames (Pi)
with a group of logical (Li) stack frames. Logical frames corre-
spond to a user-level calling context; physical frames correspond
to an implementation-level realization of that view. The p-notes
Pi = (p1,1, . . . , p1,m1) that form p-chord Pi represent the bi-
chord’s physical call path fragment, while the l-notes form the log-
ical call path fragment. We say that the length |Pi| of p-chord Pi,
is the number of p-notes contained therein, i.e., m1 in the above
example; similarly, |Li| = m2.

A logical call path is a sequence of bichords

〈〈P1, L1〉, 〈P2, L2〉, . . . , 〈Pn, Ln〉〉

where 〈P1, L1〉 is the program’s entry point and where bichord
〈Pn, Ln〉 represents the innermost set of frames. It is natural to
speak of the p-chord projection for the logical call path as

〈P1, . . . , Pn〉

and the p-note projection as

〈(p1,1, . . . , p1,m1), . . . , (pn,1, . . . , pn,mn)〉

where p1,1 represents the physical program entry point and the
projection represents the physical call path from the entry point to
the sample point. Logical projections are analogous.

To provide intuition for a discussion of bichord forms, it is use-
ful to consider a concrete representation. We represent a p-note
projection as a list of instruction pointers, one for each procedure
frame active at the time a sample event occurs. The first instruction
pointer of the unwind (pn,mn ) is the program counter location at
which the sample event occurred. The rest of the list contains the
return address for each of the active procedure frames. Similarly,
each l-note in a logical call path contains an opaque logical instruc-
tion pointer that represents the logical context.

Defining a logical call path to consist of a sequence of bichords
formed of notes enables us to preserve interesting relationships be-
tween the physical and logical call path. To formalize these re-
lationships, we first observe that a logical call path’s p-note pro-
jection should always have a non-zero length because the physical
stack is never empty. Moreover, intuitively, every l-chord must be
associated with at least one p-note. This implies that no bichord
should have a zero length p-chord. Equivalently, we observe that
a p-note projection should not have ‘gaps’, i.e., a machine cannot
return to a ‘virtual’ logical frame — an l-note without an asso-
ciated p-note — and then return back to a physical frame. From
this starting point, we consider the possible relationships, or asso-
ciations, between the lengths of a bichords’s p-chord and l-chord.
Given bichord Bi = 〈Pi, Li〉, there are several possible associa-
tions between |Pi| and |Li| that we describe with a member from
the set {0, 1,M} × {0, 1,M}, where M (a mnemonic for multi
or many) represents any natural number m ≥ 2. We are interested
in the following four categories accounting for five of the possible
association types:

1. 1 ↔ 1. One p-note directly corresponds to one l-note—the
typical case for C or Fortran code where a physical procedure
frame corresponds to a logical procedure frame.

2. 1↔ 0 and M↔ 0. A p-chord corresponds to an empty l-chord.
This situation typically arises when run-time support code is
executed. For example, a sample event that interrupts the run-
time system’s scheduler may find several physical frames that
correspond to no logical procedure frame.

3. M ↔ 1. This association often describes the run-time system
implementing a high level user routine. For example, a Python
interpreter may require a chain of procedure calls (several p-
notes) to implement a user level call to sort a list.

4. 1 ↔ M. At first sight, this association may seem esoteric.
However, it has important applications. It directly corresponds
to using Cilk’s scheduling loop as a proxy for walking the
cactus stack of parent procedures that are stored in the heap and
have no physical presence on the stack. As another example, a
Java compiler could form one physical procedure from a ‘hot’
chain of user-level procedures.

Three observations are apropos. First, as previously discussed, as-
sociations 0 ↔ {0, 1,M} are excluded meaning that the length of
a p-chord is always non-zero. Second and in contrast, association
(2) implies that it is possible to have a zero-length l-chord. The final
omitted association, M ↔M, can always be represented as some
combination of categories (1-4) above.

We now concisely define a logical call path as a sequence of
bichords 〈〈P1, L1〉, 〈P2, L2〉, . . . , 〈Pn, Ln〉〉 where n ≥ 1 and
∀i[|Pi| ≥ 1], but where it is possible that |Li| = 0 for any i.

3.2 Representing logical call path profiles
At run-time, we wish to efficiently obtain and represent a logi-
cal call path profile, i.e., a collection of logical call paths anno-
tated with sample counts with the time dimension removed. Our
approach is to form a logical calling context tree—an extension of
a calling context tree (CCT) [2]—that associates metric counts with
logical call paths.

3.2.1 Weighted logical calling context trees
We first define a very simple logical CCT. Given a logical unwind

〈〈Pn, Ln〉, 〈Pn−1, Ln−1〉, . . . , 〈P1, L1〉〉

where 〈Pn, Ln〉 is a sample point, the straightforward extension of
a CCT ensures that the path

〈〈P1, L1〉, 〈P2, L2〉, . . . , 〈Pn, Ln〉〉

exists within the tree, where 〈P1, L1〉 is the root of the tree and
where 〈Pn, Ln〉 is a leaf node. Metrics such as sample counts
are associated with each leaf node (sample point); in this example
metrics at 〈Pn, Ln〉 are incremented.

We define the physical projection of a logical CCT to be the
CCT formed by taking the p-chord projection of each call path in
the logical CCT. The logical projection of a logical CCT is defined
analogously.

3.2.2 Efficiently representing logical calling context trees
While this logical CCT representation is simple, treating bichords
as atomic units can result in considerable space inefficiency. To
reduce memory effects, we wish to share notes without losing
any information represented in the logical CCT. The Appendix
describes when sharing is possible and develops a more efficient
and practical implementation.

4. Obtaining logical call path profiles
Given the definition of a logical call path and the representation of
a call path profile using a logical calling context tree, we now turn
our attention to obtaining a logical call path profile. To provide
low controllable measurement overhead, we use statistical sam-
pling and form the logical calling context tree by collecting and
inserting logical call paths on demand for each sample. ‘Physical’
call path profilers use stack unwinding to collect the call path. Since
the physical calling context alone is insufficient for obtaining the
logical call path, we develop the more general the notion of logical
stack unwinding to collect the logical call path.



4.1 Logical stack unwinding
Consider a contrived example where a Python driver calls a Java
routine that calls a Cilk solver. Though unusual, this example shows
that each bichord in a logical call path could potentially derive
from a different run-time system. Because run-time systems use the
system stack in their implementation, this suggests that the actual
process of logical unwinding should be controlled by the physical
stack. This is natural because although the physical call stack may
represent the composition of calls from many different languages,
it conforms to a known ABI. In addition, using a physical unwind
naturally corresponds to our requirement that a p-note projection
not have ‘gaps’, i.e., there is at least one representative stack frame
for each l-chord in the logical unwind. However, since a physical
stack unwinder alone cannot determine either the association of the
bichord or the length of the p-chord or the content of the l-chord,
some sort of additional information must be available to construct
the bichord. This information can be obtained using a language-
specific plug-in or agent to assist a ‘physical’ stack unwinder. Each
agent would understand its corresponding language implementa-
tion well enough to determine the particulars of reconstructing an
l-chord given the start of a p-chord. It is important to emphasize a
p-chord’s start because assistance from the agent will in general be
necessary to determine the p-chord’s length, e.g., 1 vs. M.

There must be some way of selecting which agent to use at
any point in the logical unwind. In the example above, one must
know when to use the Cilk, Java and Python agents, respectively,
to obtain the relevant bichords. Observe that at any point in the
execution, the return address instruction pointer located in the stack
frame should map to at most one run-time system and therefore one
agent. Consequently, the frame’s return address serves a proxy for
the specific agent that should be consulted to assist formation of
the bichord. During a program’s execution, the mapping of code
segments within the address space (the load map) can typically be
determined by interrogating the operating system.

4.2 Thread creation contexts
Often it is useful to know the context in which a thread was created.
The creation context of a thread is defined as the calling context
at the time the thread was created. For example, consider a solver
using fork-join parallelism where a pool of Pthreads is created
using several calls to pthread_create. It is desirable to capture
the calling context of the pthread_create so that the Pthread
can be rooted within the context of the solver. The thread creation
context may be captured and maintained as an extension to the
thread’s physical stack.

4.3 An API for logical unwinding
We have designed and implemented a general API for obtaining
logical unwinds given language specific agents. Technically, there
are two sub-APIs, one for collecting logical unwinds (using agents)
and one describing the interface to which language specific agents
must conform and the assumptions they may make.

The API for logical unwinding is designed to place as much
burden as possible on the non-agent library routines so that agent
implementation is as easy as possible. For example, an agent is
not required to perform any look-ahead to determine the length of
an l-chord. Although this information could be used by the logical
unwinder (Algorithm 1) for allocating storage, we determined that
it was more desirable to complicate the code for the unwinder
than to complicate each agent’s implementation. Consequently,
the logical unwinder ensures that enough buffer space is always
available to store a bichord. As another example, the agent interface
sub-API promises a small amount of functionality to ease agent
implementation, such as a means to inspect the address space and a
safe memory allocator (malloc may not be safe).

Algorithm 1: logical-backtrace: performs a logical unwind
let c be the unwind cursor, initialized with the machine

context and language-specific logical unwind agents
while step-bichord(&c) 6= END UNWIND do

let a be the bichord’s association (from c)
while step-pnote(&c) 6= END CHORD do

Record p-note (instruction pointer from c)
while step-lnote(&c) 6= END CHORD do

Record l-note (logical instruction pointer from c)
Form bichord from a and the lists of p-notes and l-notes

The logical unwinding API is divided into a two-level hier-
archy corresponding to the division between bichords and notes.
In particular, the top level addresses finding the bichords within
a logical unwind while the other level targets finding the notes
of a chord. An outline of of the backtrace routine is shown
in Algorithm 1. Each level adopts semantics similar to libun-
wind [20]. This means that to find each bichord in the logical
unwind 〈〈Pn, Ln〉, 〈Pn−1, Ln−1〉, . . . , 〈P1, L1〉〉,3 n successive
calls to step-bichord are required along with an additional call that
returns a special value to indicate the unwind is completed. The
advantage of these semantics is that they help ensure agents do not
have to perform contextual look ahead. For example, to examine
all l-notes within the l-chord (li,1, . . . , li,m), m+1 calls are issued
to step-lnote. This means that the agent need not know that li,1
is the last l-note in the l-chord unwind until the m + 1st call to
step-lnote. This fact is particularly useful for an agent to a multi-
threaded run time system because thread-specific state need not be
maintained within the agent. Rather, all state for the unwind can be
maintained by a fixed-sized thread-specific cursor allocated by the
logical unwinder.

As discussed previously, logical unwinding is driven by a stack
unwind. On each call to step-bichord, the library determines if a
valid physical stack frame exists. If so, it extracts the return address
instruction pointer and determines if it maps to any agent. If it does,
that particular agent is used complete the discovery of the bichord.
Otherwise, the ‘identity’ agent is used to create a 1 ↔ 1 bichord
representing native code.

Observe that the asymmetry between p-chords and l-chords
plays a critical role in the unwind process. For a p-chord Pi of
length mi, the mi +1th call to step-pnote both completes enumer-
ation of Pi’s p-notes and discovers the next p-chord. For example,
consider a section of the physical projection representing p-chords
Pi and Pi+1:

(. . . , pi,mi)(pi+1,1, . . .)

While iterating over the p-notes in p-chord Pi, we first issue mi

calls to step-pnote. On the mi + 1th call, the agent discovers that
there are no more p-notes in Pi, but only because it has found p-
note pi+1,1, the beginning of p-chord Pi+1. This means that the
p-note portion of the cursor is pointing to the beginning of Pi+1

before the cursor has stepped to Pi+1. This ‘peeking’ behavior
is important because we must know the initial portion of Pi+1 in
order to know which agent to assign the responsibility of the next
bichord. In contrast, step-lnote need not ‘peek’ ahead in to the
next l-chord. Indeed, it should not because the next l-chord may
be handled by a different agent and may have length 0.

5. Measurement and analysis of Cilk executions
To demonstrate the power of using our parallel idleness and over-
head metrics in combination with logical call path profiling, we de-
veloped an implementation of a profiler for Cilk-5 [10] (currently

3 A logical unwind is simply the reverse of a logical call path.
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Figure 1. HPCTOOLKIT workflow.

at version 5.4.6). We chose Cilk for several reasons. First, Cilk
lets parallel programmers focus on specifying logical concurrency,
while its run-time system handles the details of executing that logi-
cal concurrency efficiently. The power of Cilk’s abstraction of log-
ical concurrency is something that will be critical if programmers
are to routinely write scalable multithreaded applications. (Indeed,
Cilk is being developed into a commercial product.) Second, Cilk
pioneered a sophisticated work-stealing scheduler that is provably
efficient assuming the availability of sufficient concurrency. Third,
the Cilk compiler and run-time implementations are freely avail-
able.

Our profiler implementation is part of HPCTOOLKIT [1, 24], a
performance toolkit whose workflow is shown in Figure 1. hpcrun
(top, middle), a sampling-based call path profiler, measures the per-
formance of fully-optimized executables. hpcstruct analyzes ap-
plication binaries to recover program structure such as procedures
and loop nests. hpcprof (bottom right) interprets call path profiles
and correlates them with program structure, generating databases
for interactive exploration with hpcviewer.

To support measurement and analysis of work, idleness, and
parallel overhead in executions of multithreaded Cilk programs,
we extended hpcrun to collect logical call path profiles for Cilk.
In the following sections, we describe our approach, along with
minor supporting modifications to the Cilk run-time system. After
measurements are complete, we use logical calling contexts to cor-
relate our measurements of work, idleness, and parallel overhead
with the Cilk source program and interactively explore the perfor-
mance data using hpcviewer.

5.1 Parallel work and idleness
To support measurement of our idleness metric, we modified the
Cilk scheduler to classify threads as working or non-working
and to maintain the number of working and idle threads (nw

and nw, respectively). These modifications were straightforward.
Each worker thread executes a scheduling loop that acquires work
(through a steal, if necessary) and then performs that work. Since
the work is executed via a method call, the scheduling loop is ‘ex-
ited’ to perform the work and then re-entered as the worker thread
waits to acquire more work. To identify a thread as actively work-
ing or idle, we set a thread-specific state variable just before the
thread exits or enters the scheduling loop, respectively. At the same
time, a global counter representing the number of working threads
is atomically incremented or decremented as each thread exits and
enters the scheduling loop, respectively. When a sample event in-
terrupts a worker thread, one of two things happen: if the worker is
idle, the sample event is ignored; if the worker is active, the logical
call path for the work being executed is collected, one sample is at-
tributed to the work metric metric total associated with this logical

cilk int fib(int n)
{
if (n < 2)

return (n);
else {

int x, y;
x = spawn fib(n - 1);
...

Figure 2. Fragment of a Cilk program (Fibonacci numbers).

call path and a fractional sample nw/nw of idleness is added to the
idleness metric associated with this logical call path.

5.2 Parallel overhead
To attribute parallel overhead to logical calling contexts we use sev-
eral mechanisms (described below) to identify all overhead inserted
by the Cilk compiler into a Cilk application binary. At run-time,
samples associated with parallel overhead will be attributed as work
to the logical calling context in which they arise. After an execution
of a Cilk program completes, in a post-mortem analysis phase we
partition sample counts of the work into useful work and parallel
overhead based on compile-time information.

Our strategy for identifying the parallel overhead within a Cilk
application binary relies on the hpcstruct binary analysis tool for
recovering program structure from a binary. hpcstruct analyzes
an application binary to recover a mapping between object code and
program structure. In particular, hpcstruct recovers the structure
of procedures, including a procedure’s loop nests, and identifies
code that has been inlined therein. Thus, hpcstruct will naturally
identify overhead-related code in a procedure if that code appears to
have been inlined. We accomplish this is by using #line compiler
directives to simulate inlining.

Given this overall strategy, we used two different methods to
ease the implementation effort. The Cilk compiler compiles Cilk
source code to C and then uses a vendor C compiler to generate
an executable. It turns out that nearly all parallel overhead inserted
into the intermediate C code by the Cilk compiler is encapsulated
either by a call to a method or macro.4 Consequently, it is possible
to identify essentially all overhead by 1) tagging about 45 Cilk run
time library routines with #line directives, and 2) inserting appro-
priate #line directives surrounding the appropriate macro refer-
ences before the generated C code is fed to the vendor compiler.5

Given this fact, and given our unfamiliarity with the Cilk compiler’s
source code, we determined that instead of modifying the compiler
it would be easier to 1) appropriately tag the Cilk run time rou-
tines and 2) write a Cilk post-processor that inserted the appropri-
ate tags in the intermediate C file. To preserve the ability to recover
sensible structure for a routine and use a debugger with the result-
ing executable, our post-processor preserves the line number of the
original source file. A sanitized example of an original Cilk routine
and its corresponding post-processed C code is shown in Figures 2
and 3. (Note that the ‘odd’ formatting in the post-processed C, such
as the declaration on the first line, is critical for aligning the line
numbers of the generated code with the source.)

4 Parallel overhead that derives neither from a method nor macro call is
either continuation control flow, a declaration, or trivial.
5 When a macro is expanded by the C preprocessor, no indication of its
originating source file is typically recorded. In contrast, if a function call
is inlined, a C compiler will effectively generate the appropriate #line
directives.



int fib(WorkerState* ws, int n) { struct frame* fr;
#line 28 "hpctoolkit:parallel-overhead"

CILK2C_INIT_FRAME(fr, ...);
CILK2C_START_THREAD_FAST();

#line 28 "fib.cilk"

if (n < 2) { int t = n;
#line 31 "hpctoolkit:parallel-overhead"

CILK2C_BEFORE_RETURN_FAST();
#line 31 "fib.cilk"

return t;}
else {
int x; int y;
{ fr->header.entry=1; fr->scope0.n = n;

#line 34 "hpctoolkit:parallel-overhead"
CILK2C_BEFORE_SPAWN_FAST();
CILK2C_PUSH_FRAME(fr);

#line 34 "fib.cilk"
x = fib(ws, n-1);

#line 34 "hpctoolkit:parallel-overhead"
CILK2C_XPOP_FRAME_RESULT(fr, 0, x);
CILK2C_AFTER_SPAWN_FAST();

#line 34 "fib.cilk"
}
...

Figure 3. Post-processed C fragment from the Cilk compiler (cor-
responding to Figure 2). Parallel overhead is demarcated with
#line directives.

5.3 Cilk call path profiles
To attribute parallel idleness and overhead to logical calling con-
texts, we modified hpcrun to collect logical call path profiles for
Cilk. In particular, we implemented the logical unwind API (de-
scribed in Section 4.3), developed a Cilk-specific agent, and modi-
fied hpcprof’s profile interpretation and source code correlation to
normalize the results. The design of the Cilk agent illustrates sev-
eral important points. Although discussing this agent necessarily
involves details about the Cilk implementation, it is important to
note that the API remains language independent. For example we
are working on agents for other models such as OpenMP.

To understand the Cilk agent, it is necessary to review some
high-level details about the Cilk-5 implementation. For each source
Cilk routine, the Cilk compiler generates two clones, a ‘fast’ and
‘slow’ version. The fast clone is very similar to the corresponding
C procedure, and is executed in the common case. Importantly,
whenever a procedure is spawned, the fast version is executed. The
slow clone is executed only when parallel semantics are necessary
such as when a procedure is stolen.

Each worker thread maintains a deque (stored in the heap) of
ready procedure instances, which together form a ‘Cactus stack’,
i.e., a tree where the root corresponds to the bottom (outermost
frame) of the stack. Local work is pushed and popped from the tail
of the deque (top or inner frames) while thieves steal from the head
(bottom or outer frames). Execution proceeds on the thread’s stack
even though a ‘shadow’ continuation is maintained on the deque.
Whenever a thief steals a procedure’s continuation, it resumes it
using the slow version of that procedure. Since frames may only be
stolen from the deque’s head (bottom of cactus stack), this implies
that the descendants of a fast procedure may only be fast procedures
themselves.

We may infer the following invariants about the frames on a
worker’s stack (in top-down order):

Figure 4. A Calling Context (top-down) view of Cholesky.

A. There may be i frames corresponding to Cilk run time rou-
tines (e.g., creation of continuation information) or user level
C routines. Cilk run time routines correspond to a bichord with
association 1 ↔ 0 (since they are not part of the logical call
path), while user-level C routines correspond to an association
of 1↔ 1.

B. There may be j frames corresponding to Cilk fast frames. Since
the fast clone of a Cilk routine directly corresponds to a physical
frame and a logical frame, the pair corresponds to a bichord
with association 1↔ 1.

C. There is always at least one frame corresponding to the Cilk
scheduler.

These segments may not be interchanged.
The exact interpretation of segment C depends upon whether

there are additional ancestor frames in the Cactus stack. That is,
when a worker steals any procedure other than ‘main’, that proce-
dure’s logical context is represented as a chain of ancestor frames
within the Cactus stack. In this case, the scheduler frame has as-
sociation 1 ↔ M. Otherwise, if the innermost frame in segment
B corresponds to ‘main’, which has no logical calling context, the
scheduler frame has association 1↔ 0.

5.4 Case study
To demonstrate the power of attributing work, parallel idleness
and parallel overhead to logical call path profiles, we apply our
method to analyze the performance of a Cilk program for Cholesky
decomposition. We used the example Cholesky program in the
Cilk 5.4.6 source distribution. We ran a problem size of 3000 ×
3000 (30,000 non-zeros) on an SMP with dual quad-core AMD
Opterons (2360 SE, 2.5 Ghz) and 4 GB main memory. We profiled
the execution using hpcrun, which gathers separate data for each
thread, and processed the results using hpcprof.

Figure 4 presents one view of the aggregated results displayed
by hpcviewer. The view has three main components. The navi-



gation pane (lower left sub-pane) shows a top-down view of the
calling context tree, partially expanded. One can see several user-
level procedure instances along the call paths. (Physical procedure
instances are not shown.) The selected line in the navigation pane
and the source pane (top sub-pane) shows the procedure cholesky.
Each entry in the navigation pane is associated with metric values in
the metric pane to the right. Sibling entries are sorted with respect
to the selected metric column (in this case ‘work (all/I)’). Observe
at the bottom of the navigation pane a loop, located within the con-
text of cilk_main. The loop is detected by hpcstruct’s program
structure analysis; the navigation pane actually contains a fusion
of the dynamic logical calling contexts and the hpcstruct’s static
context information.

The metric columns in Figure 4 show summed values over the
eight worker threads for work (in cycles), parallel idleness and
parallel overhead (yielding the ‘all’ qualifier in their names). Both
idleness and overhead are shown as percentages of total effort,
where effort is the sum of work, idleness and overhead. In the
idleness and overhead columns, the values in scientific notation
represent the aforementioned percentages; the values shown as
percentages to their right give an entry’s proportion of the total
idleness or overhead, respectively. The metrics are inclusive (hence
the ‘I’ qualifier) in the sense that they represent values for the
associated procedure instance in addition to all of its callees. Thus,
the metric name ‘work (all/I)’ means inclusive work summed over
all threads.

Because Cilk-5 emphasizes recursive decompositions of algo-
rithms — parallelism is exposed through asynchronous procedure
calls — call chains can become quite long. Nevertheless, expand-
ing the calling context tree to the first call to cholesky and noting
the metrics on the right is very informative. Figure 4 shows that
about 47.2% of of the total work of the program is spent in the top
level call to cholesky; the top level call to mul_and_subT (which
verifies the factorization) is a close second at about 46.0%. We can
also quickly see that about 12.5% and 65.9% of the total parallel
idleness and overhead, respectively, occur in cholesky. However,
because this idleness and overhead are small with respect to effort
(about 1.62% and 0.189%, respectively), it is clear that the paral-
lelization of cholesky is very effective for this execution. In con-
trast, the parallelization of the entire program (for which we can
use cilk_main as a proxy) is less effective, with overhead essen-
tially remaining the same, but idleness accounting for about 11.6%
of total effort.

To pinpoint exactly where inefficiency occurs using the idleness
and overhead metrics, we turn to the ‘Callers’ or bottom-up view
in Figure 5. If the top-down view looks ‘down’ the call chain, the
bottom-up view looks ‘up’ to a procedure’s callers. Thus at the first
level, the bottom-up view lists all the procedures in the program,
rank-ordered according to the selected metric—in this case, relative
idleness, the most troubling inefficiency. Note that in contrast to
Figure 4, these metric values are ‘exclusive’ (signified with an
‘E’) in the sense that they do not include values for a procedure’s
callees. The top two routines in the rank-ordered list are versions
of the C library routine free and together account for about 34.3%
of the program’s idleness. When the callers for these routines are
expanded, it is evident that they are both called by free_matrix,
a non-Cilk, i.e., serial, helper routine that deallocates the matrix
for the Cholesky driver. Continuing down the list reveals that every
routine shown in the screen shot except mul_and_subT is a serial
helper. Since each of these serial routines except block_schur_
full is related to initialization or finalization, it is immediately
evident that to reduce parallel idleness either the size of the matrix
must be increased or the initialization and finalization routines must
be parallelized. The significance of this conclusion is that without
having any prior knowledge of the source code, our techniques have

Figure 5. A Callers (bottom-up) view of Cholesky.

enabled us to quickly make strong and precise statements about the
parallel efficiency of this program. Although it is not surprising
that serial code is responsible for idleness, the fact that we can
immediately quantify and pinpoint its impact on parallel efficiency
shows the effectiveness of our methods.

6. Related work
Our parallel idleness metric is similar to Quartz’s [3] notion of ‘nor-
malized time’ to highlight code with poor concurrency. Normalized
time is computed by attributing 1/nw (using the notation from Sec-
tion 2.1) to the relevant section of code on each sample of a work-
ing thread, inflating compute times in areas of poor parallelization.
While our idleness metric is similar in that it also highlights code
sections with poor concurrency, it is different in that it is a direct
measure of parallel idleness: nw/nw. This quantitative/qualitative
distinction is important because Quartz’s qualitative metric can be
ambiguous. Consider a program that executes with n threads (on
n cores) with two phases named X and Y , where each phase ex-
ecutes for an equal amount of time, t. During phase X , procedure
x executes serially; during phase Y , n instances of procedure y ex-
ecute without any loss to overhead. Unintuitively, the normalized
times ‖Tx‖ and ‖Ty‖ for procedures x and y are identical (t/1 and
nt/n, respectively) even though n−1 threads are idle for the whole
duration of phase X . In contrast, our idleness metric would yield
values of Ix = (n − 1)t and Iy = 0. Although Quartz eliminates
this ambiguity by using n counters for each procedure, assigning
t to counter x1 and 0 to counters x2 . . . xn, this solution requires
a comparison between n counters to convey the same thing as Ix.
Additionally, we attribute idleness to full logical calling contexts,
even in the presence of a work-stealing run time.

The idea of computing parallel overhead is not new. For exam-
ple, ‘cycle accounting’ is a powerful methodology for partitioning
stall cycles during the execution of serial code [9, 17]. To predict
parallel performance, Crovella and LeBlanc describe a ‘lost cy-
cles analysis’ [8] that separates parallel overhead from pure com-
putation. They further divide parallel overhead into sub-categories



useful for differentiating between different performance problems.
However, they lament that “[m]easuring lost cycles directly for the
entire environment space is still impractical.” Our method directly
measures parallel overhead without any run-time cost.

Several tools for obtaining call path profiles have been de-
veloped, but they collect only physical call path profile projec-
tions [4, 11, 13, 18, 21] or logical (user-level) call path profile pro-
jections, such as for Java [5, 25, 26]. In parallel but independent
work, Itzkowitz et al. describe an OpenMP API that enables a sta-
tistical call path profiler to correlate user-level call paths with run-
time metrics about whether a thread is working or waiting [16]. Our
work is more general in the sense that we define logical call path
profiles, explain how they can be efficiently represented, and de-
scribe a general API for obtaining them. Although the two idleness
metrics are similar, we additionally collect and attribute a parallel
overhead metric without any run-time cost.

It is interesting to compare our performance analysis of Cilk to
Cilk’s own performance metrics. Cilk computes two metrics that
directly correspond to the theoretical model that underlies Cilk’s
provably-efficient scheduler. The first is total work or the time for
a serial execution of the program with a given input. The second
is critical path, or a prediction of the execution time on an infinite
number of processors. The significant advantages of Cilk’s met-
rics are that they are ‘platform independent’ and provide a theoret-
ical upper bound on the scalability of a program with a given in-
put. However, they share two important disadvantages. First, Cilk’s
metrics are computed using extremely costly instrumentation —
which itself disturbs the application’s performance characteristics.
Second, these metrics do not aid the programmer in pinpoint-
ing where in the source code inefficiency arises. In contrast, our
method immediately pinpoints parallel inefficiency in user-level
source code. Moreover, paired with hardware performance counter
information, our method can help distinguish between different
types of architectural bottlenecks in different regions of code.

Critical path is a classic metric for understanding parallel pro-
grams. While Cilk computes the critical path’s lower bound for a
program and given input, it is also possible to determine the actual
critical path for an execution. Intel’s VTune [15] computes the ac-
tual critical path for an execution, though at the native thread level.
The classic problem with critical path information is that after ex-
pending much effort to reduce its cost, a completely different crit-
ical path may emerge, slightly less costly than the original. There-
fore, it is much more useful to know how much ‘slackness’ exists
in the critical path. Intel’s Thread Profiler [6,14] not only computes
critical path but classifies its segments by concurrency level and
thread interaction. Given a segment where nT threads execute on n
cores (n > 1), the tool classifies that segment’s concurrency level
as either serial (nT = 1), under-subscribed (1 < nT < n), fully
parallel (nT = n), or oversubscribed (nT > n). These categories
are then qualified by three interaction effects such as cruise, im-
pact and blocking. Cruise time is time that a thread does not delay
the next thread on the critical path while impact time is the oppo-
site. If a thread on the critical path waits for some external event,
it accumulates blocking time. Thus, performance tuners should fo-
cus on areas of serial or under-subscribed impact time rather than
fully parallel cruise time. The disadvantages of Thread Profiler are
that it uses costly instrumentation, reports information at the native
(Win32) thread level, and does not provide contextual information.

An interesting observation about our idleness and overhead met-
rics is that, in the context of Cilk, they approximate a quantitative
measure of critical path slackness, tied to full calling context. To
see this, note that a Cilk worker thread is idle only if it is waiting
for another worker thread to 1) make asynchronous calls or 2) re-
lease a lock. Therefore, if a thread’s idleness is high in a certain
context, then that context was on one of the ‘interesting’ critical

paths. One deficiency of our profile data is that it does not distin-
guish between idleness (or overhead) that is the result of a few calls
to a long-running function as opposed to many calls to a fast one.
However, given the properties of the Cilk scheduler, we can com-
pute metrics similar to Thread Profiler’s but for a fraction of the
overhead.

7. Conclusions
Because of the growing need to develop applications for multicore
architectures, effective tools for quantifying and for pinpointing
performance bottlenecks in multithreaded applications are abso-
lutely essential. This will be increasingly true as less skilled ap-
plication developers are forced to write parallel programs to benefit
from increasing core counts in emerging processors.

We have shown that attributing work, parallel idleness and par-
allel overhead to logical calling contexts enables one to quickly
obtain unique insight into the run-time performance of Cilk pro-
grams. In particular, we demonstrated the power of our method by
using it to pinpoint and quantify serialization in a Cilk execution. A
strength of our approach is that our performance metrics are com-
pletely intuitive and can be mapped back to the user’s programming
abstractions, even though the run-time realization of these abstrac-
tions is significantly different. While we described a prototype tool
for measurement and analysis of multithreaded programs written
in Cilk, our underlying techniques for computing parallel idleness,
parallel overhead, and obtaining logical call path profiles are more
general and can be applied directly to other multithreaded program-
ming models such as OpenMP and Threading Building Blocks.

Our work shows that it is possible to construct effective and
efficient performance tools for multithreaded programs. The run-
time cost of our profiling can be dialed down arbitrarily low by
reducing the sampling frequency. We have also shown that it is
possible to collect implementation-level measurements and project
detailed metrics to a much higher level of abstraction without
compromising their accuracy or utility.
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Appendix: Efficiently representing logical CCTs
Recall that Section 3.2.1 defined a logical calling context tree (L-
CCT) as a tree of bichords. Accordingly, two distinct call paths in
the tree may be partially shared if and only if they they share a com-
mon prefix of bichords. (All paths share a common root.) One issue
that arises during a straight-forward implementation of L-CCTs is
that common notes between multiple bichords are unnecessarily
duplicated. We illustrate this problem with an example.

Suppose over the course of several samples, we obtain several
logical unwinds of the forms below (where inner frames are on the
left and a sample point, if relevant, is underlined):

. . . 〈(pi,a), (li,1)〉, . . . (1)

〈(p′i,b, pi,a), (li,1)〉, . . . (2)

〈(p′i,c, pi,b, pi,a), (li,1)〉, . . . (3)

. . . , 〈(pi,c, pi,b, pi,a), (li,1)〉, . . . (4)

〈(p′i,a), (li,1)〉, . . . (5)

. . . , 〈(pi,e, pi,f, pi,a), (li,1)〉, . . . (6)

. . . , 〈(pi,c), (li,1)〉, 〈(pi,b), (li,1)〉, 〈(pi,a), (li,1)〉, . . . (7)

. . . 〈(pi,a), (lj,1)〉, . . . (8)
. . . 〈(pi,a), (li,2, li,1)〉, . . . (9)

Unwinds (1)–(6), with bichords of association M↔ 1 and 1↔ 1,
could represent an interpreter implementing a high-level logical
operation, signified by l-note li,1. Although none of these bichords
are equal, all share li,1; and all but (5) share pi,a. However, a L-
CCT treats each bichord as an atomic unit, thereby requiring that
any common notes be duplicated when the corresponding call paths
are inserted into the L-CCT. (Even the bichords in Unwinds (3)
and (4) must be distinct because the former contains a sample and
should therefore be a leaf node.) In general, the M-portion of these
bichords may be long and the frequent sample rate identifies most,
if not all, of the unique prefixes. An analogous situation occurs in
our Cilk profiler, where the root bichord of (almost) all call paths
has association 1↔M. As a result, several seemingly unnecessary
p-notes exist with the L-CCT. For compact representation of an L-
CCT, it is desirable to know when it is both possible and profitable
to share the notes of two bichords.

Terminology
Observe that some associations are naturally related. For example,
1 ↔ 0 is the natural ‘base case’ of M ↔ 0. Similarly, 1 ↔ 1 is
the natural ‘base case’ of both 1 ↔M and M ↔ 1. We therefore
define the following association classes:

• A ↔ 0 = {1↔ 0,M↔ 0}
• A ↔ 1 = {1↔ 1,M↔ 1}
• 1↔ A = {1↔ 1, 1↔M}

Let the functions ip and lip return the physical and logical in-
struction pointers given a p-note or l-note, respectively. The func-
tions assoc and assoc-class return the association and association-
class of a bichord, respectively. For convenience, we also define
assoc-class= to test whether two bichords have identical associa-
tion classes, respectively.

Sharing within bichords
We first consider the limits of sharing within bichords. Sharing be-
tween any two bichords may either be full or partial. If two paths
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partially share a bichord, they may still be able to partially share
another bichord (cf. Unwinds (4) and (7)). However, partially shar-
ing either bichord requires that the paths diverge in some fashion
(otherwise they would be equal). Additional sharing requires that
paths merge again, turning the tree into a graph and creating am-
biguous calling contexts. Therefore, two bichords may be partially
shared only if they are both roots of their respective call paths or
their respective call path predecessors are fully shared. After partial
sharing, paths must diverge.

The next task is to clearly define when partial sharing may occur
between two bichords Bx = 〈Px, Lx〉 and By = 〈Py, Ly〉. We
divide the analysis into two cases.
Case 1. Px = Py or Lx = Ly . Without loss of generality assume
the latter.

• assoc-class=(Bx, By): Compare Unwinds (1)–(6). Although
these bichords represent at least three fully distinct contexts
and two different associations, they have identical association
classes. Each p-chord (except (5)) has a common prefix begin-
ning with p-note pi,a. In general, several other types of non-
prefix sharing are possible (e.g., suffixes). However, prefix shar-
ing naturally corresponds to tree structure whereas non-prefix
sharing effectively requires that a path diverges, skips one or
more p-notes, and then re-merges.
Therefore we formulate the prefix condition for partially shar-
ing two bichords Bx and By:

((Px @ Py) ∨ (Py @ Px)) and Lx = Ly

Px = Py and ((Lx @ Ly) ∨ (Ly @ Lx)) (by symmetry)

where = and @ (‘strict prefix’) are defined with respect to the
sequence of notes that form a chord.
The one issue is that Bx and By may have different associa-
tions; prefix sharing is not effective if associations must be du-
plicated. However, because we know the bichord’s association
classes are identical, we know that if their associations are dif-
ferent, one association must be the ‘base case’ of the other. For
example, Unwinds (1) and (2) have associations 1 ↔ 1 and
M ↔ 1, respectively. We show below how to implement an
implicit ‘base-case flag’ that preserves this information.
It turns out that the prefix condition can be relaxed slightly.
Consider Unwinds (2) and (3), which may share p-note pi,a by
the above condition. Observe that p′i,b represents a sample point
while pi,b represents a call site. Although in general ip(p′i,b) 6=
ip(pi,b), a sample can be taken at a call site (technically, a return
address), meaning that it is possible that ip(p′i,b) = ip(pi,b). We
show below how to implement an implicit ‘sample-point flag’
that enables us to extend the prefix condition to allow sharing
in this case. The flag indicates that the note both is and is not a
sample point.

• assoc-class 6=(Bx, By): An enumeration of the possibilities for
By for each of the five possible associations for Bx shows that
this case is impossible (by the assumption Lx = Ly).

Case 2. Px 6= Py and Lx 6= Ly .

• assoc-class=(Bx, By): Note that neither association may be in
association class A ↔ 0; otherwise Lx = Ly .
We now consider the two other association classes and focus,
without loss of generality, on A ↔ 1. There are three cases.
First, both bichords may have association 1 ↔ 1. Second, one
bichord has association 1 ↔ 1 and the other M ↔ 1. Third,
both bichords have association M↔ 1.
In the first case, no sharing is possible (since neither chord is
equal). In the second and third cases, prefix sharing among p-
notes may be possible. However, l-notes must be duplicated

to maintain distinct logical calling contexts (cf. Unwinds (2)
and (8)). Therefore, partial sharing is not profitable.

• assoc-class 6=(Bx, By): Since association classes are fully dis-
tinct, partial sharing is not possible without duplicating associ-
ation information (cf. Unwinds (2) and (9)).

Implementation
We now translate the above conclusions into a practical implemen-
tation for the L-CCT.

We maintain the two-level distinction between bichords and
notes implicitly. A bichord is represented by a list of X-structures.
Each X contains an association (assoc) and a physical and logi-
cal instruction pointer (ip and lip, respectively). Given a bichord
〈Px, Lx〉, we need n Xs X1, . . . , Xn where n = max(|Px|, |Lx|)
and where X1 represents the outermost portion of the bichord. Let
the function note-id return the index of an X-structure within a bi-
chord: note-id(Xj) = j.6 Note that ip(Xj) = NIL if |Px| < j ≤
n; similarly for lip(Xk).

Given this representation, a logical call path is simply a list
of X-structures X1, . . . , Xn. A bichord begins at every Xi where
note-id(Xi) = 1. A L-CCT is a tree of X-structures. Each X in
the L-CCT may have a vector of metric values. A non-zero met-
ric count naturally implements the ‘sample-point flag’ mentioned
above. To implement the ‘base-case flag’, we simply ensure that
when a 1 ↔ 1 bichord shares the root of, say, an M ↔ 1 bi-
chord, the root X has association 1↔ 1. Thus, the bichords in Un-
winds (1) and (2) would be represented as two Xs . . . X1, X2 . . .
where assoc(X1) = 1↔ 1, assoc(X2) = M↔ 1; where X2 has
a non-zero metric value; and where X1 is an interior node.

The final item is to describe an efficient way to insert a logical
call path into the L-CCT in a way that corresponds to the full and
partial sharing of bichords described above. To ensure the L-CCT
is rooted, we prefix a synthetic root node to the beginning of every
call path, implying that every call path has a length of at least two.
Inserting a path into the L-CCT therefore turns into the following
problem: Given the call path fragment m′ → n′ (as X-structures)
and given a node m in the L-CCT such that m′ = m, is it the case
that ∃n such that n is a child of m and sharable?(n, n′) holds? If
the answer is yes, n may be shared and insertion proceeds to the
children of n and n′. Otherwise, a new path for n is spliced into the
tree.

To define sharable?, we first consider a physical calling context
tree where X-structures only contain a physical instruction pointer
(ip). In this case we simply have:

sharable?(n, n′) : ip=(n, n′)

To extend this definition to a L-CCT, we observe that both ips and
lips should be equal if bichords are equal or if one is a prefix of the
other. To properly compute a prefix, bichords must be demarcated
and aligned which we can ensure by also testing note-id(). Con-
sulting note-id() also forces path divergence after partial sharing.
Finally, we need to ensure that sharing is only permitted when at
least one of Px = Py and Lx = Ly holds. We can check this by
additionally examining assoc-class. This results in the following
simple test:

sharable?(n, n′) : ip=(n, n′) ∧ lip=(n, n′) ∧
assoc-class=(n, n′) ∧ note-id=(n, n′)

6 In implementation, assoc and note-id may be combined into one bit-field,
since the former only needs 3 bits; we use 8 and pre-compute association
classes.
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