
An Adaptive Mesh Refinement Benchmark for Modern
Parallel Programming Languages

Tong Wen
IBM T. J. Watson Research

Center
Hawthorne, NY 10532

tongwen@us.ibm.com

Jimmy Su
University of California,

Berkeley
Berkeley, CA 94720

jimmysu@eecs.berkeley.edu

Phillip Colella
Lawrence Berkeley National

Laboratory
Berkeley, CA 94720

colella@hpcrd.lbl.gov

Katherine Yelick
University of California,
Berkeley and Lawrence

Berkeley National Laboratory
Berkeley, CA 94720

yelick@eecs.berkeley.edu

Noel Keen
Lawrence Berkeley National

Laboratory
Berkeley, CA 94720

noel@hpcrd.lbl.gov

ABSTRACT
We present an Adaptive Mesh Refinement benchmark for
evaluating programmability and performance of modern par-
allel programming languages. Benchmarks employed to-
day by language developing teams, originally designed for
performance evaluation of computer architectures, do not
fully capture the complexity of state-of-the-art computa-
tional software systems running on today’s parallel machines
or to be run on the emerging ones from the multi-cores to
the peta-scale High Productivity Computer Systems. This
benchmark extracted from a real application framework presents
challenges for a programming language in both expressive-
ness and performance. It consists of an infrastructure for
finite difference calculations on block-structured adaptive
meshes and a solver for elliptic Partial Differential Equations
built on this infrastructure. Adaptive Mesh Refinement al-
gorithms are challenging to implement due to the irregular-
ity introduced by local mesh refinement. We describe those
challenges posed by this benchmark through two reference
implementations (C++/Fortran/MPI and Titanium) and in
the context of three programming models.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; G.4 [Mathematics of Computing]: Mathematical
Software—parallel and vector implementations; J.2 [Computer
Applications]: Physical Sciences and Engineering

Keywords
Adaptive mesh refinement, Benchmark, Parallel program-
ming languages, Performance, Programmability, Scalability

c©2007 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, orto allow others to
do so, for Government purposes only.
SC ’07 November 10 - 16, Reno, Nevada, USA
Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

1. INTRODUCTION
There is a constant tension in parallel programming model

efforts between ease-of-use and high performance, and the
game is to strike the right balance between these two com-
peting goals. As an explosive increase in hardware par-
allelism is expected in the near future, new programming
paradigms intended for delivering high productivity on such
emerging computer architectures are of great research inter-
est. Productivity becomes the measure of success because
past experience has shown that programming high quality
software on machines that embody a rich set of hardware
parallelism is difficult and would be very costly without the
right language and tool support. The community obviously
needs adequate benchmarks to study the productivity of a
programming language system (language design, compiler,
runtime, and tool infrastructure) and longs for convincing
show cases to promote such a system. Benchmarks employed
today by language developing teams such as the Numeri-
cal Aerodynamic Simulation Parallel Benchmarks (NPB) [1]
were originally designed for performance evaluation of com-
puter architectures. They are simplified numerical kernels
and do not fully capture the complexity of state-of-the-art
computational software systems running on today’s parallel
machines or to be run on the emerging ones from the homo-
geneous multi-cores, to the heterogeneous accelerators, and
to the High Productivity Computer Systems (HPCS) [11] de-
signed to deliver peta-scale performance. By extracting key
components from a real application framework, we have de-
vised an Adaptive Mesh Refinement (AMR) benchmark for
evaluating a parallel programming language’s programma-
bility and performance. Implementing this benchmark with
good performance and scalability is considered as a highly
challenging problem.

In this paper we describe the challenges posed by this
benchmark in both expressiveness and performance through
two reference implementations: one written in C++ and
Fortran 77 with MPI and the other in Titanium – an explic-
itly parallel dialect of Java designed for high-performance
scientific computing [21, 20, 19]. We also discuss how to ad-
dress these challenges in the context of three programming
models: Single Program Multiple Data (SPMD) with two-

sided communication (MPI), SPMD with Partitioned Global
Address Space (PGAS) and one-sided communication (Ti-
tanium), and Task Parallelism with PGAS and one-sided
communication (X10). This project started with porting
Chombo [5] to Titanium in order to explore AMR algorithms
for ocean modeling. Chombo is a widely used library writ-
ten in C++ and Fortran 77 with MPI for blocked-structured
AMR finite difference discretization. We then found that
the component for solving elliptic Partial Differential Equa-
tions (PDE) in Chombo’s framework would serve as a good
benchmark for evaluating programmability and performance
of modern parallel programming languages, for examples,
the PGAS languages: Co-Array Fortran, Unified Parallel C
(UPC) and Titanium, as well as the recent HPCS languages:
Chapel by Cray Inc., Fortress by Sun Microsystems and X10
by IBM.

Due to the irregularity introduced by local mesh refine-
ment, AMR algorithms are not easy to program particularly
with good performance and scalability (considering the high
surface-volume ratio of AMR grids). In addition to reg-
ular operations one may find in ordinary finite difference
calculations, this class of applications typically involves ir-
regular (hierarchical, pointer-based) data structures, input-
dependent computational load which easily requires domain-
specific and dynamic load balancing, as well as fine-grained
communication and irregular operations for updating grid
boundaries in the adaptive mesh hierarchy. Chombo uses
object orientation with modular and layered design to in-
crease modularity and reusability of its codes, and to hide
details at different levels behind interfaces. Each solver com-
ponent in Chombo is built on a layer of AMR data struc-
tures and a layer of commonly used AMR operations. The
corresponding Titanium implementation of this benchmark
follows Chombo’s design which includes:

1. A fixed-size grid generator (different from its Chombo
counterpart)

2. A load balancer using Space-Filling Curves (SFCs) (dif-
ferent from its Chombo counterpart)

3. An infrastructure for AMR applications comprised of
AMR data structures and basic AMR operations

4. An elliptic PDE solver

5. Test problems and examples of application code

Incorporating the layers of AMR data structures and basic
AMR operations into this benchmark reflects the software
structure of Chombo and in general how the library ap-
proach would address the programming difficulties incurred
by local mesh refinement. Unlike others, this benchmark
imposes constraints on the quality of its implementation. In
this context, better software quality means higher compos-
ability, reusability and maintainability. The reason to choose
the elliptic PDE solver is due to its wide usage as a numer-
ical kernel in various problems and its relative simplicity
compared to Chombo’s time-dependent components in that
dynamic regridding and load balancing is not required in
this solver.

The rest of this paper is organized as follows. Section
2 provides a brief introduction to AMR, Chombo, as well
as the Titanium and X10 programming languages so as to
make this paper self-contained. Section 3 defines the test

problems where a scalar 3D Poisson’s equation is solved sub-
ject to Dirichlet boundary condition. Section 4 describes
the high-level abstractions involved in this benchmark and
the issues in expressing them. Section 5 discusses the per-
formance and scalability aspects of this benchmark. The
key factors to consider in mapping a programming model
onto a parallel computer architecture are the granularity of
parallelism, the cost of data transfer and the efficiency of
synchronization. In this section, we discuss issues such as
load balancing, communication pattern and optimization,
and utilization of fine-grained parallelism, for example, how
to overlap communication with computation. An interesting
question to consider here is whether we can scale AMR up to
tens or hundreds of thousands processing elements. Finally,
in section 6 we draw our conclusions and list future work.

In this paper, we assume that only one process is assigned
to a processor so that they can be used interchangeably.

2. AMR, CHOMBO, TITANIUM, AND X10

2.1 Block-structured AMR
The AMR methodology has been successfully applied to

numerical modeling of various physical problems that ex-
hibit multiscale behavior, such as those mentioned in [9].
The idea of AMR is quite straightforward, that is, to apply
finer discretization only at places where higher resolution is
needed. However, the simplicity of finite difference calcula-
tion on a uniform grid is traded in AMR, where the irregu-
larity comes from the boundaries between grids introduced
by local mesh refinement.

In our AMR implementation, numerical solutions are de-
fined on a hierarchy of nested rectangular grids. The grids
from the same level of discretization, that is, with the same
grid spacing (cell size), are organized together and each level
of grids are embedded in the next coarser level recursively
subject to certain nesting conditions [9]. Figure 1 depicts
a portion of a grid hierarchy in two dimensions. In AMR
applications there are usually multiple levels of refinement,
but only two adjacent levels are shown here. Note that the
underlying problem domain is not shown in this figure which
is discretized using one rectangular grid at each refinement
level. In this example, three fine grid patches are super-
imposed on two coarse ones. Each solid box shown here
represents a rectangular grid, while each dotted square rep-
resents a grid cell. Thus, an array defined on the third fine
grid, for example, will have 16 elements indexed by the loca-
tion of each cell. Grids are often accreted to accommodate
ghost cells for handling various boundary conditions. For
example, to apply a five-point stencil operation on fine grid
0, values from fine grid 1 are needed along the boundary
between these two grids, which are cached as ghost values.
For ghost cells not covered by fine grid 1, the correspond-
ing ghost values have to be interpolated using information
from fine grid 0 and from coarse grids 0 and 1. Also, to
apply this stencil operation on fine grid 2, part of the ghost
values have to be interpolated using the physical boundary
condition. The nesting conditions we use are more general
than others in that a fine grid is allowed to cover multiple
ones at the next coarser level and grids of different sizes (in
terms of the number of cells a grid contains) may be used at
each level. In this benchmark, grid configuration is static.
However, in other applications it may need to change from
time to time to adaptively match the evolution of numerical

coarse grid 0 (p0)

coarse grid 1 (p1)

fine grid 2
(P1)

fine grid 0 (P0)

fine grid 1 (P1)

Figure 1: Two adjacent levels of grid patches in a
grid hierarchy are shown in this example for the two-
dimensional case. Each solid box represents a rect-
angular grid, and the dotted squares inside a box
are the cells it contains. There are two grids at the
coarse level and three at the fine level. For each grid,
the number in parenthesis represents the process it
is assigned to. The refinement ratio between these
two refinement levels is 2 in each dimension. Note
that the underlying problem domain is not shown in
this figure which is discretized using one rectangular
grid at each refinement level.

solution, resulting in dynamic regridding and load balanc-
ing.

In summary, three kinds of basic operations are involved
in AMR algorithms:

1. Regular (local) stencil operations on each grid

2. Copying values from one grid to another such as in ex-
changing ghost values between grids at the same level

3. Irregular computations for updating boundary values,
for example, the location-dependent quadratic inter-
polation of ghost values at the coarse-fine grid inter-
face [9].

AMR algorithms are challenging to implement not only be-
cause of the irregular computations and data access on grid
boundaries, but also because of the complexity in which the
interactions between levels of refinement are orchestrated.
We do not cover the details of the algorithms implemented
in this benchmark, which are well documented in [17, 14, 9].
Here, all algorithms are cell-centered, and the refinement
ratio is uniform in each spatial dimension. Development of
a highly scalable Poisson solver is considered as one of the
most challenging goals for AMR.

2.2 Chombo Library
Chombo developed at Lawrence Berkeley National Lab

(LBNL) is a library for block-structured AMR applications.
It is written in C++ and Fortran 77 with MPI and designed
to ameliorate the programming difficulties posed by AMR
algorithms particularly for traditional Fortran programmers

to whom AMR data structures are unfamiliar. Chombo uti-
lizes C++’s expressiveness for the implementation of com-
plex data structures and irregular operations, while passes
arrays to Fortran subroutines for high-performance bulk rect-
angular operations. It also augments the C++ and Fortran
interface with a macro package to shorten argument lists
and declarations, to enable dimension-independent Fortran
programming, and to make compiler-and-platform indepen-
dent the calling of Fortran subroutines from C++. Most of
the Chombo classes are templated for generality, and inher-
itance is used to define interfaces.

Chombo uses object orientation with modular and layered
design to increase modularity and reusability of its codes,
and to hide details at different levels behind interfaces. Each
solver component in Chombo is built on a library of AMR
data structures and a library of commonly used AMR oper-
ations. The Chombo framework at the present time consists
of five components. The BoxTools library implements high-
level abstractions of AMR data structures along with asso-
ciated calculus. The data communication layer using MPI is
also implemented in this library and hidden from application
users. The AMRTools library consists of classes which im-
plement a number of operations that often appear in AMR
algorithms, supporting extensions of second-order accurate
discretizations of quasi-linear elliptic, parabolic, and hyper-
bolic PDEs in conservation form to AMR. The other three
are solver components: AMRTimeDependent, AMRElliptic,
and ParticleTools. Each of them support a particular class
of applications along with examples of its usage. AMREl-
liptic is the one we have implemented in Titanium which
consists of classes supporting an AMR-Multigrid algorithm
for elliptic PDEs. Besides these components, Chombo also
supports I/O based on HDF5 [12] and has a visualization
library called ChomboVis.

The parallel model of Chombo is SPMD with bulk syn-
chronous communication, where communication and compu-
tation are performed in different phases separated by global
barriers. In Chombo, MPI communications are transparent
to users and programmed in a low-level style so as to achieve
good performance.

2.3 Titanium: an Explicitly Parallel Dialect of
Java

The Titanium language is an explicitly parallel dialect of
Java designed for high-performance scientific programming.
Its model of parallelism is static SPMD augmented with
a shared-memory like abstraction called Partitioned Global
Address Space. Compared to conventional approaches to
parallel programming where standard sequential program-
ming languages (Fortran and C/C++) are extended with
a message passing library, we argue that Titanium allows
more concise and user-friendly syntax, and makes more in-
formation explicitly available to the compiler. Its goal is to
achieve greater expressive power without sacrificing parallel
performance.

Titanium extends sequential Java with the following key
features. Most of them will be covered during our later
discussion.

1. Titanium arrays – Titanium provides a powerful
multidimensional array abstraction defined on a global
index space along with the same kinds of sub-array op-
erations available in Fortran 90.

2. Domain calculus – The built-in multidimensional
domain calculus provides syntactical support for sub-
arrays. In Titanium, the location of a cell as shown
in Figure 1 is represented by an integer vector called
point, and a domain is a set of points which can be
either rectangular or not. Points (Point) and domains
(RectDomain, Domain) are first-class types and liter-
als.

3. Foreach loops – The iteration over any multidimen-
sional Titanium array is expressed concisely in one
loop, using the unordered looping construct foreach.

4. Distributed data structures – In Titanium, the
parallelism comes from the distribution of data across
processes. It is each process’s responsibility to con-
struct its local share of a global data structure and
have the references available to others. After that each
process can access the entire data structure in the same
way as on a shared-memory machine. Global data
structures are built in Titanium through its general
pointer-based distribution mechanism. The bulk com-
munication between two processes is realized through
the copy method of Titanium arrays.

5. Templates – Titanium supports templates similar to
those in C++, allowing us to mirror the templated
Chombo interface.

6. Non-blocking array copy – The support of non-
blocking array copy enables the overlap of computa-
tions and communications.

7. The local keyword and locality qualification –
Titanium expresses the affinity between data and its
owning process explicitly using the local type quali-
fier. Locality information is automatically propagated
by the Titanium optimizer using a constraint-based
inference. This performance feature helps especially
when running computations on distributed-memory plat-
forms.

8. Immutable classes and operator overloading –
Application-specific primitive types can be defined in
Titanium as immutable classes. Objects of an im-
mutable class (lightweight objects) are unboxed, anal-
ogous to C structs. They are manipulated and passed
by value.

9. Memory management using Regions – In addi-
tion to its garbage collector, Titanium allows program-
mers to explicitly release memory allocations through
its zone-based memory management.

10. Cross-language calls – Titanium code can call li-
braries written in other languages, such as FFTW [10].

For more details of Titanium, readers please refer to [8]. The
Titanium implementation of AMR covers most of the above
features.

2.4 X10: Designed for High Productivity
Although we already have two reference implementations,

it would be interesting to look at this benchmark from the
perspective of another language. X10 is a new PGAS lan-
guage being developed at IBM as part of the DARPA HPCS

project [4], which is also based on sequential Java with ex-
tensions for large scale and heterogeneous parallel program-
ming.

The fundamental distinction between X10 and other PGAS
languages is that its model of parallelism is Task Parallelism.
X10 supports the notion of place – a place may be con-
sidered as a virtual shared-memory multiprocessor (SMP).
In X10, activities (lightweight threads) and data structures
have affinity with a place; activities can be spawned recur-
sively at any place either locally or remotely; users have
full control over the distribution of data structures across
places and can define their own distributions. Besides con-
structs for converting the local termination of an activity to
global termination, X10 uses clock to coordinate activities
and supports unconditional and conditional atomic blocks.
The array abstractions in X10 are similar to those in Ti-
tanium. There are other interesting features of X10 such
as annotations and dependent types which we do not have
space to cover here, readers please refer to X10’s website [18]
for more details and examples.

3. TEST PROBLEMS
The test problem is a scalar 3D Poisson’s equation

Lφ = f in Ω, (1)

subject to Dirichlet boundary condition

φ = g on ∂Ω. (2)

Here, L is the Laplacian operator and Ω is an open cubic
domain of unit size. The lower left corner of Ω is at the
origin of the coordinate system. The right-hand side f will
be defined shortly.

Two setups of the above problem are used: one for small
runs and the other for large runs. The small test problem
has two vortex rings in its problem domain, while the large
one has single ring. The parameters of these vortex rings
are listed in Table 1.

The grid configurations in our test problems are static,
that is, once they are generated they do not change during
the computation. The right-hand side f and the tagging cri-
teria for AMR grid construction are defined in the following.

For each vortex ring centered at (X, Y, Z), a quantity ω

at position (x, y, z) is computed as follows:

(x, y, x) = (x, y, z) − (X, Y, Z) (3)

r =
p

x2 + y2 (4)

sin θ =
y

r
and cos θ =

x

r
(5)

x0 = R cos θ and y0 = R sin θ (6)

d =
p

(x − x0)2 + (y − y0)2 + z2 (7)

ω =
ω0

σ2α
e
(−d/σ)3

. (8)

If there are multiple vortex rings, ω is just the sum of the
contributions from each one. The right-hand side f for the
large test problem is defined as

f = −ω sin θ, (9)

and for the small test problem, it is defined as

f = −(ω1 sin θ1 + ω2 sin θ2), (10)

Parameter
Configuration Center (X, Y, Z) Radius R Thickness σ Strength ω0

Small (0.5, 0.5, 0.4) 0.2 0.0275 1.5
(0.5, 0.5, 0.65) 0.25 0.0275 1.0

Large (0.5, 0.5, 0.4) 0.2 0.0275 1.5

Table 1: Parameters for the vortex rings in the test problems. For all the vortex rings, the scaling factor α

is 2268.85.

where ωi and θi are the quantities corresponding to the ith
vortex ring. For simplicity, g is set to zero in the boundary
condition. The tagging criteria for AMR grid construction
is

ω > 0.16. (11)

That is, when this condition is true, local refinement is re-
quired. The convergence criteria is

||ρm||∞ ≤ 10−10||ρ0||∞, (12)

where ρi is the residual on the AMR grids at step i.
Grid configurations along with process assignments can

be directly imported from Chombo, whose grid generator
uses grids of variable sizes [3]. Figure 2 shows the small and
large grid configurations generated by Chombo. People are
allowed to use their own grid generators. We use a simple
fixed-size grid generator for the Titanium implementation,
but our experience shows that there is no performance differ-
ence between these two grid generators for the test problems.

4. HIGH-LEVEL ABSTRACTIONS AND DE-
VELOPMENT PRODUCTIVITY

In this section, we describe the high-level abstractions in-
volved in block-structured AMR. Providing high-level ab-
stractions is a key way to ease the developing efforts of appli-
cation programmers, but greatly subject to the performance
constraint. C++ and Titanium support similar object ori-
entation and generic programming, enabling us to mirror
Chombo’s design of software architecture without significant
modifications. However, the major difference is that most
of the abstractions introduced below are supported at the
language level in Titanium. Examples to be shown in the
following are all written in Titanium for the purposes of con-
ciseness and generality. Please also note that X10 supports
abstractions similar to those described below.

4.1 Points, Domains, Rectangular Arrays, and
Data Holders

Titanium arrays are built on rectangular domains and in-
dexed by points. Remember the definition from the previous
section: a point is an integer vector and a domain is a set of
points. For example, fine grid 0 in Figure 1 can be expressed
as

Point<2> low = [0,0], high = [7,3];

RectDomain<2> fineGrid0 = [low:high];

or simply as

RectDomain<2> fineGrid0 = [[0,0]:[7,3]];

assuming its lower left corner cell is the origin. In AMR,
grids are often accreted to accommodate a surrounding layer
of ghost cells for handling various boundary conditions. To

add a ghost layer of depth one to fineGrid0 we can either
redefine it by specifying the lower left and the upper right
corners or by calling the accrete method as in the following
statement.

fineGrid0 = fineGrid0.accrete(1);

Points and domains are first-class entities in Titanium – they
can be stored in data structures, specified as literals, passed
as values to methods and manipulated using their own set
of operations.

The following statement defines a double array on fineGrid0.

double [2d] fineArray0 = new double [fineGrid0];

Note that the current value of fineGrid0 is [[-1,-1]:[8,4]].
Titanium arrays are defined on a global index space where
they may start at any base point. On machines with dis-
tributed memory systems, fineArray0 resides in memory
with affinity to exactly one process, namely the process that
executes the above statement. However, it is accessible glob-
ally as it were on a shared-memory machine.

Titanium supports sub-arrays by creating views (data alias-
ing) of an array’s data without incurring any copy of the
data. For example, to create a view of fineArray0 exclud-
ing its ghost elements, we can use the statement

double [2d] fineArray0Interior =

fineArray0[[0,0]:[7,3]];

or use the shrink method

double [2d] fineArray0Interior =

fineArray0.shrink(1);.

Bulk data transfers in Titanium are realized through array
copies. The following example shows how two arrays logi-
cally adjacent to each other exchange values using the copy

method and cache them in ghost regions.

// array defined on fine grid 1 with ghost region

double [2d] fineArray1 = new double [[3,3]:[12,8]];

...

double [2d] fineArray1Interior =

fineArray1.shrink(1);

// fineArray0 is the destination, and

// fineArray1Interior is the source

fineArray0.copy(fineArray1Interior);

finaArray1.copy(fineArray0Interior);

These two arrays may belong to different processes and may
live in different nodes of a cluster. To copy arrays whose do-
mains are disjoint, Titanium provides the translate method
to shift the indices of an array view by logically adding a
given point (as an argument to this method) to every index
in this array view, so that the new view overlaps with the
array to be copied to or from. Built-in methods such as copy

Small configuration Large configuration

Level Number of grids Number of cells Level Number of grids Number of cells

0 1 32768 0 64 2097152

1 106 279552 1 129 3076096

2 1449 2944512 2 3159 61468672

Figure 2: The small and large grid configurations from Chombo. Only the top and middle levels are shown
in this figure. Each box here represents a three-dimensional grid patch. At the base level, the union of the
grid patches fully covers the problem domain. There are totally 323 and 1283 grid cells at the base levels of
the small and large configurations respectively. The refinement ratio between any two adjacent levels is 4 in
each spatial dimension for both cases.

are not opaque to the Titanium compiler, which recognizes
and treats such method calls specially and applies optimiza-
tions to them, for example, turning blocking operations into
non-blocking ones.

Iterating through a multidimensional array is concisely
expressed in Titanium using an unordered looping construct
foreach. The following example shows how a 5-point stencil
operation is implemented.

dobule c0, c1;

...

final Point<2> EAST = [1,0];

final Point<2> WEST = [-1,0];

final Point<2> NORTH = [0,1];

final Point<2> SOUTH = [0,-1];

final RectDomain<2> interior =

fineArray0.domain().shrink(1);

double [2d] result = new double [interior];

foreach (p in interior){

result[p]= c0 * fineArray0[p] +

c1 * (fineArray0[p + EAST] +

fineArray0[p + WEST] +

fineArray0[p + NORTH] +

fineArray0[p + SOUTH]);

}

In this example, for the ghost values not covered by fine grid
1 they are updated with certain interpolation procedure that
may involve data from the coarse level and become location
dependent. In other languages, iteration over a multidimen-
sional array would require a multi-level loop nest. If the
order of iteration is irrelevant to a computation, using a
foreach loop allows the compiler to reorder loop iterations
to maximize performance, for example, by performing auto-

matic cache blocking and tiling optimizations. It also sim-
plifies optimizations such as bound checking elimination and
array access strength reduction.

In C++, abstractions such as points, domains, and mul-
tidimensional rectangular arrays have to be implemented as
user-defined classes. In Chombo, a rectangular array defined
on a n-dimensional domain is a n + 1-dimensional array.
That is, there is a one-dimensional array containing m state
variables for each point in this domain (vector field). A more
general representation of Chombo’s rectangular array in Ti-
tanium is an array whose elements are of an immutable type
that encapsulates the state variables. Immutable classes
are application specific primitive types whose objects are
lightweight (unboxed objects analogous to C structs). In Ti-
tanium, immutables are manipulated and passed by value,
avoiding pointer-chasing overheads that would otherwise be
associated with the use of tiny objects in Java. A good ex-
ample of immutable class would be the Complex class used
in the Titanium implementation of NPB Fourier Transform
benchmark [7].

public immutable class Complex{

public double real;

public double imag;

public inline Complex(double r, double i){

real = r; imag = i;

}

// operater overloading

public iline Complex op+(Complex c) {

return new Complex(c.real + real,

c.imag + imag);

}

...

}

Immutable types such as Complex are not subclasses of
java.lang.Object and induce no overheads for pointers or
object headers. They are implicitly final, that is, they never
pay execution-time overheads for dynamic method call dis-
patch. More importantly to us, an array of Complex immuta-
bles is stored in a single contiguous piece of memory con-
sisting of all the real and imaginary parts. In the Titanium
implementation of AMR, a general rectangular array is rep-
resented as a templated wrapper class BoxedArray<T> which
contains a Titanium array of type T. An instantiation of this
wrapper class, for example, can be BoxedArray<double> or
BoxedArray<Complex>. Titanium supports C++ like generic
types. In contrast to Java, Titanium allows values and prim-
itive types as template parameters. Note that Titanium’s
support for generic types long predates that of Java (ver-
sion 5.0 in August 2004).

A level of domains and a level worth of data which re-
sides on these domains are contained in user-defined classes.
The meta-data class BoxLayout contains an array of domains
at a refinement level along with their process assignments,
as well as methods that operate on them such as coarsen

and refine. The data-holder class BoxLayoutData<T> con-
tains the data defined on the meta-data class, which is tem-
plated for generality. The template parameter T defines
the data type on each domain, for example, in our Tita-
nium implementation it can be BoxedArray<Complex>. In
Titanium, templated classes can be used as generic param-
eters. The data-holder class has two communication meth-
ods: exchange and copy. The first method exchanges values
between neighboring BoxedArray<Complex>s, for example,
whose domains are adjacent but disjoint, and then cache the
values in local ghost regions. The second one copies the data
of a data-holder to that of another one at the intersections
of their domains. Compared with MPI, Titanium’s array
copy method as a way to realize one-sided bulk communica-
tions makes the implementation of these two methods very
straightforward and expressed at a high-level abstraction of
logic. We will address the related performance issues in the
next section.

4.2 Development Productivity
Chombo uses C++ to implement the above high-level ab-

stractions, while having Fortran to handle regular array op-
erations for high performance. At the time when Chombo
was designed, there was in fact no viable alternative to MPI
for people to consider, which has been the de facto standard.
Mixed-language programming turns out to be difficult for
debugging and maintaining of a system like Chombo. Al-
though Chombo provides a macro package to ease the writ-
ing of Fortran subroutines called from C++, it still can not
match the conciseness Titanium provides. The following is
a Chombo Fortran subroutine computing the dot product of
two Chombo rectangular arrays.

c words with CHF prefix are Chombo Fotran macros.

subroutine DOTPRODUCT(

& CHF_REAL[dotprodout],

& CHF_CONST_FRA[afab],

& CHF_CONST_FRA[bfab],

& CHF_BOX[region],

& CHF_CONST_INT[startcomp],

& CHF_CONST_INT[endcomp])

integer CHF_DDECL[i;j;k]

integer nv

dotprodout = zero

do nv=startcomp,endcomp,1

CHF_MULTIDO[region; i; j; k]

dotprodout = dotprodout +

& afab(CHF_IX[i;j;k],nv)*

& bfab(CHF_IX[i;j;k],nv)

CHF_ENDDO

enddo

return

end

An equivalent Titanium method may look like

// T is an immutable class encapsulating

// state variables

public double DOTPRODUC(T [DIM d] local arrayA,

T [DIM d] local arrayB,

RectDomain<DIM> domain,

int startcomp,

int endcomp){

double dotprodout = 0;

for (int nv = startcomp; nv <= endcomp; nv++)

foreach (point in domain)

dotprodout+=

arrayA[point][nv]*arrayB[point][nv];

return dotprodout;

}.

Note that the spatial dimension in Chombo is a compilation-
time constant, which means that you can build either a 2D
or 3D Chombo code but not both. This limitation keeps
Chombo from applications where computation may be per-
formed on objects of different spatial dimensions. For exam-
ple, in ocean modeling the horizontal dimensions (2D) are
treated differently than the vertical one (1D). This is one of
the motivations for our Titanium AMR project.

High-level abstractions supported at the language level
gives Titanium a significant productivity advantage over the
mixed-language approach. Meanwhile, it uses compiler and
runtime optimizations to keep the performance constraint
satisfied. Overall, the game for all parallel programming
model efforts is to strike the right balance between ease-
of-use and performance. We will discuss the performance
and scalability issues of this benchmark in the next section.
To compare the succinctness of these two programming ap-
proaches, Table 2 shows the lines of code (LOC) of the Ti-
tanium implementation and its Chombo counterpart.

We do not mean to use LOC as the solely measure of a
language’s expressiveness. In general, to evaluate the pro-
ductivity of a programming system we need to take account
of other factors besides performance, such as software qual-
ity (composability, maintainability, and reusability), turn-
around time, and development cost. However, defining the
right metrics for productivity and then developing the right

Component Titanium Chombo
AMR

BoxTools rectangular array 0 10781
AMR data holder 1327 3996
gridding & load

balancing 840* 1547
utility 311 4978

AMRTools 1081 2990
AMRElliptic 1717 4207

Table 2: Comparison of line counts of the two im-
plementations (comments and empty lines are not
counted). We try to decompose the functionality
of the BoxTools library into four orthogonal parts:
Chombo rectangular arrays, classes for defining data
on unions of rectangular grids and mapping such
data onto distributed memory systems, grid gen-
erator and load balancer, as well as utility classes.
Chombo inherited the BoxLib rectangular array li-
brary developed at the Center for Computational
Sciences and Engineering (CCSE) at LBNL. The Ti-
tanium implementation has different grid generator
and load balancer. This fact is indicated by the *

symbol. Overall, the Titanium implementation is
significantly more compact than its Chombo coun-
terpart.

procedure to measure these metrics is a challenging research
question [13]. It is an important topic for our future work.

5. PERFORMANCE AND SCALABILITY
The computation and communication patterns of AMR

calculations are more complex than those of ordinary finite
difference schemes due to the irregularity introduced by lo-
cal mesh refinement. In this section we introduce the per-
formance challenges posed by this benchmark.

5.1 Serial Performance
Chombo uses Fortran to support high-performance array

operations, whereas Titanium depends on its own compiler
optimizations to achieve this goal. Some of those optimiza-
tions have been mentioned in Section 4. Our experience
shows that the serial performance of the Titanium imple-
mentation matches that of Chombo. We have compared
the two Poisson solvers on three platforms in solving the
small test problem. The first one is a Pentium 4 worksta-
tion with a 2.8 GHz CPU (seberg.lbl.gov). The second
one is a supercomputer named Seaborg at NERSC (National
Energy Research Scientific Computing Center), which has
380 nodes for computation with 16 processors per node.
Each Power 3 processor runs at a clock speed of 375 MHz.
The nodes are interconnected by IBM Colony switches with
two network adapters per node. The last one is another
machine at NERSC named Jacquard, which has 356 dual-
processor nodes for computation. Each processor runs at a
clock speed of 2.2 GHz. The nodes are interconnected with a
high-speed InfiniBand network. For more configuration de-
tails of these two machines, please refer to NERSC website
(www.nersc.gov). The serial running times are summarized
in Table 3. The grid configuration generated by Chombo
is used by both solvers, which has been shown in Figure 2.
For easier comparison we set the right-hand side f to zero

Platform Titanium AMR Chombo

Workstation 47.7 57.5
Seaborg 118.8 113.3
Jacquard 34.56 36.97

Table 3: Comparison of serial performance on three
platforms. The running times shown here are in
seconds.

and the initial value of φ to one for the performance study
in this section. Thus, we know that the numerical solutions
to the small and large test problems should converge to zero
everywhere. Note that this simplification does not reduce
the complexity of the numerical computations involved. All
timing results in this section do not include the cost of grid
generation, load balancing and initialization.

5.2 Load Balancing
A load-balancing algorithm in this context assigns a grid

in the AMR hierarchy to a process. How a load balancer
works directly affects the scalability of the entire computa-
tion. Note that there can be thousands of grids at one refine-
ment level. Chombo’s load balancer uses the Kernighan-Lin
algorithm for solving knapsack problems [6, 15]. It tries to
balance the computational load at each refinement level in-
dependently. The communication pattern as a result of this
algorithm is illustrated in the left part of Figure 4, where
the large test problem is solved with 42 processors (one pro-
cess per processor) using the grid configuration generated
by Chombo. The adjacency matrix shown here represents
the communication relationship between processes. The dot
at [i, j] means process i needs information from process j.
There are 1036 entries in this matrix and those not in the di-
agonal blocks indicate inter-node communications. You can
see that this matrix is quite dense and far from being block-
diagonal. The communication in block-structured AMR is
indeed logically short-ranged – each grid only exchanges val-
ues with its neighbors. To utilize this locality property of
AMR communication, we have implemented a load balancer
in Titanium using Morton Space-Filling Curve also known
as N-ordering, whose examples are shown in Figure 3. The
locality advantage provided by N-ordering is obvious – the
resulting adjacency matrix is sparser which has 705 entries
and is better structured as shown in the right part of Figure
4. The less the entries means the more data transfers are
performed locally to each process. Although the N-ordering
load balancer still works on each refinement level indepen-
dently, our experience shows that it improves the alignment
between the top two finest levels (containing most of the
data) so that communication between them is more likely
to be intra-noded. The performance of other SFCs in this
setting is subject to further investigation. Again, in gen-
eral the goal is to make the adjacency matrix sparser and
better-structured.

To leverage the better locality provided by the SFC load
balancer, one optimization to do is to overlap local (intra-
processor for MPI and intra-node for Titanium) data trans-
fers with the global ones which are much more expensive.
Better locality is also preferred when regridding so that less
data is copied. The cost of this load-balancing algorithm
is not expensive, which is dominated by sorting. We use
Quicksort for our Titanium implementation.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45
42 processes

process ID

pr
oc

es
s

ID

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45
42 processes

process ID

pr
oc

es
s

ID

Figure 4: Communication patterns resulting from two load-balancing algorithms. The left graph shows the
corresponding adjacency matrix from Chombo’s load balancer which has 1036 entries, whereas the right one
shows the adjacency matrix from the N-ordering load balancer which has 705 entries and is better structured.
Here, the large test problem is solved with 42 processors using the grid configuration generated by Chombo.
Suppose 3 nodes are used for the computation with 14 processors per node. Then the entries in the three
diagonal blocks indicate intra-node communications, while the others indicate inter-node communications.

Figure 3: Examples of Morton SFC or N-ordering
used in sorting the grids at each refinement level.
Here, each square represents a grid cell. The or-
der of each cell is determined by its location on the
curve. In our load balancer, the order of each grid is
set to be the order of its lower-left-corner cell at the
next finer level in order to enhance level alignment.

5.3 Optimizing Communications
In AMR, a grid typically has more neighbors than in ordi-

nary finite difference schemes and the number of neighbors
varies from grid to grid. To optimize communication perfor-
mance, Chombo packs and unpacks inter-process data trans-
fers (into and from buffers) so that there is only one MPI
message from one process to another during each communi-
cation operation, given that the global meta-data is made
available to every process in Chombo. We can emulate this
strategy in Titanium, but it will lead to an MPI program-
ming style which is not natural for one-sided communication
model. Unlike MPI where point-to-point synchronization is
inherent in its semantics, Titanium does not support this
kind of synchronization at the language level. To explore
the right way to implement AMR in Titanium, we express

data transfers as array copies at the logical level in this ref-
erence implementation and leave optimizations to the Tita-
nium compiler and runtime. It is interesting to know how
much the compiler can help to keep the performance con-
straint satisfied when communication is programmed at high
level of abstraction.

While expressing communications as one-sided array copies
is conceptually simple and much easier to program than us-
ing MPI, it results in fine-grained messages when implement-
ing AMR. Although the scalability of the Titanium imple-
mentation is quite good in single SMP node as shown in Fig-
ure 5, it would not be sustained beyond one node if there
were no optimizations done at all. When the number of
nodes increases, so does the more expensive inter-node mes-
sages as indicated in Figure 6. The average size of array
copies in the large test problem is around 4K bytes, imply-
ing that many of the data transfers are too small to achieve
peak bandwidth on modern networks. Optimizations at the
compiler and runtime level have been developed to perform
automatic packing to aggregate small messages using an
SMP-aware communication model [16]. The preliminary re-
sults indicate that this class of optimizations improve signifi-
cantly the scalability of the Titanium implementation, even
though the meta-data is not utilized as in Chombo. The
Titanium Poisson solver can now scale similarly as Chombo
does in solving the large test problem using up to 112 proces-
sors on Seaborg and Jacquard, although not outperforming
it. (Preliminary experience with the Titanium implemen-
tation have been reported in [17].) The running times are
summarized in Figure 7, where the grid configuration from
Chombo is used and load-balanced by the N-ordering algo-
rithm for both sides. The Titanium Poisson solver is on

0 5 10 15 20 25
0

5

10

15

20

Processor IDN
um

be
r

of
 g

lo
ba

l m
es

sa
ge

s
(K

)

2 nodes: (14,14)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Processor IDN
um

be
r

of
 g

lo
ba

l m
es

sa
ge

s
(K

)

3 nodes: (14,14,14)

Figure 6: The distribution of global messages gener-
ated by the AMR exchange method in the Titanium
implementation for solving the large test problem
when two and three nodes are used, with 14 pro-
cessors per node. More global messages occur at
the node boundaries due to the locality property of
communications in block-structured AMR.

average 10.6% slower than that of Chombo on Seaborg and
16.5% on Jacquard. Note that there is no SMP-aware opti-
mization done in Chombo.

5.4 Utilizing Asynchronous Operations and Fine-
grained Parallelism

In both Chombo and the Titanium implementation com-
munications are bulk synchronous, where the communica-
tion phases are separated from the computation ones by
global barriers. This style of parallel programming is com-
mon in scientific computing applications, particularly for im-
plementing finite difference schemes. It is relatively easy to
program bulk synchronous communications because global
synchronization is conceptually simple. This practice is also
consistent with the traditional wisdom of using MPI – all
the data is available during the communication phase for
packing so that a small number of large messages can be
achieved. When this benchmark is implemented carefully
(for example, by choosing the right load balancer) using the
above programming model, we might be able to scale it up
to ten thousands of processors (in terms of weak scalability).
However, a great challenge facing everyone today is how to
program an application and make it scale on the emerging
peta-scale machines which may have an order of one hundred
thousands processing units.

To make AMR scale further, finer-grained parallelism has
to be exploited. In AMR, a grid may have different types of
boundary conditions which can be handled in parallel, and
applying a stencil operation in the inner region of a grid
is independent of these boundary conditions. Particularly,
exchanging ghost values which incurs most of the communi-
cation cost can be overlapped with computations. As shown
in [2], one-sided communication models tend to have better
performance than MPI in communicating messages of small
to medium sizes, and overlapping communications with com-

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

number of processors

se
co

nd

Hard Scalability on Seaborg and Jaquard

Seaborg

Jaquard

Titanium AMR
Chombo

Figure 7: The hard scalability of the two solvers
in solving the large test problem on Seaborg and
Jacquard. The grid configuration is generated by
Chombo’s grid generator and load-balanced by the
N-ordering algorithm.

putations effectively spreads out the injections of messages
into network which helps alleviate bandwidth competition
especially on clusters where full bisection bandwidth is not
available. Thus, if AMR is implemented in this way where
more operations are performed in parallel and communica-
tions are spread out more evenly, then there is probably no
need for packing messages at the application level as cur-
rently done in Chombo and hopefully we may be able to
depend on optimizations at the compiler and runtime level
to deliver good communication performance.

The performance benefits of utilizing finer-grained par-
allelism in AMR such as overlapping communications with
computations and relaxing global synchronizations are ob-
vious, but the trade-off will be increased programming com-
plexity. Any new programming language, designed for pro-
gramming machines of large-scale hardware parallelism, should
be able to express fine-grained logical parallelism in a con-
ceptually easy way and provide adequate performance sup-
port at the compiler and runtime level. In the following
pseudocode the concurrency in applying a stencil operation
on an AMR grid is expressed using X10’s activities. Note
that X10’s region is equivalent to Titanium’s domain.

/*

* async spawns an asynchronous activity

* finish converts local termination of an activity

* to global termination

* Region and InnerRegion are of type region

*/

finish {

// applying the stencil operation in the inner

// region which is independent of boundary

// conditions

async for (point p: InnerRegion) stencilOp(p);

// updating boundary conditions in parallel

// where a grid may have three kinds of

// boundary conditions

Poisson solver Numerical kernel and AMR exchange

1 2 4 8
0

1

2

3

4

5

6

7

8

Number of processors
S

pe
ed

up
 fa

ct
or

AMRSolve

1 2 4 8
0

1

2

3

4

5

6

7

8

9

10

Number of processors

S
pe

ed
up

 fa
ct

or

GSRB
Exchange

Figure 5: The hard scalability of the Titanium Poisson solver in solving the small test problem using the grid
configuration from Chombo. The computation is performed in one node of Seaborg. The right figure shows
the scalability of the numerical kernel and the AMR exchange method.

finish {

// for fine-fine boundary

async exchangeGhostValues();

// for coarse-fine boundary

async quadraticInterp();

// for physical boundary

async physicalBoundary();

}

// applying the stencil operation on the rest

// of region which depends on boundary

// conditions

for (point p: Region - InnerRegion)

stencilOp(p);

}

6. CONCLUSION AND FUTURE WORK
We have devised an application benchmark for evaluat-

ing a parallel programming system’s programmability and
performance, and described the challenges posed by this
benchmark through two reference implementations and in
the context of three programming models. Unlike others,
this benchmark imposes constraints on the quality of its im-
plementation, such as composability, reusability and main-
tainability. Programming this benchmark with high per-
formance and scalability is a very challenging task. The
mixed-language approach, originally designed to ameliorate
the programming difficulties posed by AMR algorithms par-
ticularly for traditional Fortran programmers, uses C++ for
implementing high-level abstractions and irregular opera-
tions on arrays, while passing arrays to Fortran for high-
performance bulk rectangular operations and programming
message passing in a low-level style so as to achieve good
communication performance. By supporting high-level ab-
stractions at the language level, the Titanium implementa-
tion is more succinct and has more information explicitly
available for compiler optimizations. We have experimented
with fully depending on the Titanium compiler and run-
time to optimize the performance of communication which
is expressed at high-level abstraction of logic, and the pre-
liminary result is encouraging. The goal here is to explore
the right way to implement AMR productively on machines
particularly of large-scale hardware parallelism. To achieve
better scalability, parallelism at finer granularity has to be
exploited. An X10 example is provided to show how fine-
grained parallelism in AMR can be expressed at the lan-

guage level. Ideally, a new parallel programming system can
express applications such as AMR at high-level of abstrac-
tion and meanwhile provide sufficient support for perfor-
mance optimization and tuning at the compiler and runtime
level.

To make the definition of this benchmark complete, we
still owe readers a set of metrics for measuring the produc-
tivity of a programming language. However, developing such
a set of metrics is an open research question and it will be
one topic for our future work. The latest news from Chombo
is that by using the SFC load balancer and overlapping the
intra-processor data transfers (memory copying) with the
inter-processor MPI messages in the exchange of ghost val-
ues, Chombo is able to scale the AMR Poisson solver up to
8, 000 processors in terms of weak scalability (using differ-
ent data set though). We will apply the same kind of op-
timization to the Titanium implementation where a larger
degree of overlapping can be achieved because in Titanium
we can do it at the node level rather than at the processor
level. Particularly, we will continue to explore compiler and
runtime optimizations for improving performance of the ap-
plications written in high-level of abstraction. An ambitious
goal for us is to scale AMR Poisson up to 100, 000 processing
units. People at IBM are interested in implementing this
benchmark in the X10 programming language and having
its implementation scale on machines such as Blue Gene/L.
Hopefully, by studying this benchmark we can shed light
on the search for new programming models suitable for pro-
gramming machines of large-scale hardware parallelism such
as the emerging peta-scale HPCSs.

7. ACKNOWLEDGMENTS
This project was supported in part by the Department

of Energy under contract numbers DE-AC02-05-CH11231
and DE-FC03-01ER25509, the Department of Defense under
contract number LB05001957, and the Defense Advanced
Research Projects Agency (DARPA) under contract number
NBCH30390004. Our thanks go to the Titanium program-
ming language group at University of California, Berkeley
for their support, and among them we especially want to
thank Dan Bonachea and Amir Kamil for their valuable sug-
gestions on the Titanium implementation of this benchmark.
We also want to thank Daniel Martin at Lawrence Berke-
ley National Laboratory for his discussion of AMR Poisson
solver and for providing us the initial test data sets. Lastly,

we want to thank Vijay Saraswat at IBM T. J. Watson Re-
search Center for his insights into the X10 programming
language.

8. REFERENCES
[1] D. Bailey, E. Barszcz, J. Barton, D. Browning,

R. Carter, D. Dagum, R. Fatoohi, P. Frederickson,
T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS
parallel benchmarks. The International Journal of
Supercomputer Applications, 5(3):63–73, 1991.

[2] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick.
Optimizing bandwidth limited problems using
one-sided communication and overlap. In Proceedings
of the 20th International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[3] M. Berger and I. Rigoutsos. An algorithm for point
clustering and grid generation. IEEE Transactions on
Systems, Man, and Cybernetics, 21(5):1278–1286,
1991.

[4] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff,
A. Kielstra, C. V. Praun, V. Saraswat, and V. Sarkar.
X10: An object-oriented approach to non-uniform
cluster computing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA), 2005.

[5] Chombo website.
http://seesar.lbl.gov/ANAG/software.html.

[6] W. Y. Crutchfield. Load balancing irregular
algorithms. Technical Report UCRL-JC-107679,
Lawrence Livermore National Laboratory, July 1991.

[7] K. Datta, D. Bonachea, and K. Yelick. Titanium
performance and potential: an npb experimental
study. In Proceedings of the 18th International
Workshop on Languages and Compilers for Parallel
Computing (LCPC), October 2005.

[8] P. Hilfinger (ed.) et. al. Titanium language reference
manual, version 2.19. Technical Report
UCB/EECS-2005-15, University of California,
Berkeley, 2005.

[9] P. Colella et. al. Chombo software package for AMR
applications design document. Technical report,
Applied Numerical Algorithms Group (ANAG),
Lawrence Berkeley National Laboratory, 2003.

[10] FFTW website. http://www.fftw.org.

[11] High productivity computer systems website.
http://www.highproductivity.org/.

[12] HDF5 website. http://hdf.ncsa.uiuc.edu/HDF5/.

[13] Research agenda for high productivity language
systems. http://www-unix.mcs.anl.gov/
~gropp/bib/reports/hpl-research-agenda2.pdf,
2004. Workshop Report, Argonne National
Laboratory.

[14] D. Martin and K. Cartwright. Solving Poisson’s
equation using adaptive mesh refinement. Technical
Report UCB/ERI M96/66, University of California,
Berkeley, 1996.

[15] C. Rendleman, V. Beckner, M. Lijewski,
W. Crutchfield, and J. Bell. Parallelization of
structured, hierarchical adaptive mesh refinement

algorithms. Computing and Visualization in Science,
3:147–157, 2000.

[16] J. Z. Su, T. Wen, and K. Yelick. Compiler and
runtime support for scaling adaptive mesh refinement
computations in Titanium. Technical Report
UCB-EECS-2006-87, University of California,
Berkeley, 2006.

[17] T. Wen and P. Colella. Adaptive mesh refinement in
Titanium. In Proceedings of the 19th International
Parallel and Distributed Processing Symposium
(IPDPS), 2005.

[18] X10 website. http://x10.sf.net.

[19] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella,
K. Datta, J. Duell, S. L. Graham, P. Hargrove,
P. Hilfinger, P. Husbands, C. Iancu, A. Kamil,
R. Nishtala, J. Su, M. Welcome, and T. Wen.
Productivity and performance using partitioned global
address space languages. In Parallel Symbolic
Computation’07, 2007.

[20] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea,
J. Su, A. Kamil, K. Datta, P. Colella, and T. Wen.
Parallel languages and compilers: Perspective from
the Titanium experience. The International Journal of
High Performance Computing Applications, 21(2),
2007.

[21] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: a
high-performance Java dialect. In ACM 1998 workshop
on Java for high-performance computing, 1998.

