A

Argonne

NATIONAL
LABORATORY

... for a brighter future

UChicago »

Argonne

|7 ice of

Programming in MPI for
Performance

and

Programming Models for
HPC

Rusty Lusk
Mathematics and Computer Science Division

Argonne National Laboratory

Outline

M Topics in MPI programming
B Selected tools enabled by MPI profiling interface
— SLOG/Jumpshot: visualizing parallel performance
— FPMPI: gathering summary statistics
— Collchk: runtime checking of correct use of collective operations
B Programming models for HPC
— MPI
— PGAS
— HPCS
B Hybrid programming (MPI and OpenMP)
B Avoiding MPI with special libraries (ADLB)

Argonne National 0
Laboratory Petascale Workshop

Basic MPI: Looking Closely at a
Simple Communication Pattern

B Many programs rely on “halo exchange” (ghost cells, ghost points,
stencils) as the core communication pattern

— Many variations, depending on dimensions, stencil shape
— Here we look carefully at a simple 2-D case
B Unexpected performance behavior

— Even simple operations can give surprising performance
behavior.

— Examples arise even in common grid exchange patterns

— Message passing illustrates problems present even in shared
memory

 Blocking operations may cause unavoidable stalls

Argonne National
Laboratory Petascale Workshop

Processor Parallelism

 Decomposition of a mesh into 1 patch

per process

« Update formula typically a(l,j) =
f(a(i-1,),a(i+1,)),a(l,j+1),a(l,j-1),...)

* Requires access to “neighbors” in
patches

adjace

nt

Process 3

Process 1

Process O

& Boundary point
@ nterior paint

Argonne National
Laboratory

Petascale Workshop

Scalability of Mesh Exchange

B How does the computational effort and communication change as
the task size changes?

— Classic example is mesh exchange

B Data exchanged is the “surface” of the mesh patch; computation is
on the “volume”

— Important term is the surface to volume ratio
— Cost of surface exchanges (3-d domain, faces only):
el-d=2(s+rn2)
« 2-d =4 (s +r n2/)
*3-d =6 (s +rn/pl/3)
— Best approach is to make these relative to floating-point work
(this is the dimensionless quantity):
e 1-d=2(s+rn2)/n3f
B These assume that communications are non-interfering. Simple
mistakes can violate that assumption...

“

Mesh Exchange

B Exchange data on a mesh

* Argonne National
Laboratory

Petascale Workshop

Sample Code

M Do i=1,n_neighbors
Call MPI_Send(edge(1,), len, MPI_REAL,&
nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
Call MPIl_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)
Enddo

Argonne National
Laboratory

Petascale Workshop

Deadlocks!

® All of the sends may block, waiting for a matching receive (will for
large enough messages)

B The variation of
If (has down nbr) then
Call MPI_Send(... down ...)
endif
If (has up nbr) then
Call MPI_Recv(... up ...)
endif

sequentializes (all except the bottom process blocks)

44 Argonne National

Laboratory Petascale Workshop -

Sequentialization

-'l Argonne National

Laboratory Petascale Workshop

Fix 1: Use Irecv

® Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

B Does not perform well in practice (at least on BG, SP). Why?

J‘ Argonne National

Laboratory Petascale Workshop

F Y

Understanding the Behavior: A Timing
Model

B Sends interleave

B Sends block (data larger than buffering will allow)

B Sends control timing

B Receives do not interfere with Sends

B Exchange can be done in 4 steps (down, right, up, left)

& Argonne National i
Laboratory Petascale Workshop

Mesh Exchange - Step 1

B Exchange data on a mesh

Petascale Workshop

Mesh Exchange - Step 2

B Exchange data on a mesh

Mesh Exchange - Step 3

B Exchange data on a mesh

Mesh Exchange - Step 4

B Exchange data on a mesh

* Argonne National
Laboratory

Petascale Workshop

Mesh Exchange - Step 5

B Exchange data on a mesh

* Argonne National
Laboratory

Petascale Workshop

Mesh Exchange - Step 6

B Exchange data on a mesh

* Argonne National
Laboratory

Petascale Workshop

Timeline from IBM SP

ogllle Tlele: Me

-!.ﬂ.HFiIEFI -IFII_:':'LI I:I-'E!HD I:I'll.ﬁ.lT.ﬂ.Ll

o.oims g.01s0m a.013s 0.0za0 g.ozis g.0210 [Mrfy

* Note that process 1 finishes last, as predicted

#& Argonne National :
A Laboratory Petascale Workshop

Distribution of Sends

‘SEND' state length distribution

oppz 0.0003 O0.0004 OD.0Q0DS D.oOODBE D.OOODY OD.0OD8 OD.0ODDS

{in seconds)
B8 states of 86 (70%)

u"'-fi Argonne National n

Laboratory Petascale Workshop

Why Six Steps?

B Ordering of Sends introduces delays when there is contention at the
receiver

B Takes roughly twice as long as it should
B Bandwidth is being wasted
B Same thing would happen if using memcpy and shared memory

B The interference of communication is why adding an MPI_Barrier
(normally an unnecessary operation that reduces performance) can
occasionally increase performance. But don’'t add MPI_Barrier to
your code, please :-)

Argonne National 0
Laboratory Petascale Workshop

F Y

Fix 2: Use Isend and Irecv

B Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPIl_REAL,nbr(i),tag,&
comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Steps 1-4

M Four interleaved steps (at least, in principle)

‘ Argonne National
Laboratory

Petascale Workshop

22

Timeline from IBM SP

Logfile Title: Ma

-BAFIFIIEFI I:lIFIEIT."..'h.II -ISEHD I:lWMTA.LL

0.355% 0.3560 0.356% 0.3570 0.357% 0.3580 0.3585 0.3590 0.359% 0.35600 0.3605

Note processes 5 and 6 are the only interior processors;
these perform more communication than the other
Dr0Cessors

‘ Argonne National
Laboratory

Petascale Workshop

F Y

Lesson: Defer Synchronization

B Send-receive accomplishes two things:
— Data transfer
— Synchronization
@ In many cases, there is more synchronization than required

B Use nonblocking operations and MPI_Waitall to defer
synchronization

B However, this relies on the MPI implementation taking advantage of
the opportunities provided by MPI_Waitall (more on this later)

Argonne National i
Laboratory Petascale Workshop

MPI-2: Revisiting Mesh Communication

B Do not need full generality of send/receive
— Each process can completely define what data needs to be
moved to itself, relative to each process’s local mesh
* Each process can “get” data from its neighbors
— Alternately, each can define what data is needed by the neighbor
processes
« Each process can “put” data to its neighbors
B MPI-2 provides these “one-sided” or “remote memory access”
routines
— BGJ/L does not support these
— BG/P and Cray XTn do, but performance is still an open question
— It is possible to implement these well and get an advantage over
point-to-point communications
® First, we’ll cover some of the RMA basics. Then we’ll see some
examples of a good implementation

A\ /roonne National Petascale Workshop

Laboratory

Remote Memory Access

B A key feature is that it separates data transfer from indication of
completion (synchronization)

B |[n message-passing, they are combined:

Proc O Proc 1 Proc O Proc 1
store fence fence
send receive put
load fence fence
load
or
store
fence fence
get

Argonne National
Laboratory

F Y

Petascale Workshop

Remote Memory Access in MPI-2
(also called One-Sided Operations)

B Goals of MPI-2 RMA Design

— Balancing efficiency and portability across a wide class of
architectures

» shared-memory multiprocessors
 NUMA architectures
« distributed-memory MPP’s, clusters
« Workstation networks

— Retaining “look and feel” of MPI-1

— Dealing with subtle memory behavior issues: cache coherence,
sequential consistency

Argonne National [
Laboratory Petascale Workshop

Remote Memory Access Windows and
Window Objects

Process 0 Process 1
j = .
Put
window Process 2 Process 3
B O

= address spaces = window object

Petascale Workshop

Basic RMA Functions for Communication

B MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator

— Collective operation

— Creates window object
®m MPI_Win_free deallocates window object

B MPI_Put moves data from local memory to remote memory

B MP1_Get retrieves data from remote memory into local memory
B MPI_Accumulate updates remote memory using local values
B Data movement operations are non-blocking

B Subsequent synchronization on window object needed to
ensure operation is complete

#& Argonne National -
F 5
Laboratory Petascale Workshop

Performance of RMA (early results)

Comm Perf far MPI {denali.mecs.anl.gov) Comm Ferf for MPI {denall.mes.anl.gov)
45 type = blocking 4.0 . I | I’f.‘j.i'pleI =]'|1a£13‘1—|13‘1_11:I . |
L | ' | ' | ' [' ['

© e

]

=

time {usd

time {us}
: : -
LI """""";Lillll LI 17 11
e
3
IIII|IIIIIIIII|IIII|IIII|IIII|IIII

" i |1—Ir I i | L | | | | oK 1 |] | 1 | 1 | 1 |]
Q [FIN] 400 &00 AQD 1000 1200 Q 200 400 o i 10040 1200

Size (hytes) Size (bytes)

Caveats: On SGI, MPI_Put uses specially allocated memory

ﬁ Argonne National

Laboratory Petascale Workshop

Advantages of RMA Operations

B Can do multiple data transfers with a single synchronization
operation

— like BSP model
B Bypass tag matching
— effectively precomputed as part of remote offset

B Some irregular communication patterns can be more economically
expressed

B Can be significantly faster than send/receive on systems with
hardware support for remote memory access, such as shared
memory systems

Argonne National
Laboratory Petascale Workshop

Irregular Communication Patterns with
RMA

B If communication pattern is not known a priori, the send-
recv model requires an extra step to determine how
many sends-recvs to issue

B RMA, however, can handle it easily because only the
origin or target process needs to issue the put or get call

B This makes dynamic communication easier to code in
RMA

Argonne National
Laboratory Petascale Workshop

RMA Window Objects

MP1_Win_create(base, size, disp_unit, info, comm, win)

B Exposes memory given by (base, size) to RMA operations by other
processes in comm

B win is window object used in RMA operations
B disp _unit scales displacements:

— 1 (no scaling) or sizeof(type), where window is an array of
elements of type type

— Allows use of array indices
— Allows heterogeneity

Argonne National
Laboratory Petascale Workshop

Put, Get, and Accumulate

B MP1 _Put(origin_addr, origin_count,
origin_datatype,
target_rank, target offset,
target _count, target datatype,
window)

mMPI Get(...)
® MP1_Accumulate(..., op, ---)
® opisasin MPI1_Reduce, but no user-defined operations are allowed

Argonne National [
Laboratory Petascale Workshop

The Synchronization Issue

MPI] Get

local

stores _—

B |ssue: Which value is retrieved?

— Some form of synchronization is required between local
load/stores and remote get/put/accumulates

B MPI provides multiple forms

-'l Argonne National

Laboratory Petascale Workshop

Synchronization with Fence

Simplest methods for synchronizing on window objects:
B MP1_Win_fence - like barrier, supports BSP model

Process O Process 1

MPI_Win_fence(win) MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win) MPI_Win_fence(win)

Argonne National

Laboratory

Petascale Workshop

Scalable Synchronization with
Post/Start/Complete/Walit

B Fence synchronization is not scalable because it is collective over
the group in the window object

B MPI provides a second synchronization mode: Scalable
Synchronization

— Uses four routines instead of the single MP1_Win_fence:

* 2 routines to mark the begin and end of calls to RMA
routines

— MPI_Win_start, MPl_Win_complete

« 2 routines to mark the begin and end of access to the
memory window

— MPI_Win_post, MPI_Win_wait

B P/S/C/W allows synchronization to be performed only among
communicating processes

A& Argonne National
r

Synchronization with P/S/C/W

B Origin process calls MPI_Win_start and MPI_Win_complete
M Target process calls MPI_Win_post and MPI_Win_wait

Process O Process 1
MPI_Win_start(target_grp) MPI_Win_post(origin_grp)
MPI_Put

MPI_Put

MPI_Win_complete(target grp) MPI_Win_wait(origin_grp)

Argonne National
Laboratory Petascale Workshop

Lock-Unlock Synchronization

B “Passive” target: The target process does not make any
synchronization call

® When MPI_Win_unlock returns, the preceding RMA operations are
complete at both source and target

Process 0O Process 1 Process 2
MPI_Win_create MPI _Win_create MPI_Win_create

MP1 _Win_lock(shared,1l) MP1 _Win_lock(shared,1l)
MP1_ Put(l) MPI1_Put(l)

MP1_ Get(1) MPI_Get(1)
MPI_Win_unlock(l) MPI_Win_unlock(l)

MPI _Win_free MPI_Win_free MPI_Win_free

Argonne National

Laboratory Petascale Workshop

Fence vs Lock/Unlock Synchronization

B Fence synchronization method requires all processes in the
communicator (that created the window) to call the fence function. It
Is almost like a batrrier.

B Lock/unlock synchronization is called only by the process that needs
to do the Put or Get. The target process does not call anything.

— But this is more challenging for the MPI implementation to make
fast, especially if the underlying hardware doesn’t support direct
RMA operations

Argonne National
Laboratory Petascale Workshop

A

An Application: Modeling the Human
Brain

W Goal: Understand conditions, causes, and possible
corrections for epilepsy

B Approach: Study the onset and progression of
epileptiform activity in the neocortex

M Technique: Create a model of neurons and their
Interconnection network, based on models combining
wet lab measurements of resected tissue samples and
In vivo studies

B Computation: Develop a simulation program that can
be used for detailed parameter studies

Argonne National

le Worksh ¥
Laboratory Petascale Workshop 41

Model Neurons

signal wiring between neurons

i)\ Gl 7 - Excitatory and inhibitory

“._N"eil;jr'ons' in the fQ,cal:neoCort-ef)‘(Compartmental neural model

Mpsenke i Se Sese i Soma Soma
i\ —“‘*& LR Tk s £y Soma
Splke Spike IS Spike

NaK

:‘ Argonne National

=

! le Worksh ¥
Laboratory Petascale Workshop 42

Modeling Approach

B Individual neurons are modeled using electrical ——— T T
analogs to parameters measured in the R e I R
laboratory FEE I § i

B Differential equations describe evolution of the 0 B BT NN =8
neuron state variables YA N K S

ey = . . IOOO Q ~ g \ - o

B Neuron spiking output is wired to thousands of |~ B ES N T P

cells in a neighborhood e Oqo—"%- N
. o Ne |® ° ® So o o

B Wiring diagram is based on wiring patterns SR e U A B H
observed in neocortex tissue samples RN R R G CINE) X

B Computation is divided among available o (] odo[Toope g o
Processors Schematic of a two dimensional

patch of neurons showing
communication neighborhood for
one of the cells in the simulation
and partitioning of the patch
among processors.

& Argonne National 43
R
R Y Laboratory Petascale

Abstract pNeo for Tutorial Example

B “Simulate the simulation” of the evolution of neuron
state instead of solving the differential equations

B Focus on how to code the interactions between cells in
MPI

B Assume one cell per process for simplicity

— Real code multiplexes many individual neurons onto
one MPI process

Argonne National 44
Laboratory Petascale Workshop

What Happens In Real Life

B Each cell has a fixed number of connections to some other cells
m Cell “state” evolves continuously

B From time to time “spikes” arrive from connected cells.

B Spikes influence the evolution of cell state

B From time to time the cell state causes spikes to be sent to other
connected cells

Argonne National

| ksh ' W
Laboratory Petascale Workshop 45

What Happens In Existing pNeo Code

M In pNeo, each cell is connected to about 1000 cells
— Large runs have 73,000 cells
— Brain has ~100 billion cells
B Connections are derived from neuro-anatomical data
M There is a global clock marking time steps
B The state evolves according to a set of differential equations
B About 10 or more time steps between spikes
— l.e., communication is unpredictable and sparse
B Possible MPI-1 solutions

— Redundant communication of communication pattern before
communication itself, to tell each process how many receives
to do

— Redundant “no spikes this time step” messages
B MPI-2 solution: straightforward use of Put, Fence

Argonne National

I ksh @
Laboratory Petascale Workshop 46

What Happens in Tutorial Example

M There is a global clock marking time steps

B At the beginning of a time step, a cell notes spikes from connected
cells (put by them in a previous time step).

B A dummy evolution algorithm is used in place of the differential
equation solver.

B This evolution computes which new spikes are to be sent to
connected cells.

B Those spikes are sent (put), and the time step ends.
B We show both a Fence and a Post/Start/Complete/Wait version.

Argonne National 47
Laboratory Petascale Workshop

Two Examples Using RMA In Pneo

B Global synchronization
— Global synchronization of all processes at each step
— lllustrates Put, Get, Fence

B Local synchronization

— Synchronization across connected cells, for improved
scalability (synchronization is local)

— lllustrates Start, Complete, Post, Wait

Argonne National

Laboratory Petascale Workshop

) 48
48

F Y

Halo Exchange Benchmark

B Part of the mpptest benchmark; works with any MPI implementation

— Even handles implementations that only provide a subset of MPI-
2 RMA functionality

— Similar code to that in halocompare, but doesn’t use process
topologies (yet)
B Available from
B hitp://www.mcs.anl.gov/mpi/mpptest

B Mimics a halo, or ghost-cell, exchange that is a common component
of parallel codes that solve partial differential equations

Argonne National i
Laboratory Petascale Workshop

Persistent Send/recv

B Persistent Send/recv:

— This version uses nonblocking operations for both sending and
receiving; primarily, this is to handle the buffering issues. In order
to increase the efficiency, MPI persistent operations are used

B This is very similar to the simple nonblocking example.

— The halo experiments with the LC systems did not show an
advantage to using persistent operations in the halocompare
tests.

Argonne National

Laboratory Petascale Workshop

Halo Performance (8 nbrs) Columbia 21

Petascale Workshop

Columbia 20

-'l Argonne National

Laboratory Petascale Workshop

Columbia 20

-'l Argonne National

Laboratory Petascale Workshop

MPI RMA on SGI Altix

B Performance of Columbia 21 > Columbia 20 > Columbia 8
B Performance of “GET” > “PUT"”

B Performance of “PUT” and “GET” iIs much better than “SEND” and
“RECV”

B Performance MPI RMA is much better than the POINT-TO-POINT
communication on Columbia

B RMA performance on Columbia is excellent
B On Columbia “lock-put-unlock” is 10 times better than “send-receive”
B On Columbia “fence” method is 2 times better than “send-receive”

Argonne National 0
Laboratory Petascale Workshop

F Y

Acknowledgement

B A special thanks to Subhash Saini of NASA Advanced
Supercomputing for providing the Altix runs

B Thanks to Dale Talcott of NASA Ames Research Center for running
earlier version of the benchmarks on Columbia 21.

B Thanks to Dinesh Kaushik for the XT experiments and to ORNL for
access to their machines.

Argonne National i
Laboratory Petascale Workshop

MPI| and Threads

B MPI describes parallelism between processes

B Thread parallelism provides a shared-memory model within a
process

B OpenMP and Pthreads are common models

— OpenMP provides convenient features for loop-level
parallelism

Argonne National

Laboratory Petascale Workshop

MPI| and Threads (contd.)

B MPI-2 defines four levels of thread safety
— MPI_THREAD_ SINGLE: only one thread
— MPI_THREAD_ FUNNELED: only one thread that makes MPI calls

— MPI_THREAD_ SERIALIZED: only one thread at a time makes MPI
calls

— MPI_THREAD_ MULTIPLE: any thread can make MPI calls at any
time

B User calls MPI_Init_thread to indicate the level of thread support
required; implementation returns the level supported

#& Argonne National 2
F
2 Laboratory Petascatu -

Threads and MPI in MPI-2

B An implementation is not required to support levels higher than
MPI_THREAD_ SINGLE; that is, an implementation is not required to
be thread safe

m A fully thread-compliant implementation will support
MPI_THREAD MULTIPLE

B A portable program that does not call MPI_Init_thread should assume
that only MPI_THREAD_ SINGLE is supported

Argonne National
Laboratory Petascale Workshop

For MPI_THREAD MULTIPLE

B When multiple threads make MPI calls concurrently, the outcome
will be as if the calls executed sequentially in some (any) order

B Blocking MPI calls will block only the calling thread and will not
prevent other threads from running or executing MPI functions

M |t is the user's responsibility to prevent races when threads in the
same application post conflicting MPI calls

B User must ensure that collective operations on the same

communicator, window, or file handle are correctly ordered among
threads

Argonne National
Laboratory Petascale Workshop

Threads on LC Machines

® MPI and Threads
— MPIL_Init_thread(&argc, &argv, requested, &provided)
— The four levels of thread safety
« MPI_THREAD_SINGLE
« MPI_THREAD_FUNNELED
« MPI_THREAD_ SERIAL
« MPI_THREAD_ MULTIPLE
B Using threads
— OpenMP
* Compiler handles most operations
— Pthreads
 Like MPI, you get to do everything yourself :)
— Limitations imposed by OS
* On BG/P, threads bound to cores (so four threads)
 Linux will enable real thread programming (now true on Jaguar)

|"I!':' gon (S] Nat'onal
-J‘

Thread Performance

B Thread safety is not free

— Managing atomic access to shared data structures adds
overhead (you never know when a thread might update the same
item)

— Scheduling access to shared resources (e.g., interconnect) can
Introduce additional contention

Argonne National

Laboratory Petascale Workshop

Argonne National

Overhead of Providing Thread Safety

M This test uses a single-threaded
MPI process, but uses the
“requested” argument to
MPI_Init_thread to select either
MPI_THREAD_SINGLE or
MPI_THREAD_MULTIPLE

B The IBM SP implementation has
very low overhead

B The Sun implementation has about
a 3.5 usec overhead

— Shows cost of providing thread
safety

— This cost can be lowered, but
requires great care

Laboratory

Time (microsss.)

SN MPI thread-single
SUM MPI thread-multiple
IEM MPI thread-single
IEM MPI thread-multiple

'I-‘."i- - ame
E g R
#

200

Petascale Workshop

400

GO0
Siza (bytas)

B0 1000

Thread Overhead

B These tests compare the

performance of short message a5
sends when using single-threaded

MPI processes and multiple

threaded processes, with the same

total number of threads

B For these systems, thread
overhead is high

— Achieving low-overhead

thread-safe code is difficult

Argonne National
Laboratory

ao

25

20 F

15

Tim= [microsec.)

10 F

5

P LT s T

a

Sun MFPI14P-4P
Sun MPI1 AT-AT
[EMMFI 4P-4P =
[EM MPI AT-AT

1] 200

Petascale Workshop

400 G000
Size [bytes)

a0 1000

Threads vs. Processes

B This test compares using

processes or threads to d: ap-ap o
communicate between nodes on | B e
an SMP; the machines are a Sun % il .
and an IBM SP g
M Processes achieve a much higher E ’
bandwidth el
— Likely that processes share f |
interconnect more effectively s Yl m=
than threads on these systems Bl
oL i —
Sun MPI 18R MPI

A Argonne National
A Laboratory Petascale Workshop

Some Recommendations on the Use of
Threads

M Best used when threads can help balance compute load
or distribute communication

B Always estimate performance and measure.

M Provide realistic (but simple) test cases to help
Implementations identify and solve real performance
ISsues

B The impact of the multithreaded programming model on
scalable scientific applications is a new issue for
vendors, middleware developers, and applications alike.

A& Argonne National
r
= Laboratory Petascaleii .

Standards Issues

B Hybrid programming (two programming models) requires that the
standards make commitments to each other on semantics.

B OpenMP’s commitment: if a thread is blocked by an operating
system call (e.g. file or network 1/O), the other threads remain
runnable.

— This is a major commitment; it involves the thread scheduler in
the OpenMP compiler’s runtime system and interaction with the
OS.

— What this means in the MPI context: An MPI call like MPIl_Recv
or MPI_Wait only blocks the calling thread.

B MPI's commitments are more complex.

.-"I"' rgonne National
i
N Laboratory Peta s Workshop m

MPI’s Four Levels of Thread Safety

B Note that these are not specific to OpenMP

B The are in the form of commitments that the multithreaded
application makes to the MPI implementation

— MPI_THREAD_SINGLE: there is only one thread in the
application

— MPI_THREAD_ FUNNELED: there is only one thread that makes
MPI calls

— MPI_THREAD_ SERIALIZED: Multiple threads make MPI calls,
but only one at a time

— MPI_THREAD_ MULTIPLE: Any thread may make MPI calls at
any time
B MPI-2 defines an alternative to MPI_Init
— MPI_Init_thread(requested, provided)

 Allows applications to say what level it needs, and the MPI
implementation to say what it provides

A Argonne National
A
R Y Laboratory Petascale

What This Means in the OpenMP Context

B MPI_THREAD_SINGLE
— There is no OpenMP multithreading in the program.
B MPI_THREAD_FUNNELED
— All of the MPI calls are made by the master thread. l.e. all MPI calls are
* Outside OpenMP parallel regions, or
* Inside OpenMP master regions, or
* Guarded by call to MPI_Is_thread main MPI call.
— (same thread that called MPI_Init_thread)

® MPI_THREAD_ SERIALIZED
#pragma omp parallel

#pragma omp atomic

{

...MPI calls allowed here...

}
® MPI_THREAD_MULTIPLE

— Anything goes

#& Argonne National
A Laboratory Petascale Workshop m

The Current Situation

H All MPI implementations support MPI_ THREAD_SINGLE (duh).

B They probably support MPI_THREAD_ FUNNELED even if they don’t
admit it.

— Does require thread-safe malloc
— Probably OK in OpenMP programs
B “Thread-safe” usually means MPI_THREAD_ MULTIPLE.

B This is hard for MPI implementations that are sensitive to
performance, like MPICH2.

— Lock granularity issue

B “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED.

— So don’'t need “thread-safe” MPI for many hybrid programs
— But watch out for Amdahl’'s Law!

.-"I"' rgonne National
i
N Laboratory Peta s Workshop m

Visualizing the Behavior of Hybrid Programs

B Jumpshot is a logfile-based parallel program visualizer of the
“standard” type. Uses MPI profiling interface.

B Recently it has been augmented in two ways to improve scalabllity.

Summary states and messages are shown as well as individual
states and messages.

* Provides a high-level view of a long run.

* SLOGZ2 logfile structure allows fast interactive access
(jumping, scrolling, and zooming) for large logfiles.

EIEE h|bl| -m»”&l:-\ ® N na;|a..|

[+] C o || o[m] <|>|ala_a uuu EIED
Lwe st NI T 1 4 M T,

|||||||||

OIEDOM

.s-ﬂ-uf; b A_n!!l oy

":i Argonne National

Laboratory Petascale Workshop

Jumpshot and Multithreading

B Newest additions are for multithreaded and hybrid programs that use
pthreads.

— Separate timelines for each thread id

— Support for grouping threads by communicator as well as by
process

TimelLine : pthread_sendrecv.slog2 <Communicator-Thread View>

III BE ¢ Wﬂlﬂﬂﬂ Wﬂﬂ 80

‘ Argonne National
Laboratory

Petascale Workshop

Using Jumpshot with Hybrid Programs

B SLOG2/Jumpshot needs two properties of the OpenMP
Implementation that are not guaranteed by the OpenMP standard

— OpenMP threads must be pthreads

* Otherwise, the locking in the logging library necessary to
preserve exclusive access to the logging buffers would need to
be modified.

— These pthread ids must be reused (threads are “parked” when
not in use)

e Otherwise Jumpshot would need zillions of time lines.

Argonne National
Laboratory Petascale Workshop

Three Platforms for Hybrid Programming

B Linux cluster
24 nodes, each consisting of two Opteron dual-core processors, 2.8 Ghz

each

Intel 9.1 fortran compiler

MPICH2-1.0.6, which has MPI_THREAD_MULTIPLE
Multiple networks; we used GigE

H IBM Blue Gene/P

40,960 nodes, each consisting of four PowerPC 850 MHz cores
XLF 11.1 Fortran cross-compiler

IBM’s MPI V1R1M2 (based on MPICHZ2), which has
MPI_THREAD_MULTIPLE

3D Torus and tree networks

B SiCortex SC5832

972 nodes, each consisting of six MIPS 500 MHz cores
Pathscale 3.0.99 fortran cross-compiler

SiCortex MPI implementation based on MPICH2, has
MPI_THREAD_ FUNNELED

Funky Kautz graph network

Argonne National
Laboratory Petascale Workshop

Experiments

M Basic
— Proved that necessary assumptions for our tools hold
* OpenMP threads are pthreads
* Thread id’s are reused
B NAS Parallel Benchmarks
— NPB-MZ-MPI, version 3.1
— Both BT and SP
— Two different sizes (W and B)
— Two different modes (“MPI everywhere” and OpenMP/MPI)
« With four nodes on each machine

B Demonstrated satisfying level of portability of programs and tools
across three quite different hardware/software environments

B But we didn’t get it right the first time...

“

It Might Not Be Doing What You Think

B An early run:

TimeLine : bt_mz_np4_3.slog2 <Process-Thread View>
AV = (€Y alagaa K8 2@
.I:owest | Max. Depth|4|Zoom Level Global Min Time Wiew Init Time Zoom Focus Time Wiew Final Time Global Max Time Time Per Pixel 1

0¢s * [0.0001039505 01829626906 0.1576964957 0.1924303001 0.5858665915 0.0000119543 @ﬂ *
Cumulati\teExc...|v TimeLines -

slog-2 .'

o

Do || (I ————

o || —

0z

Oz

AE!

Os |
1

S

| R

e ss

O
? lj;o

4] | »
@ wearld_rank
@ thread

ENINY IR

q] DNk

=
=
B
=
L

B Nasty interaction between the environment variables
OMP_NUM_THREADS and NPB_ MAX_THREADS

Argonne National B
‘h Laboratory Petascale Works

More Like What You Expect

® BT class B on 4 BG/P nodes, using OpenMP on each node

= TimeLine : bi_B_np4x4_bgp.slog2 <Process-Thread View> P

Lowest [Max. Depth|4|Zoom Level Global Min Time View Init Time Zoom Focus Time Wiew Final Time Global Max Time Time Per Pixel |_ 1
0/10 p g 0.0001652659 76.5326630871 76.9326969552 77.3327306391 1537798645024 0.0010127438 Q in-? k

CumulativeBxe...| = TimeLines - ©

-

30 =r
Do
(R
0z
R

31

o . . | | I I m

1z -

Gyo
!
0z
R

73
Gyo
!
e :

<] v |
@ world_rank
@ thread

Time {seconds) =

.‘ Argonne National
r Laboratory

Petascale Workshop

MPI| Everywhere

® BT class B on 4 BG/P nodes, using 16 MPI processes

-

Lowest § Max. Depth|4

0/10

CumulativeBec...| w

Zoom Level Global Min Time
0.0001648247

TimeLine : bt B_np16x1_bgp.slog2 <Process View>

Wiew [nit Time
64.5704268517

Wiew Final Time
65.3528533268

Zoom Focus Time
64.9616400564

Global Max Time
137.9960233541

Time Per Pixel
0.001065976

m X

< e

TimeLines -

Gyo
1
Oz
RE
Ci4
Oys
Oys
Oy7
]
g
Gy1o
RS
01z
[13
14
Oy 1s

1]

[»

-

|l

@ world_rank

[l

b4.60

64 80

64,90 65.00

Time (zeconds) < :

Argonne National
Laboratory

Petascale Workshop

Observations on Small Experiments

Experiment Cluster BG/P SiCortex
Bt-mz.W.16x1 1.84 9.46 20.60
Bt-mz-W.4x4 0.82 3.74 11.26
Sp-mz.W.16x1 0.42 1.79 3.72
Sp-mz.W.4x4 0.78 3.00 7.98

BEMZ.B.10.1 2431 T13.3T Z25T.07 |
Bt-mz.B.4x4 27.96 124.60 399.23
Sp-mz.B.16x1 21.19 70.69 165.82
Sp-mz.B.4x4 24.03 81.47 246.76
Rt.mz R 24x1 241 .95
Bt-mz.B.4x6 337.86
Sp-mz.B.24x1 127.28
Sp-mz.B.4x6 211.78

B On the small version of BT (W), hybrid was better
B For SP and size B problems, MPI everywhere is better
B On Sicortex, more processes or threads are better than fewer

& Argonne National n
£ Laboratory Petascale Workshop

Conclusions

M This particular benchmark has been studied much more deeply
elsewhere

— Rolf Rabenseifner, “Hybrid parallel programming on HPC
platforms,” Proceedings of EWOMP’03.

— Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using
OpenMP: Portable Shared Memory Parallel Programming, MIT
Press, 2008.

B Adding Hybridness (Hybriditude?) to a well-tuned MPI application is
not going to speed it up. So this NPB study doesn’t tell us much.

B More work is needed to understand the behavior of hybrid programs
and what is needed for future application development.

B (This work is reported on in the Proceedings of EWOMP ‘08.)

& Argonne National n
£ Laboratory Petascale Workshop

The OpenMP Books

B Both old book and new book (and OpenMP tutorials) have two parts:
B The Front:

— OpenMP is magically convenient

— A few comments added to serial code and voila!
B The Back:

— Scalabllity is not so easy

— Performance issues are subtle

— Need more than comments — function calls

— SPMD structure

— It starts to look like MPI...

B (But the new book is really good; both front and back parts.)

J‘ Argonne National

Laboratory Petascale Workshop n

What is OpenMP For?

B Word on laptop? Probably not.

B Matlab back end on desktop? Probably so.

B Small scientific applications on desktops? Yes.

B HPC on biggish SMPs? Maybe, but hard.

B Collaborating with MPI on big machines? Almost certainly.

Argonne National
Laboratory Petascale Workshop

Solving Performance Problems

B Solving your performance problem requires that
— You understand how fast your code should go
— How fast it actually goes
— Possible interactions that may help explain the behavoir

B MPI provided a powerful hook on which tools can and are built - the
profiling interface

— In addition to general-purpose tools, this interface is available to
all

* You can build custom tools to explore application-specific
hypotheses

Argonne National
Laboratory Petascale Workshop

Tools Enabled by the MPI Profiling
Interface

® The MPI profiling interface: how it works
B Some freely available tools
— Those to be presented in other talks
— A few that come with MPICH2
* SLOG/Jumpshot: visualization of detailed timelines
 FPMPI. summary statistics

e Collcheck: runtime checking of consistency in use of
collective operations

Argonne National
Laboratory Petascale Workshop

The MPI Profiling Interface

‘o)

Profiling
Library

- /

Petascale Workshop

Performance Visualization with
Jumpshot

B For detailed analysis of parallel program behavior, timestamped
events are collected into a log file during the run.

B A separate display program (Jumpshot) aids the user in
conducting a post mortem analysis of program behavior.

B We use an indexed file format (SLOG-2) that uses a preview to
select a time of interest and quickly display an interval, without
ever needing to read much of the whole file.

Processes

Logfile

Jumpshot

.‘ Argonne National
r Laboratory

Petascale Workshop

Viewing Multiple Scales

| TimeLine : 120_np=6_Iref=6_myri.slog2 <ldentity Map> [|J‘,S|
lo]v]vau][efs <]>][naig[an] [@8e <ae
Lawes"s':‘?[’e'"ﬁ:_ T Simsaretiss o osseeraiss Lo aisosoeuse- o5 oopassoms. |psatatanssea o osessceess I M| ¥ N
lidentity Map TimeLines - | a0
N A A AT
5 / - N AN LSS | VIR “
B 'v;';lllii‘:‘:" ""‘-7':""!-"'"‘:""’ r‘:q\"\t:'-‘f’f‘ﬂll i+ || | Detailed view shows opportunities
: I"‘V‘ K 1 v
O eSS AN SN ; PP
B w, NNARLASY ||y,'." ;;qlr,‘\\‘..g,,_‘lm XN :q 1| - for optlmlzatlon
& R AN (VA T
. -,;r,‘,lh, \,\1|r,”u\ qlr.'.u.\a AR A .
' fmlLy_u'.\” AR AL ;V/AV‘N/*' 7R “”E.Ta" ”e"‘“ \°° we"e'||°u'3';3'5?;2ﬁ'?e ‘I‘ﬁ“s“uél'iié?; i°2°§"1£3§”223‘;3e ‘f':?JéZELEL’SS 2‘5?3'32"2;‘32'5"12 2"330232'2'5‘% m e
WA fi; \;/AT' "\;5 './‘T Ay }1\-17;1|’.A\.:;!‘-" e — 55,%
i | ; s F
ok fn w-uuruwj'b . e [___Jll B S -_-
KA Losii> > B
Os e voavdvoar dlr " b Y | SO A W m z
______ . - -‘-Il'. L 31 Ir s & Ny 7 N e s 77
. = e N . i N i@ ||
E. = Preview_Arrow : 1 —
Im—r % o T R s AN 770 |
: | [0]: time {mim) = 2.3852754831, Linell = 7 :
— [0 2_5|[11: time (max) = 4.9263705015, LinelD = € ; e 4 - .
ot [P —— - S WP i | -
[O]: time {ave) = 3. 6481806572, LinelD = 7 : :
[1]: time (ave) = 3.6492811626, LinelD = & ; :
;‘Imm&ﬂg_wmﬂm_- Il
| | L . | IS B |
==] = e aaa D ||
i Ef Hm
EaCh Iine represents 1000’8 |— . . 5 1|2.305 12,3075 12.31 1|2.3125 1|2 315 1‘2.3175 1|2.32 1|2 3228 1‘2.3?[5”“e tsecoll:ifﬁ_ |‘Ck|{"7’|

of messages

Argonne National
Laboratory

Petascale Workshop

1000x zoom

F Y

Pros and Cons of this Approach

B Cons:
— Scalability limits
« Screen resolution
* Big log files, although
— Jumpshot can read SLOG files fast
— SLOG can be instructed to log few types of events
— Use for debugging only indirect
® Pros:
— Portable, since based on MPI profiling interface
— Works with threads
— Aids understanding of program behavior
» Almost always see something unexpected

Argonne National

Laboratory Petascale Workshop

Looking at MILC in SPEC2007

B Curious amount of All_reduce in initialization - why?

E

TimeLine : specmpi_milc_np16_merged.slog2 <Process View>

R4

&

LY 2 @

15 /1% 1]

Lowest | hiax. Depth|4|Zoom Lewel Global Min Time
0.0062031746

Wigw |nit Time
00062031746

“iew Final Time
3,090.61991 96577

Zoom Focus Time
1,545.3130614161

Global Max Time
3,090.61991 96577

Time Per Pixel
4.0137340474

/

/

— e *-—-‘ ——
e by
e S e P .
F" — — —\._ - _"—"_‘f . = —— .
I =-_ J_—;..";.x._ e ™~ -“_.’_e-—_-’.’_“:,—__'-’%
[e, . —— e — = ——— —— g e
T = et " o "’__ - — —
—mp— =T R ————

|

1

f

7

|

——.._"-In__-" li—
—— w" —
oy —— = 7= —

e — —

MI

'i

|

).

)
'
A
"‘:‘

i . D — =
— e - - i, T
Pt g .
"‘.— _____’-__-‘-__ o, - -
—— - o =
— e e T e

\

\

\

\

i

e e e~ e~
e i T — e - :
—— e —"______'-———- i

— e T === T
e ma, —— . ! -

|

|

’)\
i'i.

|

|

w

A
o
"F

i
)

{
i
)

%‘
|

f

)
i

\

|

l

P

i

A

I

!
'
i
WA

| Rowe -

I
250.00

= f—_*“‘-—u‘"—-— =
- o ———— A —
g —
[»
i i i i i i i i i i i
s00.00 F50.00 1,000.00 1,250.00 1,500.00 1,750.00 2,000.00 2,250.00 2,500.00 2,750.00 3,00c

Time (seconds)

g;RuwCuunt
A 150
°
15
13
11
9
7
5
3
I
| Fit All Ro
D

& Argonne National
Laboratory

Petascale Workshop

Y

MILC

B The answer, and how

E Preview_arrow o -
E message 1203220
I:I Presdew_State 0
I cLoc Burrer_writezdisk 2040
MPE_Irecv_waited 120330
I 71 aireduce 8850
D MFP|_Barrier 30
I | 60
[Jimpicomm rank 266720746
[Jimpi comm size 24540
_Jimercomm spii 15
_Jimeirecy 120330
[Jimerisend 120330
B v F 1 wai 240660
Preview_Ewernt]
‘T' MPE_Camm_finalize 15
BSR| M FE_Comm_init 15]<
‘ Il | N

Argonne National
Laboratory

alv i

TimeLine :

B

slog? <Process Views

specmpi_milc_np16_merged.
¢ % o 8|8 & LS @

Lowvest { e, Death 4
o

[Zeam Level Glabal Min Time
15 [oopezadre

Viens Int Time
L3100

Taom Focus Time
e 10 Wa

Vien Binad Time
RFTITy

Global Mix Time Time Per Pcel
109,61 93156517 | 0 00914085)

Comalativelac | w
nec: [

Oio

[

AR

Oz

Os

Os

[ys

2l =

TimeLines - | 160

& v| Y

ThmeLine : specmpi_milc_np16_merged. slog? <Process Views

B

crpaman BHMS @@

Lowest b Depih 4
0418]

Cumultivebec |-

[s0c-2
Oe
Dt
[MH
Dz
[ME]

O
D
L] L] |

& worid_rans: [«

4 v

I
o |[rrrs wran

Zoom Level Glabal Win Time
[H

L0IRI0T Fak

“Wiew Ini Time
W7 BEA0595

Taom Foas Time
[IECITEET

habal Max Time
3,80 RFALAESTT

Time Per Prcel

View Fisal Time.
5 ROHORAES

(T

1 I
s B

1 I 1 I I I
BPTEIE RPTIS WTREMS AFPE EPRAR ERDRR RPTNTE EMES

e

TimeLines -

arams s

Time Gecanda

L]

FiL. 41 o

oo

¥

Petascale Workshop

MILC

B The answer - why

— Deep In innermost of quadruply nested loop, an innocent-looking
line of code:

If (1> myrank()) ...
And myrank is a function that calls MPI_Comm_rank
— It actually doesn’t cost that much here, but

— It illustrates that you might not know what your code is doing what
you think it is
— Not a scalability issue (found on small # of processes)

#& Argonne National 2
F
4 Laboratory PetasCalSu I m

Detecting Consistency Errors in MPI
Collective Operations

B The Problem: the specification of MPI_Bcast:
MP1_ Bcast(buf, count, datatype, root, comm)
requires that
— root is an integer between 0 and the maximum rank.
— root is the same on all processes.

— The message specified by buf, count, datatype has the same
signature on all processes.
B The first of these is easy to check on each process at the entry to the
MPI_Bcast routine.
B The second two are impossible to check locally; they are consistency
requirements requiring communication to check.

B There are many varieties of consistency requirements in the MPI collective
operations.

Argonne National

Laboratory Petascale Workshop

Datatype Signatures

B Consistency requirements for messages in MPI (buf, count, datatype) are on not
on the MPI datatypes themselves, but on the signature of the message:

— {type,, type, ...} where type, is a basic MPI datatype
B So a message described by (bufl, 4, MPI1 _INT) matches a message
described by (buf2, 1, vectype), where vectype was created to be a
strided vector of 4 integers.
B For point-to-point operations, datatype signatures don’t have to match exactly (it is

OK to receive a short message into a long buffer), but for collective operations,
matches must be exact.

Argonne National

Laboratory Petascale Workshop

Approach

B Use the MPI profiling interface to intercept the collective calls,
“borrow” the communicator passed in, and use it to check argument
consistency among its processes.

B For example, process O can broadcast its value of root, and each
other process can compare with the value it was passed for root.

B For datatype consistency checks, we will communicate hash values
of datatype signatures.

B Reference: Falzone, Chan, Lusk, Gropp, “Collective Error Detection
for MPI Collective Operations”, Proceedings of EuroPVM/MPI 2005.

Argonne National
Laboratory Petascale Workshop

Datatype Signature Hashing

® Gropp — EuroPVM/MPI 2000

B Matching is done on pairs (a, n), where a is a hash value and n is the number of
basic datatypes in the message.

B Elementary datatypes assigned (a, 1) for chosen values of a.
B Concatenate types with
— (a,n) # (b,n) = (a xor (b << n), n+m), where << s circular left shift
— Note non-commutative to prevent (int, float) from colliding with (float, int)

B The pairs (a,n) are easy to communicate to other processes, unlike the signatures
themselves
— (No MPI datatype for MPI_Datatype)

— We will use PMPI_Bcast, PMPI_Scatter, PMPI_Allgather, PMPI _Alltoall as
needed to communicate the (vector of) hash pairs to the other processes.

Ah Argonne National

Laboratory Petascale Workshop

Types of Consistency Checks

B Call — checks that all processes have made the same collective call (not
MPI_Allreduce on some processes and MPI_Reduce on others).

— Used in all collective functions
B Root — checks that the same value of root was passed on all processes

— Used in Bcast, Reduce, Gather(v), Scatter(v), Spawn, Spawn_multiple,
Connect

B Datatype — checks consistency of data arguments
— Used in all collective routines with data buffer arguments
B Op - checks consistency of operations
— Used in Reduce, Allreduce, Reduce_scatter, Scan, Exscan

Argonne National

Laboratory Petascale Workshop

More Types of Consistency Checks

B MPI_IN_PLACE - checks whether all process or none of the processes
specified MPI_IN_PLACE instead of a buffer.

— Used in Allgather(v), Allreduce, and Reduce_scatter
B Local leader and tag — checks consistency of these arguments
— Used only in MPI_Intercomm__create
B High/low — checks consistency of these arguments
— Used only in MPI_Intercomm_merge
B Dims — checks consistency of these arguments
— Used in Cart_create and Cart_map

#& Argonne National
A Laboratory Petascale Workshop m

Still More Types of Consistency Checks

B Graph — checks graph consistency
— Used in Graph_create and Graph_map
B Amode — checks file mode argument consistency
— Used in File_open
B Size, datarep, flag — checks consistency of these 1/0O arguments
— Used in File_set_size, File_set _automicity, File _preallocate
B Etype — checks consistency of this argument
— Used in File_set view
B Order — checks that split-collective calls are properly ordered
— Used in Read_all_begin, Read _all end, other split collective 1/O

44 Argonne National

Laboratory Petascale Workshop

Example Output

B We try to make error output instance specific:

B Validate Bcast error (Rank 4) — root parameter (4)
IS 1nconsistent with rank 0’s (0)

B Validate Bcast error (Rank 4) — datatype signhature
1S 1nhconsistent with Rank 0’s

B Validate Barrier (rank 4) — collective call
(Barrier) is i1nconsistent with Rank 0’s (Bcast)

#& Argonne National 2
F
4 Laboratory PetasCalSu I -

Experiences

B Finding errors

— Found error in MPICH2 test suite, in which a message with one MPI_INT was
allowed to match sizeof(int) MPI_BYTEs.

— MPICH2 allowed the match, but shouldn’t have. ® (©)
— Ran large astrophysics application (FLASH) containing many collective operations

« Collective calls all in third-party AMR library (Paramesh), but could still be
examined through MPI profiling library approach.

* Found no errors © (®)
B Portability, Performance
— Linux cluster (MPICH2)
— Blue Gene (IBM’s BG/L MPI)
— Relative overhead decreases as size of message increases
* The extra checking messages are much shorter than the real messages
— Overhead can be relatively large for small messages
* Opportunities for optimization remain
— Profiling library can be removed after finding errors

*l Argonne National

=

Laboratory Petascale Workshop m

The (Foggy) Future of Programming
Models

Petascale Workshop

Looking out to Exascale...
Concurrency will be Doubling every 18 months

Power and Memory costs dominate
Novel technologies introduced 6

Growth of massive parallelism within chips

Growth fueled primarily by transmtars cm a chip

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

h Argonne National

Laboratory Petascale Workshop

Outline of the Situation

« Million core systems and beyond are on the horizon

* Today labs and universities have general purpose
systems with 10k-200K cores (BGL@ LLNL 200K,
BGP@Argonne 160K, XTS@ORNL 150K cores)

* By 2012 there will be more systems deployed in the
200K-1M core range

* By 2020 there will be systems with perhaps 100M cores
* Personal systems with > 1000 cores within 5

* Personal systems with requirement for 1M threads is not
too far fetched (GPUs for example)

u"'-fi Argonne National

Laboratory Petascale Workshop -

How Will We Program Them?

® Still an unsolved problem

B Some believe a totally new programming model and
language (e.g. X10, Chapel, Fortress).

B Some mechanism for dealing with shared memory will be
necessary
— This (whatever it is) plus MPI is the conservative view

B Whatever it is, it will need to interact properly with MPI
B May also need to deal with on-node heterogeneity

M The situation is somewhat like message-passing before

MPI
— And it is too early to standardize

nﬁi Argonne National

Laboratory

Petascale Workshop _

L

MPIl is Current HPC Programming Model

B MPI represents a very complete definition of a well-defined
programming model

B MPI programs are portable

B There are many implementations
— Vendors
— Open source

B Enables high performance for wide class of architectures
— Scalable algorithms are key

B Small subset easy to learn and use

B Expert MPI programmers needed most for libraries, which are
encouraged by the MPI design.

Argonne National

Laboratory Petascale Workshop 107

The MPI Forum Continues to Refresh MPI

B New signatures for old functions
— E.g. MPI_Send(...,MPI_Count,...)
B Details
— Fortran binding issues..
B New features
— MPI_Process_Group and related functions for fault tolerance
— New topology routines aware of more hierarchy levels
— Non-blocking collective operations
— A simpler one-sided communication interface

* Or perhaps standardized semantics for interacting with shared-
memory programming systems in general

— More scalable versions of the “v” collectives

B See hitp://www.mpi-forum.orq for details of working groups

J‘ Argonne National

Laboratory Petascale Workshop 108

why Won't “MPI Everywhere” suffice?

B Core count on a node is increasing faster than memory size.
B Thus memory available per MPI process is going down.

B Thus we need parallelism within an address space, while continuing
to use MPI for parallelism among separate address spaces.

B We don’t have a good way to do this yet.

B Whatever we use, it must cooperate with parallelism across address
spaces, so its APl must interact in a well-defined way with MPI.

B Some applications are expressing the need for large address spaces
that span multiple multi-core nodes, yet still are each a small part of
the memory of the entire machine.

Argonne National
Laboratory Petascale Workshop

109

Traditional Sources of Performance
Improvement are Flat-Lining (2004)

« New Constraints TR :
— 15 years of exponential clock y
rate growth has ended 1,000,000 : /
* Moore’s Law reinterpreted: 100,000 /
— How do we use all of /
those transistors to keep ™% e
performance increasing
at historical rates? 1,000
— Industry Response: .
#cores per chip doubles "i
every 18 months instead . / i
of clock frequency! /’/ oot
1) m Transistors (000) |

. ¥y

+ Clock speed (MHz)

* & Power (W)
& PerfiClock {ILP)
o | | |

1970 1975 1980 1985 1990 1885 2000 2005 2010

“

- I\/Iultlple parallel general-purpose processors (GPPs)
— Multiple application-specific processors (ASPs) fas=

Intel Network Processor IBM Cell
1 GPP Core 1 GPP (2 threads) ;-

16 ASPs (128 threads) 8 ASPs

< [e | fal . .

3 ’@@Egl EEE@I{E Picochip DSP
somm [deew | 1 GPP core
ppgg legeglls 248 ASPs

Y
ocessor () Switch Matrix Inter-picoAray Interface
== Example Signal Flows

Cisco CRS-1

Sun Niagara 188 Tensilica GPP
8 GPP cores (32 threads)
iws Intel 4004 (1971): ")
%%_ 4_b|t processor’ The Processor IS the
[—73T7 transistors, new Transistor”
~100 KPS
: ’ [Rowen]

10 micron PMOS,
| 11 mm? chip

Moving Beyond MPI

B Any alternative to MPI (at its own level) will have to have some of the
good properties of MPI

— Portabllity
— Scalability
— Performance
B Perhaps alternatives exist at different levels.

B But they will still have to interact with MPI, in order to provide a path
from where we are now to more abstract models

— Clear interoperability semantics
— Can be used either above or below C/Fortran/MPI code

Argonne National

Laboratory Petascale Workshop 113

Some Families of Programming
Models and Associated Languages

B Shared-memory and annotation languages
— Especially OpenMP
— Likely to coexist with MPI
® Partitioned Global Address Space Languages
— UPC, Co-Array Fortran, and Titanium
— One step removed from MPI
® The HPCS languages
— X10, Chapel, Fortress
— Two steps removed from MPI

l. Argonne National

Laboratory Petascale Workshop 114

OpenMP

B OpenMP is a set of compiler directives (in comments, like HPF) plus
some library calls

B The comments direct the execution of loops in parallel in a
convenient way.

B Data placement is not controlled, so performance is hard to get
except on machines with real shared memory.

B Likely to be more successful on multicore chips than on previous
SMP’s (multicore = really, really shared memory).

B Can co-exist with MPI

— MPI’s levels of thread safety correspond to programming
constructs in OpenMP

« Formal methods can be applied to hybrid programs
B New book by Barbara Chapman, et al.

J!i Argonne National

Laboratory Petascale Workshop 115

Other Annotation-based approaches

B The idea is to retain the sequential programming model

B Annotations guide source-to-source transformations or compilation
Into a parallel program

B HPF and OpenMP (part 1) are examples
B Others in research mode

Argonne National

Laboratory Petascale Workshop

116

The PGAS Languages

B PGAS (Partitioned Global Address Space) languages attempt to
combine the convenience of the global view of data with awareness
of data locality, for performance

— Co-Array Fortran, an extension to Fortran-90)
— UPC (Unified Parallel C), an extension to C
— Titanium, a parallel version of Java

Global address

space /4 \

Local address
spaces

B Fixed number of processes, like MPI-1

‘ Argonne National
Laboratory

Petascale Workshop

Status

B Compilers exist
— In some cases more than one

B Applications are being tried

B Substantial support, at least for UPC

B Early experiments are encouraging with respect to performance
— Some reports are misleading.

F Y Argonne National

Petascale Workshop 118

Laboratory

Argonne National

The DARPA HPCS Language Project

B The DARPA High Productivity Computer Systems (HPCS) Project is
a 10-year, three-phase, hardware/software effort to transform the
productivity aspect of the HPC enterprise.

M In Phase ll,three vendors were funded to develop high productivity
language systems, and each assigned a small group to language
development

— IBM: X10
— Cray. Chapel
— Sun: Fortress

® In Phase lll, Sun was dropped from DARPA support. Both IBM and
Cray efforts are continuing. Actually, Sun’s effort is too, internally
supported.

Laboratory Petascale Workshop

119

The Transition Is Starting

* In large-scale scientific computing today essentially all codes are
message-passing based. Additionally many are starting to use some
form of multithreading on SMP or multicore nodes.

* Multicore is challenging programming models but there has not yet
emerged a dominate model to augment message passing

* There is a need to identify new hierarchical programming models
that will be stable over long term and can support the concurrency
doubling pressure

e Current approaches to programming GPU'’s are for library
developers, not application developers

.-I"' rgonne National
i
N Laboratory Peta s Workshop -

A

Argonne National

Hybrid Programming Models

B Some shared-memory API’s that can be used with MPI
— POSIX threads -- explicit thread creation, locks, condition vars
— OpenMP

» Sequential programming model with annotations, parallel
execution model

— Yet to be invented...
B The current situation: OpenMP + MPI

— Works because of well-thought-out explicit contracts between the
models.

* MPI standard defines levels of thread safety
* OpenMP defines types of code regions

* These work together in ways defined by the respective
standards

— Hard to get performance with OpenMP because of lack of locality
management, excessive synchronization.

Laboratory Petascale Workshop

122

One Possible Near Future: PGAS+MPI

B | ocality management within an address space via local, remote
memory

B An address space could be bigger than one node
— Might need more hierarchy in PGAS definitions
MW Just starting to work with PGAS folks on UPC+MPI and CAF+MPI

— Center for Programming Models base program project with ANL,
LBNL, Rice, Houston, PNNL, OSU

B Until recently PGAS has focused either on competing with MPI or
with OpenMP on single node

— Need to make interoperability with MPI a priority to attract current
HPC applications

Ah Argonne National

Petascale Workshop 123

Laboratory

A More Distant Future

B HPCS-type languages have many interesting ideas for exploiting
less obvious parallelism

B Need coordination and freedom from vendor ownership
B A convergence plan

— (DARPA briefly funded a convergence project, which was
promising until cancelled)

B A migration plan for current applications
— Interaction with MPI
— Use in libraries

J‘ Argonne National

Laboratory Petascale Workshop 124

Avoiding MPI. The Asynchronous
Dynamic Load-Balancing Library

B Overview of ADLB

B The API in a nutshell
B How it works

M Tutorial example

Petascale Workshop

Master/Slave Algorithms and Load Balancing

. Shared
aster Work queue
Slave Slave Slave Slave Slave

B Advantages

— Automatic load balancing

B Disadvantages

— Scalability - master can become bottleneck

B Wrinkles

— Slaves may create new work
— Multiple work types and priorities that impose work flow

Argonne National
Laboratory

Petascale Workshop

126

F

A

Argonne National

The ADLB Vision

B No explicit master for load balancing; slaves make calls to ADLB
library; those subroutines access local and remote data structures
(remote ones via MPI).

B Simple Put/Get interface from application code to distributed work
gueue hides most MPI calls

— Advantage: multiple applications may benefit

— Wrinkle: variable-size work units, in Fortran, introduce some
complexity in memory management

B Proactive load balancing in background

— Advantage: application never delayed by search for work from
other slaves

— Wrinkle: scalable work-stealing algorithms not obvious

Petascale Workshop

Laboratory

127

The ADLB Model (no master)

Slave Slave Slave Slave Slave

Shared

Work queue

B Doesn'’t really change algorithms in slaves
B Not a new idea (e.g. Linda)

B But need scalable, portable, distributed implementation of shared
work queue

— MPI complexity hidden here.

44 Argonne National

Laboratory Petascale Workshop 128

API for a Simple Programming Model

M Basic calls
— ADLB_Init(num_servers, am_server, app_comm)
— ADLB_Server()
— ADLB_Put(type, priority, len, buf, answer_dest)
— ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
— ADLB_lIreserve(...)
— ADLB_Get_Reserved(handle, buffer)
— ADLB_Set_Done()
— ADLB_Finalize()
B A few others, for tuning and debugging
— ADLB_{Begin,End} Batch_Put()
— Getting performance statistics with ADLB_Get_info(key)

l. Argonne National

Laboratory Petascale Workshop

Parallel Sudoku

Solver with ADLB

Program:

7 If (rank = 0)

ADLB_Put initial board
ADLB_Get board (Reserve+Get)

while success (else done)

ooh

\l
N|W|00 | O

6 find first blank square

If failure (problem solved!)
print solution

ADLB_ Set Done

N/ |01 O
o

else

2 5 3

g for each valid value

Work unit =
partially completed “board”

u"'-fi Argonne National
Laboratory

set blank square to value
ADLB_Put new board
ADLB _Get board
end while

Petascale Workshop | 130

How 1t Works

9

ul
N (W] O

~N ([~ jo|©o
D

Get

1@ 9 1/%]61) 9 1@ 9 7
N 6 inca | 6 N 6[1
7] 18 7] 18 7] 18
513 513 513
7] l9]1| [8]2 71 19]1| [8]2 7] l9j1| |8]2] |6
5|6 516 5|6
1] [9 1] |9 [HE
6|7 1 6|7 1 6|7 1
E 5 2 5 2 5 3]8

W After initial Put, all processes execute same loop (no master)

ﬁ Argonne National
Laboratory

Put

Petascale Workshop

9 7
3 6
8
513
9 812| |6
5
1
7 1
8
131

Optimizing Within the ADLB Framework

B Can embed smarter strategies in this algorithm
— o0oh = “optional optimization here”, to fill in more squares
— Even so,potentially a lot of work units for ADLB to manage
B Can use priorities to address this problem
— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuring that there is
enough work to go around

* How one would do it sequentially

B Exhaustion automatically detected by ADLB (e.g., proof that there is
only one solution, or the case of an invalid input board)

Argonne National

Laboratory Petascale Workshop

132

Experiments with GFMC/ADLB on BG/P

B Using GFMC to compute the binding energy of 14 neutrons in an
artificial well (“neutron drop” = teeny-weeny neutron star)

B A weak scaling experiment

BG/P ADLB . Time Efficiency
Configs . :
cores Servers (min.) (incl. serv.)
4K 130 20 38.1 93.8%
8K 230 40 38.2 93.7%
16K 455 80 39.6 89.8%
32K 905 160 44.2 80.4%

B Recent work: “micro-parallelization” needed for 2C, OpenMP in
GFMC.

n’i.'i Argonne National
Laboratory

Petascale Workshop

133

How It Works

O Application Processes
@ ADLB Servers

B Real numbers: 1000 servers out of 32,000 processors on BG/P
— And recently introduced other communication paths

F Y Argonne National

Petascale Workshop 134

Laboratory

The ADLB Server Logic

® Main loop:
— MPI _Iprobe for message in busy loop (emit diagnostics)
— MPI_Recv message
— Process according to type (20 types)
« Update status vector of work stored on remote servers
 Manage work queue and request queue
* (may involve posting MPI_lIsends to isend queue)
— MPI_Test all requests in isend queue
— Return to top of loop
B The status vector replaces single master or shared memory
— Circulates every .1 second at high priority

Ah Argonne National

Petascale Workshop 135

Laboratory

u"'-fi Argonne National

ADLB Uses Multiple MPI Features

B ADLB Init returns separate application communicator, so application
can use MPI for its own purposes if it needs to.

B Servers are in MPI_Iprobe loop for responsiveness.
B MPI_Datatypes for some complex, structured messages (status)

B Servers use nonblocking sends and receives, maintain queue of
active MPI_Request objects.

B Queue is traversed and each request kicked with MPI_Test each time
through loop; could use MPI_Testany.

B Client side uses MPI_Ssend to implement ADLB_Put in order to
conserve memory on servers, MPIl_Send for other actions.

B Servers respond to requests with MPI_Rsend since MPI_Irecvs are
known to be posted by clients before requests.

B MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
B MPI profiling library is used to understand application/ADLB behavior.

Laboratory Petascale Workshop

136

Looking at GFMC/ADLB with Jumpshot
(in the good old days)

[
o

Time Per Pivel Row

& world_rank Fit Al Bz

052 Te0s22 TeDs24 TSN TE0S2E 7053 e85z DI TE.0538 0838 TeD54)

‘ Argonne National Petascale i ; i

Laboratory

Things Can Get Worse at Larger Scale

TimeLine : adlb.14n-m0.np256.mic-a.mpilog.256k.slog2 <Process View>

alv|iZ]alu (e [<[>][a]ajg[a]n [8[® oa@

.wa:sl { Max. Depth _' Zoom Level Global Min Time View Init Time Zoom Focus Time View Final Time Clobal Max Time Time Per Pixel O : Row
0/15 14 0.0001843647 192.825503744 192.8234287273 192.8424336957 286.2358403682 0.0000114394 q _

= |Row Count
| Cumulati... 5| TimeLines 37.66

219 4 NI LRI LA AN T NIRRTt il R T T
‘ |10l |

[222 Li I LD]

AT IR 0 AN ! |
224 ! 11 A ! RIS

| 225 T | R [1L, b WA I il WL | g i
(] i RITIERET I i i |

i

I

229 o ' : 5| R
1 ¥ ! Riiit lo b i

@ world_rank

; ! [e
192.826 192.828 192.83 192.832 192.834 192.836 192.838 192.84 102802 | | & [§7

«f > Time (seconds) [|

Argonne National
Laboratory

Petascale Workshop

Multiple Load-Balancing Regimes

B The original objective was to do balancing of processing load

B Much of the last year has been spent on balancing of the memory
load
— Work units may to be moved from server to server

— Even proactively

B We may now be having problems that can only be solved by
balancing of the message-passing load.

Argonne National
Laboratory Petascale Workshop

139

Summary

B MPI provides effective ways to access communication performance
— You may need to help the implementation out
— MPI RMA merits consideration
 But perform timing tests before committing to it

» Best to form a communication abstraction with RMA one
available implementation

— MPI Profiling interface gives you access to ways to diagnose
performance problems

B Programming models for exascale are still in experimental stages

B Hiding MPI calls in higher-level libraries can be a useful approach to
programmer productivity

J!i Argonne National

Laboratory Petascale Workshop 140

The End

":i Argonne National

Laboratory Petascale Workshop 141

":i Argonne National

Laboratory Petascale Workshop

