
Programming in MPI for
Performance

and

Programming Models for
HPC

Rusty Lusk

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne National
Laboratory Petascale Workshop 2

Outline
� Topics in MPI programming
� Selected tools enabled by MPI profiling interface

– SLOG/Jumpshot: visualizing parallel performance
– FPMPI: gathering summary statistics
– Collchk: runtime checking of correct use of collective operations

� Programming models for HPC
– MPI
– PGAS
– HPCS

� Hybrid programming (MPI and OpenMP)
� Avoiding MPI with special libraries (ADLB)

Argonne National
Laboratory Petascale Workshop 3

Basic MPI: Looking Closely at a
Simple Communication Pattern

� Many programs rely on “halo exchange” (ghost cells, ghost points,
stencils) as the core communication pattern
– Many variations, depending on dimensions, stencil shape
– Here we look carefully at a simple 2-D case

� Unexpected performance behavior
– Even simple operations can give surprising performance

behavior.
– Examples arise even in common grid exchange patterns
– Message passing illustrates problems present even in shared

memory
• Blocking operations may cause unavoidable stalls

Argonne National
Laboratory Petascale Workshop 4

Processor Parallelism

• Decomposition of a mesh into 1 patch
per process

• Update formula typically a(I,j) =
f(a(i-1,j),a(i+1,j),a(I,j+1),a(I,j-1),…)

• Requires access to “neighbors” in
adjacent patches

Argonne National
Laboratory Petascale Workshop 5

Scalability of Mesh Exchange
� How does the computational effort and communication change as

the task size changes?
– Classic example is mesh exchange

� Data exchanged is the “surface” of the mesh patch; computation is
on the “volume”
– Important term is the surface to volume ratio
– Cost of surface exchanges (3-d domain, faces only):

• 1-d = 2 (s + r n2)
• 2-d = 4 (s + r n2/√p)
• 3-d = 6 (s + r n/p1/3)

– Best approach is to make these relative to floating-point work
(this is the dimensionless quantity):
• 1-d = 2(s + r n2) / n3f

� These assume that communications are non-interfering. Simple
mistakes can violate that assumption…

Argonne National
Laboratory Petascale Workshop 6

Mesh Exchange
� Exchange data on a mesh

Argonne National
Laboratory Petascale Workshop 7

Sample Code

� Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL,&

nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)

Enddo

Argonne National
Laboratory Petascale Workshop 8

Deadlocks!
� All of the sends may block, waiting for a matching receive (will for

large enough messages)
� The variation of

if (has down nbr) then
Call MPI_Send(… down …)

endif
if (has up nbr) then

Call MPI_Recv(… up …)
endif
…
sequentializes (all except the bottom process blocks)

Argonne National
Laboratory Petascale Workshop 9

Sequentialization

Argonne National
Laboratory Petascale Workshop 10

Fix 1: Use Irecv

� Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&

comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)

Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

� Does not perform well in practice (at least on BG, SP). Why?

Argonne National
Laboratory Petascale Workshop 11

Understanding the Behavior: A Timing
Model

�Sends interleave
�Sends block (data larger than buffering will allow)
�Sends control timing
�Receives do not interfere with Sends
�Exchange can be done in 4 steps (down, right, up, left)

Argonne National
Laboratory Petascale Workshop 12

Mesh Exchange - Step 1
� Exchange data on a mesh

Argonne National
Laboratory Petascale Workshop 13

Mesh Exchange - Step 2
� Exchange data on a mesh

Argonne National
Laboratory Petascale Workshop 14

Mesh Exchange - Step 3
� Exchange data on a mesh

Argonne National
Laboratory Petascale Workshop 15

Mesh Exchange - Step 4
� Exchange data on a mesh

Argonne National
Laboratory Petascale Workshop 16

Mesh Exchange - Step 5
� Exchange data on a mesh

Argonne National
Laboratory Petascale Workshop 17

Mesh Exchange - Step 6
� Exchange data on a mesh

Argonne National
Laboratory Petascale Workshop 18

Timeline from IBM SP

• Note that process 1 finishes last, as predicted

Argonne National
Laboratory Petascale Workshop 19

Distribution of Sends

Argonne National
Laboratory Petascale Workshop 20

Why Six Steps?
� Ordering of Sends introduces delays when there is contention at the

receiver
� Takes roughly twice as long as it should
� Bandwidth is being wasted
� Same thing would happen if using memcpy and shared memory
� The interference of communication is why adding an MPI_Barrier

(normally an unnecessary operation that reduces performance) can
occasionally increase performance. But don’t add MPI_Barrier to
your code, please :-)

Argonne National
Laboratory Petascale Workshop 21

Fix 2: Use Isend and Irecv

� Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&

comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)

Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

Argonne National
Laboratory Petascale Workshop 22

Mesh Exchange - Steps 1-4
� Four interleaved steps (at least, in principle)

Argonne National
Laboratory Petascale Workshop 23

Timeline from IBM SP

Note processes 5 and 6 are the only interior processors;
these perform more communication than the other
processors

Argonne National
Laboratory Petascale Workshop 24

Lesson: Defer Synchronization
� Send-receive accomplishes two things:

– Data transfer
– Synchronization

� In many cases, there is more synchronization than required
� Use nonblocking operations and MPI_Waitall to defer

synchronization
� However, this relies on the MPI implementation taking advantage of

the opportunities provided by MPI_Waitall (more on this later)

Argonne National
Laboratory Petascale Workshop 25

MPI-2: Revisiting Mesh Communication
� Do not need full generality of send/receive

– Each process can completely define what data needs to be
moved to itself, relative to each process’s local mesh
• Each process can “get” data from its neighbors

– Alternately, each can define what data is needed by the neighbor
processes
• Each process can “put” data to its neighbors

� MPI-2 provides these “one-sided” or “remote memory access”
routines
– BG/L does not support these
– BG/P and Cray XTn do, but performance is still an open question
– It is possible to implement these well and get an advantage over

point-to-point communications
� First, we’ll cover some of the RMA basics. Then we’ll see some

examples of a good implementation

Argonne National
Laboratory Petascale Workshop 26

Remote Memory Access
� A key feature is that it separates data transfer from indication of

completion (synchronization)
� In message-passing, they are combined:

store
send receive

load

Proc 0 Proc 1 Proc 0 Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or

Argonne National
Laboratory Petascale Workshop 27

Remote Memory Access in MPI-2
(also called One-Sided Operations)
� Goals of MPI-2 RMA Design

– Balancing efficiency and portability across a wide class of
architectures
• shared-memory multiprocessors
• NUMA architectures
• distributed-memory MPP’s, clusters
• Workstation networks

– Retaining “look and feel” of MPI-1
– Dealing with subtle memory behavior issues: cache coherence,

sequential consistency

Argonne National
Laboratory Petascale Workshop 28

Remote Memory Access Windows and
Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

Argonne National
Laboratory Petascale Workshop 29

Basic RMA Functions for Communication

� MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator
– Collective operation
– Creates window object

� MPI_Win_free deallocates window object

� MPI_Put moves data from local memory to remote memory
� MPI_Get retrieves data from remote memory into local memory
� MPI_Accumulate updates remote memory using local values
� Data movement operations are non-blocking
� Subsequent synchronization on window object needed to

ensure operation is complete

Argonne National
Laboratory Petascale Workshop 30

Performance of RMA (early results)

Caveats: On SGI, MPI_Put uses specially allocated memory

Argonne National
Laboratory Petascale Workshop 31

Advantages of RMA Operations
� Can do multiple data transfers with a single synchronization

operation
– like BSP model

� Bypass tag matching
– effectively precomputed as part of remote offset

� Some irregular communication patterns can be more economically
expressed

� Can be significantly faster than send/receive on systems with
hardware support for remote memory access, such as shared
memory systems

Argonne National
Laboratory Petascale Workshop 32

Irregular Communication Patterns with
RMA
� If communication pattern is not known a priori, the send-

recv model requires an extra step to determine how
many sends-recvs to issue

�RMA, however, can handle it easily because only the
origin or target process needs to issue the put or get call

�This makes dynamic communication easier to code in
RMA

Argonne National
Laboratory Petascale Workshop 33

RMA Window Objects

MPI_Win_create(base, size, disp_unit, info, comm, win)

� Exposes memory given by (base, size) to RMA operations by other
processes in comm

� win is window object used in RMA operations
� disp_unit scales displacements:

– 1 (no scaling) or sizeof(type), where window is an array of
elements of type type

– Allows use of array indices
– Allows heterogeneity

Argonne National
Laboratory Petascale Workshop 34

Put, Get, and Accumulate

� MPI_Put(origin_addr, origin_count,
origin_datatype,
target_rank, target_offset,
target_count, target_datatype,
window)

� MPI_Get(...)

� MPI_Accumulate(..., op, ...)

� op is as in MPI_Reduce, but no user-defined operations are allowed

Argonne National
Laboratory Petascale Workshop 35

The Synchronization Issue

� Issue: Which value is retrieved?
– Some form of synchronization is required between local

load/stores and remote get/put/accumulates
� MPI provides multiple forms

local
stores

MPI_Get

Argonne National
Laboratory Petascale Workshop 36

Synchronization with Fence

Simplest methods for synchronizing on window objects:
� MPI_Win_fence - like barrier, supports BSP model

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)

Argonne National
Laboratory Petascale Workshop 37

Scalable Synchronization with
Post/Start/Complete/Wait
� Fence synchronization is not scalable because it is collective over

the group in the window object
� MPI provides a second synchronization mode: Scalable

Synchronization
– Uses four routines instead of the single MPI_Win_fence:

• 2 routines to mark the begin and end of calls to RMA
routines
– MPI_Win_start, MPI_Win_complete

• 2 routines to mark the begin and end of access to the
memory window
– MPI_Win_post, MPI_Win_wait

� P/S/C/W allows synchronization to be performed only among
communicating processes

Argonne National
Laboratory Petascale Workshop 38

Synchronization with P/S/C/W

� Origin process calls MPI_Win_start and MPI_Win_complete
� Target process calls MPI_Win_post and MPI_Win_wait

Process 0

MPI_Win_start(target_grp)

MPI_Put
MPI_Put

MPI_Win_complete(target_grp)

Process 1

MPI_Win_post(origin_grp)

MPI_Win_wait(origin_grp)

Argonne National
Laboratory Petascale Workshop 39

Process 0
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

Process 1
MPI_Win_create

MPI_Win_free

Process 2
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

Lock-Unlock Synchronization
� “Passive” target: The target process does not make any

synchronization call
� When MPI_Win_unlock returns, the preceding RMA operations are

complete at both source and target

Argonne National
Laboratory Petascale Workshop 40

Fence vs Lock/Unlock Synchronization
� Fence synchronization method requires all processes in the

communicator (that created the window) to call the fence function. It
is almost like a barrier.

� Lock/unlock synchronization is called only by the process that needs
to do the Put or Get. The target process does not call anything.
– But this is more challenging for the MPI implementation to make

fast, especially if the underlying hardware doesn’t support direct
RMA operations

Argonne National
Laboratory Petascale Workshop 41

41

An Application: Modeling the Human
Brain
�Goal: Understand conditions, causes, and possible

corrections for epilepsy
�Approach: Study the onset and progression of

epileptiform activity in the neocortex
�Technique: Create a model of neurons and their

interconnection network, based on models combining
wet lab measurements of resected tissue samples and
in vivo studies

�Computation: Develop a simulation program that can
be used for detailed parameter studies

Argonne National
Laboratory Petascale Workshop 42

42

Model Neurons

IS

Soma

Na K

Spike

Ex

Inh

IS

Soma

Na K

Spike

Ex

Inh
Soma

Na K

Spike
Ex

Neurons in the focal neocortex Compartmental neural models

Excitatory and inhibitory
signal wiring between neurons

Argonne National
Laboratory Petascale Workshop 43

43

Modeling Approach

� Individual neurons are modeled using electrical
analogs to parameters measured in the
laboratory

� Differential equations describe evolution of the
neuron state variables

� Neuron spiking output is wired to thousands of
cells in a neighborhood

� Wiring diagram is based on wiring patterns
observed in neocortex tissue samples

� Computation is divided among available
processors Schematic of a two dimensional

patch of neurons showing
communication neighborhood for
one of the cells in the simulation
and partitioning of the patch
among processors.

Argonne National
Laboratory Petascale Workshop 44

44

Abstract pNeo for Tutorial Example
� “Simulate the simulation” of the evolution of neuron

state instead of solving the differential equations
�Focus on how to code the interactions between cells in

MPI
�Assume one cell per process for simplicity

– Real code multiplexes many individual neurons onto
one MPI process

Argonne National
Laboratory Petascale Workshop 45

45

What Happens In Real Life

� Each cell has a fixed number of connections to some other cells
� Cell “state” evolves continuously
� From time to time “spikes” arrive from connected cells.
� Spikes influence the evolution of cell state
� From time to time the cell state causes spikes to be sent to other

connected cells

Argonne National
Laboratory Petascale Workshop 46

46

What Happens In Existing pNeo Code

� In pNeo, each cell is connected to about 1000 cells
– Large runs have 73,000 cells
– Brain has ~100 billion cells

� Connections are derived from neuro-anatomical data
� There is a global clock marking time steps
� The state evolves according to a set of differential equations
� About 10 or more time steps between spikes

– I.e., communication is unpredictable and sparse
� Possible MPI-1 solutions

– Redundant communication of communication pattern before
communication itself, to tell each process how many receives
to do

– Redundant “no spikes this time step” messages
� MPI-2 solution: straightforward use of Put, Fence

Argonne National
Laboratory Petascale Workshop 47

47

What Happens in Tutorial Example

� There is a global clock marking time steps
� At the beginning of a time step, a cell notes spikes from connected

cells (put by them in a previous time step).
� A dummy evolution algorithm is used in place of the differential

equation solver.
� This evolution computes which new spikes are to be sent to

connected cells.
� Those spikes are sent (put), and the time step ends.
� We show both a Fence and a Post/Start/Complete/Wait version.

Argonne National
Laboratory Petascale Workshop 48

48

Two Examples Using RMA in Pneo

� Global synchronization
– Global synchronization of all processes at each step
– Illustrates Put, Get, Fence

� Local synchronization
– Synchronization across connected cells, for improved

scalability (synchronization is local)
– Illustrates Start, Complete, Post, Wait

Argonne National
Laboratory Petascale Workshop 49

Halo Exchange Benchmark
� Part of the mpptest benchmark; works with any MPI implementation

– Even handles implementations that only provide a subset of MPI-
2 RMA functionality

– Similar code to that in halocompare, but doesn’t use process
topologies (yet)

� Available from
� http://www.mcs.anl.gov/mpi/mpptest
� Mimics a halo, or ghost-cell, exchange that is a common component

of parallel codes that solve partial differential equations

Argonne National
Laboratory Petascale Workshop 50

Persistent Send/recv
� Persistent Send/recv:

– This version uses nonblocking operations for both sending and
receiving; primarily, this is to handle the buffering issues. In order
to increase the efficiency, MPI persistent operations are used

� This is very similar to the simple nonblocking example.
– The halo experiments with the LC systems did not show an

advantage to using persistent operations in the halocompare
tests.

Argonne National
Laboratory Petascale Workshop 51

Halo Performance (8 nbrs) Columbia 21

Argonne National
Laboratory Petascale Workshop 52

Columbia 20

Argonne National
Laboratory Petascale Workshop 53

Columbia 20

Argonne National
Laboratory Petascale Workshop 54

MPI RMA on SGI Altix
� Performance of Columbia 21 > Columbia 20 > Columbia 8
� Performance of “GET” > “PUT”
� Performance of “PUT” and “GET” is much better than “SEND” and

“RECV”
� Performance MPI RMA is much better than the POINT-TO-POINT

communication on Columbia
� RMA performance on Columbia is excellent
� On Columbia “lock-put-unlock” is 10 times better than “send-receive”
� On Columbia “fence” method is 2 times better than “send-receive”

Argonne National
Laboratory Petascale Workshop 55

Acknowledgement
� A special thanks to Subhash Saini of NASA Advanced

Supercomputing for providing the Altix runs
� Thanks to Dale Talcott of NASA Ames Research Center for running

earlier version of the benchmarks on Columbia 21.
� Thanks to Dinesh Kaushik for the XT experiments and to ORNL for

access to their machines.

Argonne National
Laboratory Petascale Workshop 56

MPI and Threads

� MPI describes parallelism between processes
� Thread parallelism provides a shared-memory model within a

process
� OpenMP and Pthreads are common models

– OpenMP provides convenient features for loop-level
parallelism

Argonne National
Laboratory Petascale Workshop 57

MPI and Threads (contd.)

� MPI-2 defines four levels of thread safety

– MPI_THREAD_SINGLE: only one thread

– MPI_THREAD_FUNNELED: only one thread that makes MPI calls

– MPI_THREAD_SERIALIZED: only one thread at a time makes MPI
calls

– MPI_THREAD_MULTIPLE: any thread can make MPI calls at any
time

� User calls MPI_Init_thread to indicate the level of thread support
required; implementation returns the level supported

Argonne National
Laboratory Petascale Workshop 58

Threads and MPI in MPI-2

� An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required to
be thread safe

� A fully thread-compliant implementation will support
MPI_THREAD_MULTIPLE

� A portable program that does not call MPI_Init_thread should assume
that only MPI_THREAD_SINGLE is supported

Argonne National
Laboratory Petascale Workshop 59

For MPI_THREAD_MULTIPLE

� When multiple threads make MPI calls concurrently, the outcome
will be as if the calls executed sequentially in some (any) order

� Blocking MPI calls will block only the calling thread and will not
prevent other threads from running or executing MPI functions

� It is the user's responsibility to prevent races when threads in the
same application post conflicting MPI calls

� User must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among
threads

Argonne National
Laboratory Petascale Workshop 60

Threads on LC Machines
� MPI and Threads

– MPI_Init_thread(&argc, &argv, requested, &provided)
– The four levels of thread safety

• MPI_THREAD_SINGLE
• MPI_THREAD_FUNNELED
• MPI_THREAD_SERIAL
• MPI_THREAD_MULTIPLE

� Using threads
– OpenMP

• Compiler handles most operations
– Pthreads

• Like MPI, you get to do everything yourself :)
– Limitations imposed by OS

• On BG/P, threads bound to cores (so four threads)
• Linux will enable real thread programming (now true on Jaguar)

Argonne National
Laboratory Petascale Workshop 61

Thread Performance
� Thread safety is not free

– Managing atomic access to shared data structures adds
overhead (you never know when a thread might update the same
item)

– Scheduling access to shared resources (e.g., interconnect) can
introduce additional contention

Argonne National
Laboratory Petascale Workshop 62

Overhead of Providing Thread Safety
� This test uses a single-threaded

MPI process, but uses the
“requested” argument to
MPI_Init_thread to select either
MPI_THREAD_SINGLE or
MPI_THREAD_MULTIPLE

� The IBM SP implementation has
very low overhead

� The Sun implementation has about
a 3.5 usec overhead
– Shows cost of providing thread

safety
– This cost can be lowered, but

requires great care

Argonne National
Laboratory Petascale Workshop 63

Thread Overhead
� These tests compare the

performance of short message
sends when using single-threaded
MPI processes and multiple
threaded processes, with the same
total number of threads

� For these systems, thread
overhead is high
– Achieving low-overhead

thread-safe code is difficult

Argonne National
Laboratory Petascale Workshop 64

Threads vs. Processes
� This test compares using

processes or threads to
communicate between nodes on
an SMP; the machines are a Sun
and an IBM SP

� Processes achieve a much higher
bandwidth
– Likely that processes share

interconnect more effectively
than threads on these systems

Argonne National
Laboratory Petascale Workshop 65

Some Recommendations on the Use of
Threads

�Best used when threads can help balance compute load
or distribute communication

�Always estimate performance and measure.
�Provide realistic (but simple) test cases to help

implementations identify and solve real performance
issues

�The impact of the multithreaded programming model on
scalable scientific applications is a new issue for
vendors, middleware developers, and applications alike.

Argonne National
Laboratory Petascale Workshop 66

Standards Issues

� Hybrid programming (two programming models) requires that the
standards make commitments to each other on semantics.

� OpenMP’s commitment: if a thread is blocked by an operating
system call (e.g. file or network I/O), the other threads remain
runnable.
– This is a major commitment; it involves the thread scheduler in

the OpenMP compiler’s runtime system and interaction with the
OS.

– What this means in the MPI context: An MPI call like MPI_Recv
or MPI_Wait only blocks the calling thread.

� MPI’s commitments are more complex.

Argonne National
Laboratory Petascale Workshop 67

MPI’s Four Levels of Thread Safety
� Note that these are not specific to OpenMP
� The are in the form of commitments that the multithreaded

application makes to the MPI implementation
– MPI_THREAD_SINGLE: there is only one thread in the

application
– MPI_THREAD_FUNNELED: there is only one thread that makes

MPI calls
– MPI_THREAD_SERIALIZED: Multiple threads make MPI calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Any thread may make MPI calls at

any time
� MPI-2 defines an alternative to MPI_Init

– MPI_Init_thread(requested, provided)
• Allows applications to say what level it needs, and the MPI

implementation to say what it provides

Argonne National
Laboratory Petascale Workshop 68

What This Means in the OpenMP Context
� MPI_THREAD_SINGLE

– There is no OpenMP multithreading in the program.
� MPI_THREAD_FUNNELED

– All of the MPI calls are made by the master thread. I.e. all MPI calls are
• Outside OpenMP parallel regions, or
• Inside OpenMP master regions, or
• Guarded by call to MPI_Is_thread_main MPI call.

– (same thread that called MPI_Init_thread)
� MPI_THREAD_SERIALIZED

#pragma omp parallel
…
#pragma omp atomic
{

…MPI calls allowed here…
}

� MPI_THREAD_MULTIPLE
– Anything goes

Argonne National
Laboratory Petascale Workshop 69

The Current Situation
� All MPI implementations support MPI_THREAD_SINGLE (duh).
� They probably support MPI_THREAD_FUNNELED even if they don’t

admit it.
– Does require thread-safe malloc
– Probably OK in OpenMP programs

� “Thread-safe” usually means MPI_THREAD_MULTIPLE.
� This is hard for MPI implementations that are sensitive to

performance, like MPICH2.
– Lock granularity issue

� “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED.
– So don’t need “thread-safe” MPI for many hybrid programs
– But watch out for Amdahl’s Law!

Argonne National
Laboratory Petascale Workshop 70

Visualizing the Behavior of Hybrid Programs

� Jumpshot is a logfile-based parallel program visualizer of the
“standard” type. Uses MPI profiling interface.

� Recently it has been augmented in two ways to improve scalability.
– Summary states and messages are shown as well as individual

states and messages.
• Provides a high-level view of a long run.
• SLOG2 logfile structure allows fast interactive access

(jumping, scrolling, and zooming) for large logfiles.

Argonne National
Laboratory Petascale Workshop 71

Jumpshot and Multithreading
� Newest additions are for multithreaded and hybrid programs that use

pthreads.
– Separate timelines for each thread id
– Support for grouping threads by communicator as well as by

process

Argonne National
Laboratory Petascale Workshop 72

Using Jumpshot with Hybrid Programs

� SLOG2/Jumpshot needs two properties of the OpenMP
implementation that are not guaranteed by the OpenMP standard
– OpenMP threads must be pthreads

• Otherwise, the locking in the logging library necessary to
preserve exclusive access to the logging buffers would need to
be modified.

– These pthread ids must be reused (threads are “parked” when
not in use)
• Otherwise Jumpshot would need zillions of time lines.

Argonne National
Laboratory Petascale Workshop 73

Three Platforms for Hybrid Programming
� Linux cluster

– 24 nodes, each consisting of two Opteron dual-core processors, 2.8 Ghz
each

– Intel 9.1 fortran compiler
– MPICH2-1.0.6, which has MPI_THREAD_MULTIPLE
– Multiple networks; we used GigE

� IBM Blue Gene/P
– 40,960 nodes, each consisting of four PowerPC 850 MHz cores
– XLF 11.1 Fortran cross-compiler
– IBM’s MPI V1R1M2 (based on MPICH2), which has

MPI_THREAD_MULTIPLE
– 3D Torus and tree networks

� SiCortex SC5832
– 972 nodes, each consisting of six MIPS 500 MHz cores
– Pathscale 3.0.99 fortran cross-compiler
– SiCortex MPI implementation based on MPICH2, has

MPI_THREAD_FUNNELED
– Funky Kautz graph network

Argonne National
Laboratory Petascale Workshop 74

Experiments

� Basic
– Proved that necessary assumptions for our tools hold

• OpenMP threads are pthreads
• Thread id’s are reused

� NAS Parallel Benchmarks
– NPB-MZ-MPI, version 3.1
– Both BT and SP
– Two different sizes (W and B)
– Two different modes (“MPI everywhere” and OpenMP/MPI)

• With four nodes on each machine
� Demonstrated satisfying level of portability of programs and tools

across three quite different hardware/software environments
� But we didn’t get it right the first time…

Argonne National
Laboratory Petascale Workshop 75

It Might Not Be Doing What You Think
� An early run:

� Nasty interaction between the environment variables
OMP_NUM_THREADS and NPB_MAX_THREADS

Argonne National
Laboratory Petascale Workshop 76

More Like What You Expect
� BT class B on 4 BG/P nodes, using OpenMP on each node

Argonne National
Laboratory Petascale Workshop 77

MPI Everywhere
� BT class B on 4 BG/P nodes, using 16 MPI processes

Argonne National
Laboratory Petascale Workshop 78

Observations on Small Experiments
Experiment Cluster BG/P SiCortex

Bt-mz.W.16x1 1.84 9.46 20.60

Bt-mz-W.4x4 0.82 3.74 11.26

Sp-mz.W.16x1 0.42 1.79 3.72

Sp-mz.W.4x4 0.78 3.00 7.98

Bt-mz.B.16.1 24.87 113.31 257.67

Bt-mz.B.4x4 27.96 124.60 399.23

Sp-mz.B.16x1 21.19 70.69 165.82

Sp-mz.B.4x4 24.03 81.47 246.76

Bt-mz.B.24x1 241.85

Bt-mz.B.4x6 337.86

Sp-mz.B.24x1 127.28

Sp-mz.B.4x6 211.78

� On the small version of BT (W), hybrid was better
� For SP and size B problems, MPI everywhere is better
� On Sicortex, more processes or threads are better than fewer

Argonne National
Laboratory Petascale Workshop 79

Conclusions
� This particular benchmark has been studied much more deeply

elsewhere
– Rolf Rabenseifner, “Hybrid parallel programming on HPC

platforms,” Proceedings of EWOMP’03.
– Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using

OpenMP: Portable Shared Memory Parallel Programming, MIT
Press, 2008.

� Adding Hybridness (Hybriditude?) to a well-tuned MPI application is
not going to speed it up. So this NPB study doesn’t tell us much.

� More work is needed to understand the behavior of hybrid programs
and what is needed for future application development.

� (This work is reported on in the Proceedings of EWOMP ‘08.)

Argonne National
Laboratory Petascale Workshop 80

The OpenMP Books
� Both old book and new book (and OpenMP tutorials) have two parts:
� The Front:

– OpenMP is magically convenient
– A few comments added to serial code and voila!

� The Back:
– Scalability is not so easy
– Performance issues are subtle
– Need more than comments – function calls
– SPMD structure
– It starts to look like MPI…

� (But the new book is really good; both front and back parts.)

Argonne National
Laboratory Petascale Workshop 81

What is OpenMP For?
� Word on laptop? Probably not.
� Matlab back end on desktop? Probably so.
� Small scientific applications on desktops? Yes.
� HPC on biggish SMPs? Maybe, but hard.
� Collaborating with MPI on big machines? Almost certainly.

Argonne National
Laboratory Petascale Workshop 82

Solving Performance Problems
� Solving your performance problem requires that

– You understand how fast your code should go
– How fast it actually goes
– Possible interactions that may help explain the behavoir

� MPI provided a powerful hook on which tools can and are built - the
profiling interface
– In addition to general-purpose tools, this interface is available to

all
• You can build custom tools to explore application-specific

hypotheses

Argonne National
Laboratory Petascale Workshop 83

Tools Enabled by the MPI Profiling
Interface
�The MPI profiling interface: how it works
�Some freely available tools

– Those to be presented in other talks
– A few that come with MPICH2

• SLOG/Jumpshot: visualization of detailed timelines
• FPMPI: summary statistics
• Collcheck: runtime checking of consistency in use of
collective operations

Argonne National
Laboratory Petascale Workshop 84

MPI LibraryUser Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

The MPI Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send

Argonne National
Laboratory Petascale Workshop 85

Performance Visualization with
Jumpshot

� For detailed analysis of parallel program behavior, timestamped
events are collected into a log file during the run.

� A separate display program (Jumpshot) aids the user in
conducting a post mortem analysis of program behavior.

� We use an indexed file format (SLOG-2) that uses a preview to
select a time of interest and quickly display an interval, without
ever needing to read much of the whole file.

Logfile

Jumpshot

Processes

Display

Argonne National
Laboratory Petascale Workshop 86

Viewing Multiple Scales

Each line represents 1000’s
of messages

Detailed view shows opportunities
for optimization

1000x zoom

Argonne National
Laboratory Petascale Workshop 87

Pros and Cons of this Approach
� Cons:

– Scalability limits
• Screen resolution
• Big log files, although

– Jumpshot can read SLOG files fast
– SLOG can be instructed to log few types of events

– Use for debugging only indirect
� Pros:

– Portable, since based on MPI profiling interface
– Works with threads
– Aids understanding of program behavior

• Almost always see something unexpected

Argonne National
Laboratory Petascale Workshop 88

Looking at MILC in SPEC2007
� Curious amount of All_reduce in initialization - why?

Argonne National
Laboratory Petascale Workshop 89

MILC
� The answer, and how

Argonne National
Laboratory Petascale Workshop 90

MILC
� The answer - why

– Deep in innermost of quadruply nested loop, an innocent-looking
line of code:

If (i > myrank()) …

And myrank is a function that calls MPI_Comm_rank

– It actually doesn’t cost that much here, but

– It illustrates that you might not know what your code is doing what
you think it is
– Not a scalability issue (found on small # of processes)

Argonne National
Laboratory Petascale Workshop 91

Detecting Consistency Errors in MPI
Collective Operations

� The Problem: the specification of MPI_Bcast:
MPI_Bcast(buf, count, datatype, root, comm)

requires that
– root is an integer between 0 and the maximum rank.
– root is the same on all processes.
– The message specified by buf, count, datatype has the same

signature on all processes.
� The first of these is easy to check on each process at the entry to the

MPI_Bcast routine.
� The second two are impossible to check locally; they are consistency

requirements requiring communication to check.
� There are many varieties of consistency requirements in the MPI collective

operations.

Argonne National
Laboratory Petascale Workshop 92

Datatype Signatures

� Consistency requirements for messages in MPI (buf, count, datatype) are on not
on the MPI datatypes themselves, but on the signature of the message:
– {type1, type2, …} where typei is a basic MPI datatype

� So a message described by (buf1, 4, MPI_INT) matches a message
described by (buf2, 1, vectype), where vectype was created to be a
strided vector of 4 integers.

� For point-to-point operations, datatype signatures don’t have to match exactly (it is
OK to receive a short message into a long buffer), but for collective operations,
matches must be exact.

Argonne National
Laboratory Petascale Workshop 93

Approach
� Use the MPI profiling interface to intercept the collective calls,

“borrow” the communicator passed in, and use it to check argument
consistency among its processes.

� For example, process 0 can broadcast its value of root, and each
other process can compare with the value it was passed for root.

� For datatype consistency checks, we will communicate hash values
of datatype signatures.

� Reference: Falzone, Chan, Lusk, Gropp, “Collective Error Detection
for MPI Collective Operations”, Proceedings of EuroPVM/MPI 2005.

Argonne National
Laboratory Petascale Workshop 94

Datatype Signature Hashing

� Gropp – EuroPVM/MPI 2000
� Matching is done on pairs (a, n), where a is a hash value and n is the number of

basic datatypes in the message.
� Elementary datatypes assigned (a, 1) for chosen values of a.
� Concatenate types with

– (a,n) # (b,n) = (a xor (b << n), n+m), where << is circular left shift
– Note non-commutative to prevent (int, float) from colliding with (float, int)

� The pairs (a,n) are easy to communicate to other processes, unlike the signatures
themselves
– (No MPI datatype for MPI_Datatype)
– We will use PMPI_Bcast, PMPI_Scatter, PMPI_Allgather, PMPI_Alltoall as

needed to communicate the (vector of) hash pairs to the other processes.

Argonne National
Laboratory Petascale Workshop 95

Types of Consistency Checks

� Call – checks that all processes have made the same collective call (not
MPI_Allreduce on some processes and MPI_Reduce on others).
– Used in all collective functions

� Root – checks that the same value of root was passed on all processes
– Used in Bcast, Reduce, Gather(v), Scatter(v), Spawn, Spawn_multiple,

Connect
� Datatype – checks consistency of data arguments

– Used in all collective routines with data buffer arguments
� Op – checks consistency of operations

– Used in Reduce, Allreduce, Reduce_scatter, Scan, Exscan

Argonne National
Laboratory Petascale Workshop 96

More Types of Consistency Checks
� MPI_IN_PLACE – checks whether all process or none of the processes

specified MPI_IN_PLACE instead of a buffer.
– Used in Allgather(v), Allreduce, and Reduce_scatter

� Local leader and tag – checks consistency of these arguments
– Used only in MPI_Intercomm_create

� High/low – checks consistency of these arguments
– Used only in MPI_Intercomm_merge

� Dims – checks consistency of these arguments
– Used in Cart_create and Cart_map

Argonne National
Laboratory Petascale Workshop 97

Still More Types of Consistency Checks

� Graph – checks graph consistency
– Used in Graph_create and Graph_map

� Amode – checks file mode argument consistency
– Used in File_open

� Size, datarep, flag – checks consistency of these I/O arguments
– Used in File_set_size, File_set_automicity, File_preallocate

� Etype – checks consistency of this argument
– Used in File_set_view

� Order – checks that split-collective calls are properly ordered
– Used in Read_all_begin, Read_all_end, other split collective I/O

Argonne National
Laboratory Petascale Workshop 98

Example Output
� We try to make error output instance specific:

� Validate Bcast error (Rank 4) – root parameter (4)
is inconsistent with rank 0’s (0)

� Validate Bcast error (Rank 4) – datatype signature
is inconsistent with Rank 0’s

� Validate Barrier (rank 4) – collective call
(Barrier) is inconsistent with Rank 0’s (Bcast)

Argonne National
Laboratory Petascale Workshop 99

Experiences

� Finding errors
– Found error in MPICH2 test suite, in which a message with one MPI_INT was

allowed to match sizeof(int) MPI_BYTEs.
– MPICH2 allowed the match, but shouldn’t have. / (☺)
– Ran large astrophysics application (FLASH) containing many collective operations

• Collective calls all in third-party AMR library (Paramesh), but could still be
examined through MPI profiling library approach.

• Found no errors ☺ (/)
� Portability, Performance

– Linux cluster (MPICH2)
– Blue Gene (IBM’s BG/L MPI)
– Relative overhead decreases as size of message increases

• The extra checking messages are much shorter than the real messages
– Overhead can be relatively large for small messages

• Opportunities for optimization remain
– Profiling library can be removed after finding errors

Argonne National
Laboratory Petascale Workshop

The (Foggy) Future of Programming
Models

100

Argonne National
Laboratory Petascale Workshop

Looking out to Exascale…
Concurrency will be Doubling every 18 months

Argonne National
Laboratory Petascale Workshop

Outline of the Situation

• Million core systems and beyond are on the horizon
• Today labs and universities have general purpose

systems with 10k-200K cores (BGL@ LLNL 200K,
BGP@Argonne 160K, XT5@ORNL 150K cores)

• By 2012 there will be more systems deployed in the
200K-1M core range

• By 2020 there will be systems with perhaps 100M cores
• Personal systems with > 1000 cores within 5
• Personal systems with requirement for 1M threads is not

too far fetched (GPUs for example)

Argonne National
Laboratory Petascale Workshop

How Will We Program Them?

�Still an unsolved problem
�Some believe a totally new programming model and

language (e.g. X10, Chapel, Fortress).
�Some mechanism for dealing with shared memory will be

necessary
– This (whatever it is) plus MPI is the conservative view

�Whatever it is, it will need to interact properly with MPI
�May also need to deal with on-node heterogeneity
�The situation is somewhat like message-passing before

MPI
– And it is too early to standardize

Argonne National
Laboratory Petascale Workshop 107

MPI is Current HPC Programming Model

� MPI represents a very complete definition of a well-defined
programming model

� MPI programs are portable
� There are many implementations

– Vendors
– Open source

� Enables high performance for wide class of architectures
– Scalable algorithms are key

� Small subset easy to learn and use
� Expert MPI programmers needed most for libraries, which are

encouraged by the MPI design.

Argonne National
Laboratory Petascale Workshop 108

The MPI Forum Continues to Refresh MPI
� New signatures for old functions

– E.g. MPI_Send(…,MPI_Count,…)
� Details

– Fortran binding issues..
� New features

– MPI_Process_Group and related functions for fault tolerance
– New topology routines aware of more hierarchy levels
– Non-blocking collective operations
– A simpler one-sided communication interface

• Or perhaps standardized semantics for interacting with shared-
memory programming systems in general

– More scalable versions of the “v” collectives
– …

� See http://www.mpi-forum.org for details of working groups

Argonne National
Laboratory Petascale Workshop 109

Why Won’t “MPI Everywhere” suffice?

� Core count on a node is increasing faster than memory size.
� Thus memory available per MPI process is going down.
� Thus we need parallelism within an address space, while continuing

to use MPI for parallelism among separate address spaces.
� We don’t have a good way to do this yet.
� Whatever we use, it must cooperate with parallelism across address

spaces, so its API must interact in a well-defined way with MPI.
� Some applications are expressing the need for large address spaces

that span multiple multi-core nodes, yet still are each a small part of
the memory of the entire machine.

Argonne National
Laboratory Petascale Workshop

Traditional Sources of Performance
Improvement are Flat-Lining (2004)

• New Constraints
– 15 years of exponential clock

rate growth has ended

• Moore’s Law reinterpreted:

– How do we use all of
those transistors to keep
performance increasing
at historical rates?

– Industry Response:
#cores per chip doubles
every 18 months instead
of clock frequency!

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

Argonne National
Laboratory Petascale Workshop

Multicore comes in a wide variety

– Multiple parallel general-purpose processors (GPPs)
– Multiple application-specific processors (ASPs)

“The Processor is the
new Transistor”

[Rowen]

Intel 4004 (1971):
4-bit processor,
2312 transistors,

~100 KIPS,
10 micron PMOS,

11 mm2 chip

Sun Niagara
8 GPP cores (32 threads)

Intel®
XScale

™
Core

32K IC
32K DC

MEv2
10

MEv2
11

MEv2
12

MEv2
15

MEv2
14

MEv2
13

Rbuf
64 @
128B

Tbuf
64 @
128B
Hash
48/64/

128Scratc
h

16KB
QDR

SRAM
2

QDR
SRAM

1

RDRA
M
1

RDRA
M
3

RDRA
M
2

G
A
S
K
E
T

PCI

(64b)
66

MHz

IXP280IXP280
00 16b16b

16b16b

11
88

11
88

11
88

11
88

11
88

11
88

11
88

64b64b

S
P
I
4
or
C
S
I
X

Stripe

E/D Q E/D Q

QDR
SRAM

3
E/D Q
11
88

11
88

MEv2
9

MEv2
16

MEv2
2

MEv2
3

MEv2
4

MEv2
7

MEv2
6

MEv2
5

MEv2
1

MEv2
8

CSRs
-
Fast_wr
-UART
-
Timers
-GPIO
-
BootROM/Sl
owPort

QDR
SRAM

4
E/D Q
11
88

11
88

Intel Network Processor
1 GPP Core

16 ASPs (128 threads)

IBM Cell
1 GPP (2 threads)

8 ASPs

Picochip DSP
1 GPP core
248 ASPs

Cisco CRS-1
188 Tensilica GPPs

Argonne National
Laboratory Petascale Workshop 113

Moving Beyond MPI
� Any alternative to MPI (at its own level) will have to have some of the

good properties of MPI
– Portability
– Scalability
– Performance

� Perhaps alternatives exist at different levels.
� But they will still have to interact with MPI, in order to provide a path

from where we are now to more abstract models
– Clear interoperability semantics
– Can be used either above or below C/Fortran/MPI code

Argonne National
Laboratory Petascale Workshop 114

Some Families of Programming
Models and Associated Languages

� Shared-memory and annotation languages
– Especially OpenMP
– Likely to coexist with MPI

� Partitioned Global Address Space Languages
– UPC, Co-Array Fortran, and Titanium
– One step removed from MPI

� The HPCS languages
– X10, Chapel, Fortress
– Two steps removed from MPI

Argonne National
Laboratory Petascale Workshop 115

OpenMP
� OpenMP is a set of compiler directives (in comments, like HPF) plus

some library calls
� The comments direct the execution of loops in parallel in a

convenient way.
� Data placement is not controlled, so performance is hard to get

except on machines with real shared memory.
� Likely to be more successful on multicore chips than on previous

SMP’s (multicore = really, really shared memory).
� Can co-exist with MPI

– MPI’s levels of thread safety correspond to programming
constructs in OpenMP
• Formal methods can be applied to hybrid programs

� New book by Barbara Chapman, et al.

Argonne National
Laboratory Petascale Workshop 116

Other Annotation-based approaches
� The idea is to retain the sequential programming model
� Annotations guide source-to-source transformations or compilation

into a parallel program
� HPF and OpenMP (part 1) are examples
� Others in research mode

Argonne National
Laboratory Petascale Workshop 117

The PGAS Languages
� PGAS (Partitioned Global Address Space) languages attempt to

combine the convenience of the global view of data with awareness
of data locality, for performance
– Co-Array Fortran, an extension to Fortran-90)
– UPC (Unified Parallel C), an extension to C
– Titanium, a parallel version of Java

� Fixed number of processes, like MPI-1

Global address
space

Local address
spaces

Argonne National
Laboratory Petascale Workshop 118

Status

� Compilers exist
– In some cases more than one

� Applications are being tried
� Substantial support, at least for UPC
� Early experiments are encouraging with respect to performance

– Some reports are misleading.

Argonne National
Laboratory Petascale Workshop 119

The DARPA HPCS Language Project

� The DARPA High Productivity Computer Systems (HPCS) Project is
a 10-year, three-phase, hardware/software effort to transform the
productivity aspect of the HPC enterprise.

� In Phase II,three vendors were funded to develop high productivity
language systems, and each assigned a small group to language
development
– IBM: X10
– Cray: Chapel
– Sun: Fortress

� In Phase III, Sun was dropped from DARPA support. Both IBM and
Cray efforts are continuing. Actually, Sun’s effort is too, internally
supported.

Argonne National
Laboratory Petascale Workshop

The Transition is Starting

• In large-scale scientific computing today essentially all codes are
message-passing based. Additionally many are starting to use some
form of multithreading on SMP or multicore nodes.

• Multicore is challenging programming models but there has not yet
emerged a dominate model to augment message passing

• There is a need to identify new hierarchical programming models
that will be stable over long term and can support the concurrency
doubling pressure

• Current approaches to programming GPU’s are for library
developers, not application developers

Argonne National
Laboratory Petascale Workshop 122

Hybrid Programming Models
� Some shared-memory API’s that can be used with MPI

– POSIX threads -- explicit thread creation, locks, condition vars
– OpenMP

• Sequential programming model with annotations, parallel
execution model

– Yet to be invented…
� The current situation: OpenMP + MPI

– Works because of well-thought-out explicit contracts between the
models.
• MPI standard defines levels of thread safety
• OpenMP defines types of code regions
• These work together in ways defined by the respective

standards
– Hard to get performance with OpenMP because of lack of locality

management, excessive synchronization.

Argonne National
Laboratory Petascale Workshop 123

One Possible Near Future: PGAS+MPI
� Locality management within an address space via local, remote

memory
� An address space could be bigger than one node

– Might need more hierarchy in PGAS definitions
� Just starting to work with PGAS folks on UPC+MPI and CAF+MPI

– Center for Programming Models base program project with ANL,
LBNL, Rice, Houston, PNNL, OSU

� Until recently PGAS has focused either on competing with MPI or
with OpenMP on single node
– Need to make interoperability with MPI a priority to attract current

HPC applications

Argonne National
Laboratory Petascale Workshop 124

A More Distant Future
� HPCS-type languages have many interesting ideas for exploiting

less obvious parallelism
� Need coordination and freedom from vendor ownership
� A convergence plan

– (DARPA briefly funded a convergence project, which was
promising until cancelled)

� A migration plan for current applications
– Interaction with MPI
– Use in libraries

Argonne National
Laboratory Petascale Workshop 125

Avoiding MPI: The Asynchronous
Dynamic Load-Balancing Library

�Overview of ADLB
�The API in a nutshell
�How it works
�Tutorial example

Argonne National
Laboratory Petascale Workshop 126

Master/Slave Algorithms and Load Balancing

� Advantages
– Automatic load balancing

� Disadvantages
– Scalability - master can become bottleneck

� Wrinkles
– Slaves may create new work
– Multiple work types and priorities that impose work flow

MasterMaster

SlaveSlave SlaveSlave SlaveSlave SlaveSlave SlaveSlave

Shared
Work queue

Shared
Work queue

Argonne National
Laboratory Petascale Workshop 127

The ADLB Vision
� No explicit master for load balancing; slaves make calls to ADLB

library; those subroutines access local and remote data structures
(remote ones via MPI).

� Simple Put/Get interface from application code to distributed work
queue hides most MPI calls
– Advantage: multiple applications may benefit
– Wrinkle: variable-size work units, in Fortran, introduce some

complexity in memory management
� Proactive load balancing in background

– Advantage: application never delayed by search for work from
other slaves

– Wrinkle: scalable work-stealing algorithms not obvious

Argonne National
Laboratory Petascale Workshop 128

The ADLB Model (no master)

� Doesn’t really change algorithms in slaves
� Not a new idea (e.g. Linda)
� But need scalable, portable, distributed implementation of shared

work queue
– MPI complexity hidden here.

SlaveSlave SlaveSlave SlaveSlave SlaveSlave SlaveSlave

Shared
Work queue

Shared
Work queue

Argonne National
Laboratory Petascale Workshop 129

API for a Simple Programming Model

� Basic calls
– ADLB_Init(num_servers, am_server, app_comm)
– ADLB_Server()
– ADLB_Put(type, priority, len, buf, answer_dest)
– ADLB_Reserve(req_types, handle, len, type, prio, answer_dest)
– ADLB_Ireserve(…)
– ADLB_Get_Reserved(handle, buffer)
– ADLB_Set_Done()
– ADLB_Finalize()

� A few others, for tuning and debugging
– ADLB_{Begin,End}_Batch_Put()
– Getting performance statistics with ADLB_Get_info(key)

Argonne National
Laboratory Petascale Workshop 130

Parallel Sudoku Solver with ADLB
Program:

if (rank = 0)
ADLB_Put initial board

ADLB_Get board (Reserve+Get)
while success (else done)

ooh
find first blank square
if failure (problem solved!)

print solution
ADLB_Set_Done

else
for each valid value

set blank square to value
ADLB_Put new board

ADLB_Get board
end while

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Work unit =
partially completed “board”

Argonne National
Laboratory Petascale Workshop 131

How it Works

� After initial Put, all processes execute same loop (no master)

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Pool
of

Work
Units

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

1 6 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

1 4 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

1 8 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

4 6 8

Get

Put

Argonne National
Laboratory Petascale Workshop 132

Optimizing Within the ADLB Framework

� Can embed smarter strategies in this algorithm
– ooh = “optional optimization here”, to fill in more squares
– Even so,potentially a lot of work units for ADLB to manage

� Can use priorities to address this problem
– On ADLB_Put, set priority to the number of filled squares
– This will guide depth-first search while ensuring that there is

enough work to go around
• How one would do it sequentially

� Exhaustion automatically detected by ADLB (e.g., proof that there is
only one solution, or the case of an invalid input board)

Argonne National
Laboratory Petascale Workshop 133

Experiments with GFMC/ADLB on BG/P

� Using GFMC to compute the binding energy of 14 neutrons in an
artificial well (“neutron drop” = teeny-weeny neutron star)

� A weak scaling experiment

� Recent work: “micro-parallelization” needed for 12C, OpenMP in
GFMC.

BG/P
cores

ADLB
Servers

Configs
Time
(min.)

Efficiency
(incl. serv.)

4K 130 20 38.1 93.8%

8K 230 40 38.2 93.7%

16K 455 80 39.6 89.8%

32K 905 160 44.2 80.4%

Argonne National
Laboratory Petascale Workshop 134

How It Works

� Real numbers: 1000 servers out of 32,000 processors on BG/P
– And recently introduced other communication paths

Application Processes

ADLB Servers

put/get

Argonne National
Laboratory Petascale Workshop

The ADLB Server Logic
� Main loop:

– MPI_Iprobe for message in busy loop (emit diagnostics)
– MPI_Recv message
– Process according to type (20 types)

• Update status vector of work stored on remote servers
• Manage work queue and request queue
• (may involve posting MPI_Isends to isend queue)

– MPI_Test all requests in isend queue
– Return to top of loop

� The status vector replaces single master or shared memory
– Circulates every .1 second at high priority

135

Argonne National
Laboratory Petascale Workshop 136

ADLB Uses Multiple MPI Features
� ADLB_Init returns separate application communicator, so application

can use MPI for its own purposes if it needs to.
� Servers are in MPI_Iprobe loop for responsiveness.
� MPI_Datatypes for some complex, structured messages (status)
� Servers use nonblocking sends and receives, maintain queue of

active MPI_Request objects.
� Queue is traversed and each request kicked with MPI_Test each time

through loop; could use MPI_Testany.
� Client side uses MPI_Ssend to implement ADLB_Put in order to

conserve memory on servers, MPI_Send for other actions.
� Servers respond to requests with MPI_Rsend since MPI_Irecvs are

known to be posted by clients before requests.
� MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
� MPI profiling library is used to understand application/ADLB behavior.

Argonne National
Laboratory Petascale Workshop 137

Looking at GFMC/ADLB with Jumpshot
(in the good old days)

Argonne National
Laboratory Petascale Workshop 138

Things Can Get Worse at Larger Scale

138

Argonne National
Laboratory Petascale Workshop

Multiple Load-Balancing Regimes
� The original objective was to do balancing of processing load
� Much of the last year has been spent on balancing of the memory

load
– Work units may to be moved from server to server
– Even proactively

� We may now be having problems that can only be solved by
balancing of the message-passing load.

139

Argonne National
Laboratory Petascale Workshop 140

Summary
� MPI provides effective ways to access communication performance

– You may need to help the implementation out
– MPI RMA merits consideration

• But perform timing tests before committing to it
• Best to form a communication abstraction with RMA one

available implementation
– MPI Profiling interface gives you access to ways to diagnose

performance problems
� Programming models for exascale are still in experimental stages
� Hiding MPI calls in higher-level libraries can be a useful approach to

programmer productivity

Argonne National
Laboratory Petascale Workshop 141

The End

Argonne National
Laboratory Petascale Workshop 142

