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Outline
� Topics in MPI programming
� Selected tools enabled by MPI profiling interface

– SLOG/Jumpshot:  visualizing parallel performance
– FPMPI:  gathering summary statistics
– Collchk:  runtime checking of correct use of collective operations

� Programming models for HPC
– MPI
– PGAS
– HPCS

� Hybrid programming (MPI and OpenMP)
� Avoiding MPI with special libraries (ADLB)
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Basic MPI:  Looking Closely at a 
Simple Communication Pattern

� Many programs rely on “halo exchange” (ghost cells, ghost points, 
stencils) as the core communication pattern
– Many variations, depending on dimensions, stencil shape
– Here we look carefully at a simple 2-D case

� Unexpected performance behavior
– Even simple operations can give surprising performance 

behavior.
– Examples arise even in common grid exchange patterns
– Message passing illustrates problems present even in shared 

memory
• Blocking operations may cause unavoidable stalls
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Processor Parallelism

• Decomposition of a mesh into 1 patch 
per process

• Update formula typically a(I,j) = 
f(a(i-1,j),a(i+1,j),a(I,j+1),a(I,j-1),…)

• Requires access to “neighbors” in 
adjacent patches
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Scalability of Mesh Exchange
� How does the computational effort and communication change as 

the task size changes?
– Classic example is mesh exchange

� Data exchanged is the “surface” of the mesh patch; computation is 
on the “volume”
– Important term is the surface to volume ratio
– Cost of surface exchanges (3-d domain, faces only):

• 1-d = 2 ( s + r n2 )
• 2-d = 4 (s + r n2/√p)
• 3-d = 6 (s + r n/p1/3)

– Best approach is to make these relative to floating-point work 
(this is the dimensionless quantity):
• 1-d = 2(s + r n2) / n3f

� These assume that communications are non-interfering.  Simple 
mistakes can violate that assumption…
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Mesh Exchange
� Exchange data on a mesh
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Sample Code

� Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL,&

nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)

Enddo
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Deadlocks!
� All of the sends may block, waiting for a matching receive (will for 

large enough messages)
� The variation of

if (has down nbr) then
Call MPI_Send( … down … )

endif
if (has up nbr) then

Call MPI_Recv( … up … )
endif
…
sequentializes (all except the bottom process blocks)
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Sequentialization
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Fix 1: Use Irecv

� Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&

comm, requests(i), ierr)
Enddo 
Do i=1,n_neighbors

Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)

Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

� Does not perform well in practice (at least on BG, SP).  Why?
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Understanding the Behavior: A Timing 
Model

�Sends interleave
�Sends block (data larger than buffering will allow)
�Sends control timing
�Receives do not interfere with Sends
�Exchange can be done in 4 steps (down, right, up, left)
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Mesh Exchange - Step 1
� Exchange data on a mesh
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Mesh Exchange - Step 2
� Exchange data on a mesh
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Mesh Exchange - Step 3
� Exchange data on a mesh
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Mesh Exchange - Step 4
� Exchange data on a mesh
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Mesh Exchange - Step 5
� Exchange data on a mesh
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Mesh Exchange - Step 6
� Exchange data on a mesh
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Timeline from IBM SP

• Note that process 1 finishes last, as predicted
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Distribution of Sends
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Why Six Steps?
� Ordering of Sends introduces delays when there is contention at the 

receiver
� Takes roughly twice as long as it should
� Bandwidth is being wasted
� Same thing would happen if using memcpy and shared memory
� The interference of communication is why adding an MPI_Barrier 

(normally an unnecessary operation that reduces performance) can
occasionally increase performance.  But don’t add MPI_Barrier to 
your code, please :-)
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Fix 2: Use Isend and Irecv

� Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&

comm, requests(i),ierr)
Enddo 
Do i=1,n_neighbors

Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,& 
comm, requests(n_neighbors+i), ierr)

Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)
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Mesh Exchange - Steps 1-4
� Four interleaved steps (at least, in principle)
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Timeline from IBM SP

Note processes 5 and 6 are the only interior processors; 
these perform more communication than the other 
processors
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Lesson: Defer Synchronization
� Send-receive accomplishes two things:

– Data transfer
– Synchronization

� In many cases, there is more synchronization than required
� Use nonblocking operations and MPI_Waitall to defer 

synchronization
� However, this relies on the MPI implementation taking advantage of 

the opportunities provided by MPI_Waitall (more on this later)
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MPI-2:  Revisiting Mesh Communication
� Do not need full generality of send/receive

– Each process can completely define what data needs to be 
moved to itself, relative to each process’s local mesh
• Each process can “get” data from its neighbors

– Alternately, each can define what data is needed by the neighbor
processes
• Each process can “put” data to its neighbors

� MPI-2 provides these “one-sided” or “remote memory access”
routines
– BG/L does not support these
– BG/P and Cray XTn do, but performance is still an open question
– It is possible to implement these well and get an advantage over

point-to-point communications
� First, we’ll cover some of the RMA basics.  Then we’ll see some 

examples of a good implementation
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Remote Memory Access
� A key feature is that it separates data transfer from indication of 

completion (synchronization)
� In message-passing, they are combined:

store
send receive

load

Proc 0           Proc 1 Proc 0            Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or
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Remote Memory Access in MPI-2
(also called One-Sided Operations)
� Goals of MPI-2 RMA Design

– Balancing efficiency and portability across a wide class of 
architectures
• shared-memory multiprocessors
• NUMA architectures
• distributed-memory MPP’s, clusters
• Workstation networks

– Retaining “look and feel” of MPI-1
– Dealing with subtle memory behavior issues:  cache coherence, 

sequential consistency
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Remote Memory Access Windows and 
Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

=  address spaces =  window object

window
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Basic RMA Functions for Communication 

� MPI_Win_create exposes local memory to RMA operation by 
other processes in a communicator
– Collective operation 
– Creates window object

� MPI_Win_free deallocates window object

� MPI_Put moves data from local memory to remote memory
� MPI_Get retrieves data from remote memory into local memory
� MPI_Accumulate updates remote memory using local values
� Data movement operations are non-blocking
� Subsequent synchronization on window object needed to 

ensure operation is complete
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Performance of RMA (early results)

Caveats: On SGI, MPI_Put uses specially allocated memory
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Advantages of RMA Operations
� Can do multiple data transfers with a single synchronization 

operation
– like BSP model

� Bypass tag matching
– effectively precomputed as part of remote offset

� Some irregular communication patterns can be more economically 
expressed

� Can be significantly faster than send/receive on systems with 
hardware support for remote memory access, such as shared 
memory systems
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Irregular Communication Patterns with 
RMA
� If communication pattern is not known a priori, the send-

recv model requires an extra step to determine how 
many sends-recvs to issue

�RMA, however, can handle it easily because only the 
origin or target process needs to issue the put or get call

�This makes dynamic communication easier to code in 
RMA
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RMA Window Objects

MPI_Win_create(base, size, disp_unit, info, comm, win)

� Exposes memory given by (base, size) to RMA operations by other 
processes in comm

� win is window object used in RMA operations
� disp_unit scales displacements:

– 1 (no scaling) or sizeof(type), where window is an array of 
elements of type type

– Allows use of array indices
– Allows heterogeneity
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Put, Get, and Accumulate

� MPI_Put(origin_addr, origin_count,
origin_datatype, 
target_rank, target_offset, 
target_count, target_datatype,
window)

� MPI_Get(  ... )

� MPI_Accumulate( ..., op, ... )

� op is as in MPI_Reduce, but no user-defined operations are allowed
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The Synchronization Issue

� Issue: Which value is retrieved?
– Some form of synchronization is required between local 

load/stores and remote get/put/accumulates
� MPI provides multiple forms

local
stores

MPI_Get
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Synchronization with Fence

Simplest methods for synchronizing on window objects:
� MPI_Win_fence - like barrier, supports BSP model

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)
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Scalable Synchronization with 
Post/Start/Complete/Wait
� Fence synchronization is not scalable because it is collective over 

the group in the window object
� MPI provides a second synchronization mode: Scalable 

Synchronization
– Uses four routines instead of the single MPI_Win_fence:

• 2 routines to mark the begin and end of calls to RMA 
routines
– MPI_Win_start, MPI_Win_complete

• 2 routines to mark the begin and end of access to the 
memory window
– MPI_Win_post, MPI_Win_wait

� P/S/C/W allows synchronization to be performed only among 
communicating processes
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Synchronization with P/S/C/W

� Origin process calls MPI_Win_start and MPI_Win_complete
� Target process calls MPI_Win_post and MPI_Win_wait

Process 0

MPI_Win_start(target_grp)

MPI_Put
MPI_Put

MPI_Win_complete(target_grp)

Process 1

MPI_Win_post(origin_grp)

MPI_Win_wait(origin_grp)
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Process 0
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

Process 1
MPI_Win_create

MPI_Win_free

Process 2
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

Lock-Unlock Synchronization
� “Passive” target: The target process does not make any 

synchronization call
� When MPI_Win_unlock returns, the preceding RMA operations are 

complete at both source and target
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Fence vs Lock/Unlock Synchronization
� Fence synchronization method requires all processes in the 

communicator (that created the window) to call the fence function. It 
is almost like a barrier. 

� Lock/unlock synchronization is called only by the process that needs 
to do the Put or Get. The target process does not call anything.
– But this is more challenging for the MPI implementation to make 

fast, especially if the underlying hardware doesn’t support direct 
RMA operations
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An Application:  Modeling the Human 
Brain
�Goal:  Understand conditions, causes, and possible 

corrections for epilepsy
�Approach:  Study the onset and progression of 

epileptiform activity in the neocortex
�Technique:  Create a model of neurons and their 

interconnection network, based on models combining 
wet lab measurements of resected tissue samples and 
in vivo studies

�Computation: Develop a simulation program that can 
be used for detailed parameter studies
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Model Neurons

IS   

Soma      

Na K

Spike

Ex

Inh

IS   

Soma      

Na K

Spike

Ex

Inh
Soma      

Na K

Spike
Ex

Neurons in the focal neocortex Compartmental neural models

Excitatory and inhibitory
signal wiring between neurons
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Modeling Approach

� Individual neurons are modeled using electrical 
analogs to parameters measured in the 
laboratory

� Differential equations describe evolution of the 
neuron state variables

� Neuron spiking output is wired to thousands of 
cells in a neighborhood

� Wiring diagram is based on wiring patterns 
observed in neocortex tissue samples

� Computation is divided among available 
processors Schematic of a two dimensional 

patch of neurons showing 
communication neighborhood for 
one of the cells in the simulation 
and partitioning of the patch 
among processors.



Argonne National 
Laboratory Petascale Workshop 44

44

Abstract pNeo for Tutorial Example
� “Simulate the simulation” of the evolution of neuron 

state instead of solving the differential equations
�Focus on how to code the interactions between cells in 

MPI
�Assume one cell per process for simplicity

– Real code multiplexes many individual neurons onto 
one MPI process
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What Happens In Real Life

� Each cell has a fixed number of connections to some other cells
� Cell “state” evolves continuously
� From time to time “spikes” arrive from connected cells.
� Spikes influence the evolution of cell state
� From time to time the cell state causes spikes to be sent to other 

connected cells
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What Happens In Existing pNeo Code

� In pNeo, each cell is connected to about 1000 cells
– Large runs have 73,000 cells 
– Brain has ~100 billion cells

� Connections are derived from neuro-anatomical data
� There is a global clock marking time steps
� The state evolves according to a set of differential equations
� About 10 or more time steps between spikes

– I.e., communication is unpredictable and sparse
� Possible MPI-1 solutions

– Redundant communication of communication pattern before 
communication itself, to tell each process how many receives 
to do

– Redundant “no spikes this time step” messages
� MPI-2 solution:  straightforward use of Put, Fence
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What Happens in Tutorial Example

� There is a global clock marking time steps
� At the beginning of a time step, a cell notes spikes from connected 

cells (put by them in a previous time step).
� A dummy evolution algorithm is used in place of the differential

equation solver.
� This evolution computes which new spikes are to be sent to 

connected cells.
� Those spikes are sent (put), and the time step ends.
� We show both a Fence and a Post/Start/Complete/Wait version.
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Two Examples Using RMA in Pneo

� Global synchronization
– Global synchronization of all processes at each step
– Illustrates Put, Get, Fence

� Local synchronization
– Synchronization across connected cells, for improved 

scalability (synchronization is local)
– Illustrates Start, Complete, Post, Wait
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Halo Exchange Benchmark
� Part of the mpptest benchmark; works with any MPI implementation

– Even handles implementations that only provide a subset of MPI-
2 RMA functionality

– Similar code to that in halocompare, but doesn’t use process 
topologies (yet)

� Available from
� http://www.mcs.anl.gov/mpi/mpptest
� Mimics a halo, or ghost-cell, exchange that is a common component 

of parallel codes that solve partial differential equations
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Persistent Send/recv
� Persistent Send/recv: 

– This version uses nonblocking operations for both sending and 
receiving; primarily, this is to handle the buffering issues. In order 
to increase the efficiency, MPI persistent operations are used

� This is very similar to the simple nonblocking example.
– The halo experiments with the LC systems did not show an 

advantage to using persistent operations in the halocompare 
tests.
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Halo Performance (8 nbrs) Columbia 21
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Columbia 20
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Columbia 20
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MPI RMA on SGI Altix
� Performance of Columbia 21 > Columbia 20 > Columbia 8
� Performance of “GET” > “PUT”
� Performance of “PUT” and “GET” is much better than “SEND” and 

“RECV”
� Performance MPI RMA is much better than the POINT-TO-POINT 

communication on Columbia
� RMA performance on Columbia is excellent
� On Columbia “lock-put-unlock” is 10 times better than “send-receive”
� On Columbia “fence” method is 2 times better than “send-receive”
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MPI and Threads

� MPI describes parallelism between processes
� Thread parallelism provides a shared-memory model within a 

process
� OpenMP and Pthreads are common models

– OpenMP provides convenient features for loop-level 
parallelism
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MPI and Threads (contd.)

� MPI-2 defines four levels of thread safety

– MPI_THREAD_SINGLE:  only one thread

– MPI_THREAD_FUNNELED: only one thread that makes MPI calls

– MPI_THREAD_SERIALIZED: only one thread at a time makes MPI 
calls

– MPI_THREAD_MULTIPLE: any thread can make MPI calls at any 
time

� User calls MPI_Init_thread to indicate the level of thread support 
required; implementation returns the level supported
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Threads and MPI in MPI-2

� An implementation is not required to support levels higher than 
MPI_THREAD_SINGLE; that is, an implementation is not required to
be thread safe

� A fully thread-compliant implementation will support 
MPI_THREAD_MULTIPLE

� A portable program that does not call MPI_Init_thread should assume 
that only MPI_THREAD_SINGLE is supported
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For MPI_THREAD_MULTIPLE

� When multiple threads make MPI calls concurrently, the outcome 
will be as if the calls executed sequentially in some (any) order

� Blocking MPI calls will block only the calling thread and will not 
prevent other threads from running or executing MPI functions

� It is the user's responsibility to prevent races when threads in the 
same application post conflicting MPI calls

� User must ensure that collective operations on the same 
communicator, window, or file handle are correctly ordered among
threads
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Threads on LC Machines
� MPI and Threads

– MPI_Init_thread(&argc, &argv, requested, &provided)
– The four levels of thread safety

• MPI_THREAD_SINGLE
• MPI_THREAD_FUNNELED
• MPI_THREAD_SERIAL
• MPI_THREAD_MULTIPLE

� Using threads
– OpenMP

• Compiler handles most operations
– Pthreads

• Like MPI, you get to do everything yourself :)
– Limitations imposed by OS

• On BG/P, threads bound to cores (so four threads)
• Linux will enable real thread programming (now true on Jaguar)
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Thread Performance
� Thread safety is not free

– Managing atomic access to shared data structures adds 
overhead (you never know when a thread might update the same 
item)

– Scheduling access to shared resources (e.g., interconnect) can 
introduce additional contention
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Overhead of Providing Thread Safety
� This test uses a single-threaded 

MPI process, but uses the 
“requested” argument to 
MPI_Init_thread to select either 
MPI_THREAD_SINGLE or 
MPI_THREAD_MULTIPLE

� The IBM SP implementation has 
very low overhead

� The Sun implementation has about 
a 3.5 usec overhead
– Shows cost of providing thread 

safety
– This cost can be lowered, but 

requires great care
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Thread Overhead
� These tests compare the 

performance of short message 
sends when using single-threaded 
MPI processes and multiple 
threaded processes, with the same 
total number of threads

� For these systems, thread 
overhead is high
– Achieving low-overhead 

thread-safe code is difficult
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Threads vs. Processes
� This test compares using 

processes or threads to 
communicate between nodes on 
an SMP; the machines are a Sun 
and an IBM SP

� Processes achieve a much higher 
bandwidth
– Likely that processes share 

interconnect more effectively 
than threads on these systems
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Some Recommendations on the Use of 
Threads

�Best used when threads can help balance compute load 
or distribute communication

�Always estimate performance and measure. 
�Provide realistic (but simple) test cases to help 

implementations identify and solve real performance 
issues

�The impact of the multithreaded programming model on 
scalable scientific applications is a new issue for 
vendors, middleware developers, and applications alike.
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Standards Issues

� Hybrid programming (two programming models) requires that the 
standards make commitments to each other on semantics.

� OpenMP’s commitment:  if a thread is blocked by an operating 
system call (e.g. file or network I/O), the other threads remain
runnable.
– This is a major commitment;  it involves the thread scheduler in

the OpenMP compiler’s runtime system and interaction with the 
OS.

– What this means in the MPI context:  An MPI call like MPI_Recv 
or MPI_Wait only blocks the calling thread.

� MPI’s commitments are more complex.
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MPI’s Four Levels of Thread Safety
� Note that these are not specific to OpenMP
� The are in the form of commitments that the multithreaded 

application makes to the MPI implementation
– MPI_THREAD_SINGLE:  there is only one thread in the 

application
– MPI_THREAD_FUNNELED:  there is only one thread that makes 

MPI calls
– MPI_THREAD_SERIALIZED:  Multiple threads make MPI calls, 

but only one at a time
– MPI_THREAD_MULTIPLE:  Any thread may make MPI calls at 

any time
� MPI-2 defines an alternative to MPI_Init

– MPI_Init_thread(requested, provided)
• Allows applications to say what level it needs, and the MPI 

implementation to say what it provides
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What This Means in the OpenMP Context
� MPI_THREAD_SINGLE

– There is no OpenMP multithreading in the program.
� MPI_THREAD_FUNNELED

– All of the MPI calls are made by the master thread.  I.e. all MPI calls are
• Outside OpenMP parallel regions, or
• Inside OpenMP master regions, or
• Guarded by call to MPI_Is_thread_main MPI call.

– (same thread that called MPI_Init_thread)
� MPI_THREAD_SERIALIZED

#pragma omp parallel
…
#pragma omp atomic
{

…MPI calls allowed here…
}

� MPI_THREAD_MULTIPLE
– Anything goes
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The Current Situation
� All MPI implementations support MPI_THREAD_SINGLE (duh).
� They probably support MPI_THREAD_FUNNELED even if they don’t 

admit it.
– Does require thread-safe malloc
– Probably OK in OpenMP programs

� “Thread-safe” usually means MPI_THREAD_MULTIPLE.
� This is hard for MPI implementations that are sensitive to 

performance, like MPICH2.
– Lock granularity issue

� “Easy” OpenMP programs (loops parallelized with OpenMP, 
communication in between loops) only need FUNNELED.
– So don’t need “thread-safe” MPI for many hybrid programs
– But watch out for Amdahl’s Law!
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Visualizing the Behavior of Hybrid Programs

� Jumpshot is a logfile-based parallel program visualizer of the 
“standard” type.   Uses MPI profiling interface.

� Recently it has been augmented in two ways to improve scalability.
– Summary states and messages are shown as well as individual 

states and messages.
• Provides a high-level view of a long run.
• SLOG2 logfile structure allows fast interactive access 

(jumping, scrolling, and zooming) for large logfiles.
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Jumpshot and Multithreading
� Newest additions are for multithreaded and hybrid programs that use 

pthreads.
– Separate timelines for each thread id
– Support for grouping threads by communicator as well as by 

process
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Using Jumpshot with Hybrid Programs

� SLOG2/Jumpshot needs two properties of the OpenMP 
implementation that are not guaranteed by the OpenMP standard
– OpenMP threads must be pthreads

• Otherwise, the locking in the logging library necessary to 
preserve exclusive access to the logging buffers would need to 
be modified.

– These pthread ids must be reused (threads are “parked” when 
not in use)
• Otherwise Jumpshot would need zillions of time lines.
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Three Platforms for Hybrid Programming
� Linux cluster

– 24 nodes, each consisting of two Opteron dual-core processors, 2.8 Ghz 
each

– Intel 9.1 fortran compiler
– MPICH2-1.0.6, which has MPI_THREAD_MULTIPLE
– Multiple networks; we used GigE

� IBM Blue Gene/P
– 40,960 nodes, each consisting of four PowerPC 850 MHz cores
– XLF 11.1 Fortran cross-compiler
– IBM’s MPI V1R1M2 (based on MPICH2), which has 

MPI_THREAD_MULTIPLE
– 3D Torus and tree networks

� SiCortex SC5832
– 972 nodes, each consisting of six MIPS 500 MHz cores
– Pathscale 3.0.99 fortran cross-compiler
– SiCortex MPI implementation based on MPICH2, has 

MPI_THREAD_FUNNELED
– Funky Kautz graph network
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Experiments

� Basic
– Proved that necessary assumptions for our tools hold

• OpenMP threads are pthreads
• Thread id’s are reused

� NAS Parallel Benchmarks
– NPB-MZ-MPI, version 3.1
– Both BT and SP
– Two different sizes (W and B)
– Two different modes (“MPI everywhere” and OpenMP/MPI) 

• With four nodes on each machine
� Demonstrated satisfying level of portability of programs and tools 

across three quite different hardware/software environments
� But we didn’t get it right the first time…
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It Might Not Be Doing What You Think
� An early run:

� Nasty interaction between the environment variables 
OMP_NUM_THREADS and NPB_MAX_THREADS
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More Like What You Expect
� BT class B on 4 BG/P nodes, using OpenMP on each node
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MPI Everywhere
� BT class B on 4 BG/P nodes, using 16 MPI processes
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Observations on Small Experiments
Experiment Cluster BG/P SiCortex

Bt-mz.W.16x1 1.84 9.46 20.60

Bt-mz-W.4x4 0.82 3.74 11.26

Sp-mz.W.16x1 0.42 1.79 3.72

Sp-mz.W.4x4 0.78 3.00 7.98

Bt-mz.B.16.1 24.87 113.31 257.67

Bt-mz.B.4x4 27.96 124.60 399.23

Sp-mz.B.16x1 21.19 70.69 165.82

Sp-mz.B.4x4 24.03 81.47 246.76

Bt-mz.B.24x1 241.85

Bt-mz.B.4x6 337.86

Sp-mz.B.24x1 127.28

Sp-mz.B.4x6 211.78

� On the small version of BT (W), hybrid was better
� For SP and size B problems, MPI everywhere is better
� On Sicortex, more processes or threads are better than fewer
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Conclusions
� This particular benchmark has been studied much more deeply 

elsewhere
– Rolf Rabenseifner, “Hybrid parallel programming on HPC 

platforms,” Proceedings of EWOMP’03.
– Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using 

OpenMP: Portable Shared Memory Parallel Programming, MIT 
Press, 2008.

� Adding Hybridness (Hybriditude?) to a well-tuned MPI application is 
not going to speed it up.  So this NPB study doesn’t tell us much.

� More work is needed to understand the behavior of hybrid programs 
and what is needed for future application development.

� (This work is reported on in the Proceedings of EWOMP ‘08.)
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The OpenMP Books 
� Both old book and new book (and OpenMP tutorials) have two parts:
� The Front:

– OpenMP is magically convenient
– A few comments added to serial code and voila!

� The Back:
– Scalability is not so easy
– Performance issues are subtle
– Need more than comments – function calls
– SPMD structure
– It starts to look like MPI…

� (But the new book is really good; both front and back parts.)
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What is OpenMP For?
� Word on laptop?   Probably not.
� Matlab back end on desktop?  Probably so.
� Small scientific applications on desktops?  Yes.
� HPC on biggish SMPs?  Maybe, but hard.
� Collaborating with MPI on big machines?  Almost certainly.
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Solving Performance Problems
� Solving your performance problem requires that

– You understand how fast your code should go
– How fast it actually goes
– Possible interactions that may help explain the behavoir

� MPI provided a powerful hook on which tools can and are built - the 
profiling interface
– In addition to general-purpose tools, this interface is available to 

all
• You can build custom tools to explore application-specific 

hypotheses
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Tools Enabled by the MPI Profiling 
Interface
�The MPI profiling interface:  how it works
�Some freely available tools

– Those to be presented in other talks
– A few that come with MPICH2

• SLOG/Jumpshot:  visualization of detailed timelines
• FPMPI: summary statistics
• Collcheck: runtime checking of consistency in use of 
collective operations
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MPI LibraryUser Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

The MPI Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send
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Performance Visualization with 
Jumpshot

� For detailed analysis of parallel program behavior, timestamped 
events are collected into a log file during the run.

� A separate display program (Jumpshot) aids the user in 
conducting a post  mortem analysis of program behavior.

� We use an indexed file format (SLOG-2) that uses a preview to 
select a time of interest and quickly display an interval, without 
ever needing to read much of the whole file.

Logfile

Jumpshot

Processes

Display
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Viewing Multiple Scales

Each line represents 1000’s 
of messages

Detailed view shows opportunities 
for optimization

1000x zoom
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Pros and Cons of this Approach
� Cons:

– Scalability limits
• Screen resolution
• Big log files, although

– Jumpshot can read SLOG files fast
– SLOG can be instructed to log few types of events

– Use for debugging only indirect
� Pros:

– Portable, since based on MPI profiling interface
– Works with threads
– Aids understanding of program behavior

• Almost always see something unexpected
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Looking at MILC in SPEC2007
� Curious amount of All_reduce in initialization - why?
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MILC
� The answer, and how
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MILC
� The answer - why

– Deep in innermost of quadruply nested loop, an innocent-looking 
line of code:

If ( i > myrank() ) …

And myrank is a function that calls MPI_Comm_rank 

– It actually doesn’t cost that much here, but

– It illustrates that you might not know what your code is doing what 
you think it is
– Not a scalability issue (found on small # of processes)



Argonne National 
Laboratory Petascale Workshop 91

Detecting Consistency Errors in MPI 
Collective Operations

� The Problem:   the specification of MPI_Bcast:
MPI_Bcast( buf, count, datatype, root, comm )

requires that
– root is an integer between 0 and the maximum rank.
– root is the same on all processes.
– The message specified by  buf, count, datatype has the same 

signature on all processes.
� The first of these is easy to check on each process at the entry to the 

MPI_Bcast routine.
� The second two are impossible to check locally; they are consistency 

requirements requiring communication to check.
� There are many varieties of consistency requirements in the MPI collective 

operations.
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Datatype Signatures

� Consistency requirements for messages in MPI (buf, count, datatype) are on not 
on the MPI datatypes themselves, but on the signature of the message:
– {type1, type2, …}  where typei is a basic MPI datatype

� So a message described by (buf1, 4, MPI_INT) matches a message 
described by (buf2, 1, vectype), where vectype was created to be a 
strided vector of 4 integers.

� For point-to-point operations, datatype signatures don’t have to match exactly (it is 
OK to receive a short message into a long buffer), but for collective operations, 
matches must be exact.
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Approach
� Use the MPI profiling interface to intercept the collective calls, 

“borrow” the communicator passed in, and use it to check argument 
consistency among its processes.

� For example, process 0 can broadcast its value of root, and each 
other process can compare with the value it was passed for root.

� For datatype consistency checks, we will communicate hash values
of datatype signatures.

� Reference:  Falzone, Chan, Lusk, Gropp, “Collective Error Detection 
for MPI Collective Operations”, Proceedings of EuroPVM/MPI 2005.
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Datatype Signature Hashing

� Gropp – EuroPVM/MPI 2000
� Matching is done on pairs (a, n), where a is a hash value and n is the number of 

basic datatypes in the message.
� Elementary datatypes assigned (a, 1) for chosen values of a.
� Concatenate types with

– (a,n) # (b,n)  = (a xor (b << n), n+m), where << is circular left shift
– Note non-commutative  to prevent (int, float) from colliding with (float, int)

� The pairs (a,n) are easy to communicate to other processes, unlike the signatures 
themselves
– (No MPI datatype for MPI_Datatype)
– We will use PMPI_Bcast, PMPI_Scatter, PMPI_Allgather, PMPI_Alltoall as 

needed to communicate the (vector of) hash pairs to the other processes.
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Types of Consistency Checks

� Call – checks that all processes have made the same collective call (not 
MPI_Allreduce on some processes and MPI_Reduce on others).
– Used in all collective functions

� Root – checks that the same value of root was passed on all processes
– Used in Bcast, Reduce, Gather(v), Scatter(v), Spawn, Spawn_multiple, 

Connect
� Datatype – checks consistency of data arguments

– Used in all collective routines with data buffer arguments
� Op – checks consistency of operations

– Used in Reduce, Allreduce, Reduce_scatter, Scan, Exscan
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More Types of Consistency Checks
� MPI_IN_PLACE – checks whether all process or none of the processes 

specified MPI_IN_PLACE instead of a buffer.
– Used in Allgather(v), Allreduce, and Reduce_scatter 

� Local leader and tag – checks consistency of these arguments
– Used only in MPI_Intercomm_create

� High/low – checks consistency of these arguments
– Used only in MPI_Intercomm_merge

� Dims – checks consistency of these arguments
– Used in Cart_create and Cart_map
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Still More Types of Consistency Checks

� Graph – checks graph consistency
– Used in Graph_create and Graph_map

� Amode – checks file mode argument consistency
– Used in File_open

� Size, datarep, flag – checks consistency of these I/O arguments
– Used in File_set_size, File_set_automicity, File_preallocate

� Etype – checks consistency of this argument
– Used in File_set_view

� Order – checks that split-collective calls are properly ordered
– Used in Read_all_begin, Read_all_end, other split collective I/O
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Example Output
� We try to make error output instance specific:

� Validate Bcast error (Rank 4) – root parameter (4) 
is inconsistent with rank 0’s (0)

� Validate Bcast error (Rank 4) – datatype signature 
is inconsistent with Rank 0’s

� Validate Barrier (rank 4) – collective call 
(Barrier) is inconsistent with Rank 0’s (Bcast)
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Experiences

� Finding errors
– Found error in MPICH2 test suite, in which a message with one MPI_INT was 

allowed to match sizeof(int) MPI_BYTEs.
– MPICH2 allowed the match, but shouldn’t have. / (☺)
– Ran large astrophysics application (FLASH) containing many collective operations

• Collective calls all in third-party AMR library (Paramesh), but could still be 
examined through MPI profiling library approach.

• Found no errors  ☺ (/)
� Portability, Performance

– Linux cluster (MPICH2)
– Blue Gene (IBM’s BG/L MPI)
– Relative overhead decreases as size of message increases

• The extra checking messages are much shorter than the real messages
– Overhead can be relatively large for small messages

• Opportunities for optimization remain
– Profiling library can be removed after finding errors
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The (Foggy) Future of Programming 
Models

100
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Looking out to Exascale…
Concurrency will be Doubling every 18 months
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Outline of the Situation

• Million core systems and beyond are on the horizon
• Today labs and universities have general purpose 

systems with 10k-200K cores (BGL@ LLNL 200K, 
BGP@Argonne 160K, XT5@ORNL 150K cores)

• By 2012 there will be more systems deployed in the 
200K-1M core range

• By 2020 there will be systems with perhaps 100M cores
• Personal systems with > 1000 cores within 5
• Personal systems with requirement for 1M threads is not 

too far fetched (GPUs for example)
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How Will We Program Them?

�Still an unsolved problem
�Some believe a totally new programming model and 

language (e.g.  X10, Chapel, Fortress).
�Some mechanism for dealing with shared memory will be 

necessary
– This (whatever it is) plus MPI is the conservative view 

�Whatever it is, it will need to interact properly with MPI
�May also need to deal with on-node heterogeneity 
�The situation is somewhat like message-passing before 

MPI
– And it is too early to standardize
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MPI is Current HPC Programming Model

� MPI represents a very complete definition of a well-defined 
programming model

� MPI programs are portable
� There are many implementations

– Vendors
– Open source

� Enables high performance for wide class of architectures
– Scalable algorithms are key

� Small subset easy to learn and use
� Expert MPI programmers needed most for libraries, which are 

encouraged by the MPI design. 
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The MPI Forum Continues to Refresh MPI
� New signatures for old functions

– E.g. MPI_Send(…,MPI_Count,…)
� Details

– Fortran binding issues..
� New features

– MPI_Process_Group and related functions for fault tolerance
– New topology routines aware of more hierarchy levels
– Non-blocking collective operations
– A simpler one-sided communication interface

• Or perhaps standardized semantics for interacting with shared-
memory programming systems in general

– More scalable versions of the “v” collectives
– …

� See http://www.mpi-forum.org for details of working groups
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Why Won’t “MPI Everywhere” suffice?

� Core count on a node is increasing faster than memory size.
� Thus memory available per MPI process is going down.
� Thus we need parallelism within an address space, while continuing 

to use MPI for parallelism among separate address spaces.
� We don’t have a good way to do this yet.
� Whatever we use, it must cooperate with parallelism across address 

spaces, so its API must interact in a well-defined way with MPI.
� Some applications are expressing the need for large address spaces 

that span multiple multi-core nodes, yet still are each a small part of 
the memory of the entire machine.
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Traditional Sources of Performance 
Improvement are Flat-Lining (2004)

• New Constraints
– 15 years of exponential clock 

rate growth has ended

• Moore’s Law reinterpreted:

– How do we use all of 
those transistors to keep 
performance increasing 
at historical rates?

– Industry Response: 
#cores per chip doubles 
every 18 months instead
of clock frequency! 

Figure courtesy of Kunle Olukotun, Lance 
Hammond, Herb Sutter, and Burton Smith



Argonne National 
Laboratory Petascale Workshop

Multicore comes in a wide variety

– Multiple parallel general-purpose processors (GPPs)
– Multiple application-specific processors (ASPs)

“The Processor is the 
new Transistor”

[Rowen]

Intel 4004 (1971): 
4-bit processor,
2312 transistors, 

~100 KIPS, 
10 micron PMOS, 

11 mm2 chip 
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Moving Beyond MPI
� Any alternative to MPI (at its own level) will have to have some of the 

good properties of MPI
– Portability
– Scalability
– Performance

� Perhaps alternatives exist at different levels.
� But they will still have to interact with MPI, in order to provide a path 

from where we are now to more abstract models
– Clear interoperability semantics
– Can be used either above or below C/Fortran/MPI code
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Some Families of Programming 
Models and Associated Languages

� Shared-memory and annotation languages
– Especially OpenMP
– Likely to coexist with MPI

� Partitioned Global Address Space Languages
– UPC, Co-Array Fortran, and Titanium
– One step removed from MPI

� The HPCS languages
– X10, Chapel, Fortress
– Two steps removed from MPI
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OpenMP
� OpenMP is a set of compiler directives (in comments, like HPF) plus 

some library calls
� The comments direct the execution of loops in parallel in a 

convenient way.
� Data placement is not controlled, so performance is hard to get 

except on machines with real shared memory.
� Likely to be more successful on multicore chips than on previous

SMP’s (multicore = really, really shared memory).
� Can co-exist with MPI

– MPI’s levels of thread safety correspond to programming 
constructs in OpenMP
• Formal methods can be applied to hybrid programs

� New book by Barbara Chapman, et al.
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Other Annotation-based approaches
� The idea is to retain the sequential programming model
� Annotations guide source-to-source transformations or compilation 

into a parallel program
� HPF and OpenMP (part 1) are examples
� Others in research mode
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The PGAS Languages
� PGAS (Partitioned Global Address Space) languages attempt to 

combine the convenience of the global view of data with awareness 
of data locality, for performance
– Co-Array Fortran, an extension to Fortran-90)
– UPC (Unified Parallel C), an extension to C
– Titanium, a parallel version of Java

� Fixed number of processes, like MPI-1

Global address
space

Local address
spaces
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Status

� Compilers exist
– In some cases more than one

� Applications are being tried
� Substantial support, at least for UPC
� Early experiments are encouraging with respect to performance

– Some reports are misleading.
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The DARPA HPCS Language Project 

� The DARPA High Productivity Computer Systems (HPCS) Project is 
a 10-year, three-phase, hardware/software effort to transform the 
productivity aspect of the HPC enterprise.

� In Phase II,three vendors were funded to develop high productivity 
language systems, and each assigned a small group to language 
development
– IBM:  X10
– Cray:  Chapel
– Sun:  Fortress

� In Phase III, Sun was dropped from DARPA support.   Both IBM and
Cray efforts are continuing.  Actually, Sun’s effort is too, internally 
supported.
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The Transition is Starting

• In large-scale scientific computing today essentially all codes are 
message-passing based.  Additionally many are starting to use some 
form of multithreading on SMP or multicore nodes.

• Multicore is challenging programming models but there has not yet 
emerged a dominate model to augment message passing

• There is a need to identify new hierarchical programming models 
that will be stable over long term and can support the concurrency 
doubling pressure

• Current approaches to programming GPU’s are for library 
developers, not application developers
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Hybrid Programming Models
� Some shared-memory API’s that can be used with MPI

– POSIX threads -- explicit thread creation, locks, condition vars
– OpenMP

• Sequential programming model with annotations, parallel 
execution model

– Yet to be invented…
� The current situation:  OpenMP + MPI

– Works because of well-thought-out explicit contracts between the 
models.
• MPI standard defines levels of thread safety
• OpenMP defines types of code regions
• These work together in ways defined by the respective 

standards
– Hard to get performance with OpenMP because of lack of locality 

management, excessive synchronization.
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One Possible Near Future:  PGAS+MPI
� Locality management within an address space via local, remote 

memory
� An address space could be bigger than one node

– Might need more hierarchy in PGAS definitions
� Just starting to work with PGAS folks on UPC+MPI and CAF+MPI

– Center for Programming Models base program project with ANL, 
LBNL, Rice, Houston, PNNL, OSU

� Until recently PGAS has focused either on competing with MPI or 
with OpenMP on single node
– Need to make interoperability with MPI a priority to attract current 

HPC applications
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A More Distant Future
� HPCS-type languages have many interesting ideas for exploiting 

less obvious parallelism
� Need coordination and freedom from vendor ownership
� A convergence plan

– (DARPA briefly funded a convergence project, which was 
promising until cancelled)

� A migration plan for current applications
– Interaction with MPI
– Use in libraries
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Avoiding MPI:  The Asynchronous 
Dynamic Load-Balancing Library

�Overview of ADLB
�The API in a nutshell
�How it works
�Tutorial example
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Master/Slave Algorithms and Load Balancing

� Advantages
– Automatic load balancing

� Disadvantages
– Scalability - master can become bottleneck

� Wrinkles
– Slaves may create new work
– Multiple work types and priorities that impose work flow

MasterMaster

SlaveSlave SlaveSlave SlaveSlave SlaveSlave SlaveSlave

Shared
Work queue

Shared
Work queue
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The ADLB Vision
� No explicit master for load balancing;  slaves make calls to ADLB 

library; those subroutines access local and remote data structures 
(remote ones via MPI).

� Simple Put/Get interface from application code to distributed work 
queue hides most MPI calls
– Advantage:  multiple applications may benefit
– Wrinkle:  variable-size work units, in Fortran, introduce some 

complexity in memory management
� Proactive load balancing in background

– Advantage:  application never delayed by search for work from 
other slaves

– Wrinkle:  scalable work-stealing algorithms not obvious
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The ADLB Model (no master)

� Doesn’t really change algorithms in slaves
� Not a new idea (e.g. Linda)
� But need scalable, portable, distributed implementation of shared 

work queue
– MPI complexity hidden here.

SlaveSlave SlaveSlave SlaveSlave SlaveSlave SlaveSlave

Shared
Work queue

Shared
Work queue
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API for a Simple Programming Model

� Basic calls
– ADLB_Init( num_servers, am_server, app_comm)
– ADLB_Server()
– ADLB_Put( type, priority, len, buf, answer_dest )
– ADLB_Reserve( req_types, handle, len, type, prio, answer_dest)
– ADLB_Ireserve( … )
– ADLB_Get_Reserved( handle, buffer )
– ADLB_Set_Done()
– ADLB_Finalize()

� A few others, for tuning and debugging
– ADLB_{Begin,End}_Batch_Put()
– Getting performance statistics with ADLB_Get_info(key)



Argonne National 
Laboratory Petascale Workshop 130

Parallel Sudoku Solver with ADLB
Program:

if (rank = 0)
ADLB_Put initial board

ADLB_Get board (Reserve+Get)
while success  (else done)

ooh
find first blank square
if failure  (problem solved!)

print solution
ADLB_Set_Done

else
for each valid value

set blank square to value
ADLB_Put new board

ADLB_Get board
end while 

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Work unit = 
partially completed “board”
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How it Works

� After initial Put, all processes execute same loop (no master)

1 9 7

7 8
3 16

1 9

2 5 3
7 1

5

5 6
7 9 1 8 62

3

2

6
8

Pool
of 

Work
Units
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4 6 8

Get

Put
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Optimizing Within the ADLB Framework

� Can embed smarter strategies in this algorithm
– ooh = “optional optimization here”, to fill in more squares
– Even so,potentially a lot of work units for ADLB to manage

� Can use priorities to address this problem
– On ADLB_Put, set priority to the number of filled squares
– This will guide depth-first search while ensuring that there is 

enough work to go around
• How one would do it sequentially

� Exhaustion automatically detected by ADLB (e.g., proof that there is 
only one solution, or the case of an invalid input board)
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Experiments with GFMC/ADLB on BG/P

� Using GFMC to compute the binding energy of 14 neutrons in an 
artificial well ( “neutron drop” = teeny-weeny neutron star )

� A weak scaling experiment

� Recent work:  “micro-parallelization” needed for 12C, OpenMP in 
GFMC.

BG/P
cores

ADLB
Servers

Configs
Time
(min.)

Efficiency
(incl. serv.)

4K 130 20 38.1 93.8%

8K 230 40 38.2 93.7%

16K 455 80 39.6 89.8%

32K 905 160 44.2 80.4%
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How It Works

� Real numbers:  1000 servers out of 32,000 processors on BG/P
– And recently introduced other communication paths

Application Processes

ADLB Servers

put/get
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The ADLB Server Logic
� Main loop:

– MPI_Iprobe for message in busy loop (emit diagnostics)
– MPI_Recv message
– Process according to type (20 types)

• Update status vector of work stored on remote servers
• Manage work queue and request queue
• (may involve posting MPI_Isends to isend queue)

– MPI_Test all requests in isend queue
– Return to top of loop

� The status vector replaces single master or shared memory
– Circulates every .1 second at high priority

135
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ADLB Uses Multiple MPI Features
� ADLB_Init returns separate application communicator, so application 

can use MPI for its own purposes if it needs to.
� Servers are in MPI_Iprobe loop for responsiveness.
� MPI_Datatypes for some complex, structured messages (status)
� Servers use nonblocking sends and receives, maintain queue of 

active MPI_Request objects.
� Queue is traversed and each request kicked with MPI_Test each time 

through loop; could use MPI_Testany.
� Client side uses MPI_Ssend to implement ADLB_Put in order to 

conserve memory on servers, MPI_Send for other actions.
� Servers respond to requests with MPI_Rsend since MPI_Irecvs are 

known to be posted by clients before requests.
� MPI provides portability:  laptop, Linux cluster, SiCortex, BG/P
� MPI profiling library is used to understand application/ADLB behavior.
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Looking at GFMC/ADLB with Jumpshot
(in the good old days)
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Things Can Get Worse at Larger Scale
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Multiple Load-Balancing Regimes
� The original objective was to do balancing of processing load
� Much of the last year has been spent on balancing of the memory 

load
– Work units may to be moved from server to server
– Even proactively

� We may now be having problems that can only be solved by 
balancing of the message-passing load.

139
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Summary
� MPI provides effective ways to access communication performance

– You may need to help the implementation out
– MPI RMA merits consideration

• But perform timing tests before committing to it
• Best to form a communication abstraction with RMA one 

available implementation
– MPI Profiling interface gives you access to ways to diagnose 

performance problems
� Programming models for exascale are still in experimental stages
� Hiding MPI calls in higher-level libraries can be a useful approach to 

programmer productivity
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The End
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