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Outline

M Topics in MPI programming
B Selected tools enabled by MPI profiling interface
— SLOG/Jumpshot: visualizing parallel performance
— FPMPI: gathering summary statistics
— Collchk: runtime checking of correct use of collective operations
B Programming models for HPC
— MPI
— PGAS
— HPCS
B Hybrid programming (MPI and OpenMP)
B Avoiding MPI with special libraries (ADLB)
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Basic MPI: Looking Closely at a
Simple Communication Pattern

B Many programs rely on “halo exchange” (ghost cells, ghost points,
stencils) as the core communication pattern

— Many variations, depending on dimensions, stencil shape
— Here we look carefully at a simple 2-D case
B Unexpected performance behavior

— Even simple operations can give surprising performance
behavior.

— Examples arise even in common grid exchange patterns

— Message passing illustrates problems present even in shared
memory

 Blocking operations may cause unavoidable stalls
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Processor Parallelism

 Decomposition of a mesh into 1 patch

per process

« Update formula typically a(l,j) =
f(a(i-1,),a(i+1,)),a(l,j+1),a(l,j-1),...)

* Requires access to “neighbors” in
patches
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Scalability of Mesh Exchange

B How does the computational effort and communication change as
the task size changes?

— Classic example is mesh exchange

B Data exchanged is the “surface” of the mesh patch; computation is
on the “volume”

— Important term is the surface to volume ratio
— Cost of surface exchanges (3-d domain, faces only):
el-d=2(s+rn2)
« 2-d =4 (s +r n2/)
*3-d =6 (s +rn/pl/3)
— Best approach is to make these relative to floating-point work
(this is the dimensionless quantity):
e 1-d=2(s+rn2)/n3f
B These assume that communications are non-interfering. Simple
mistakes can violate that assumption...

“




Mesh Exchange

B Exchange data on a mesh
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Sample Code

M Do i=1,n_neighbors
Call MPI_Send(edge(1,), len, MPI_REAL,&
nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
Call MPIl_Recv(edge(1,i), len, MPI_REAL,&
nbr(i), tag, comm, status, ierr)
Enddo
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Deadlocks!

® All of the sends may block, waiting for a matching receive (will for
large enough messages)

B The variation of
If (has down nbr) then
Call MPI_Send( ... down ... )
endif
If (has up nbr) then
Call MPI_Recv( ... up ...)
endif

sequentializes (all except the bottom process blocks)

44 Argonne National
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Sequentialization
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Fix 1: Use Irecv

® Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

B Does not perform well in practice (at least on BG, SP). Why?
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Understanding the Behavior: A Timing
Model

B Sends interleave

B Sends block (data larger than buffering will allow)

B Sends control timing

B Receives do not interfere with Sends

B Exchange can be done in 4 steps (down, right, up, left)

& Argonne National i
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Mesh Exchange - Step 1

B Exchange data on a mesh
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Mesh Exchange - Step 2

B Exchange data on a mesh




Mesh Exchange - Step 3

B Exchange data on a mesh




Mesh Exchange - Step 4

B Exchange data on a mesh
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Mesh Exchange - Step 5

B Exchange data on a mesh
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Mesh Exchange - Step 6

B Exchange data on a mesh
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Timeline from IBM SP

ogllle Tlele: Me
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o.oims g.01s0m a.013s 0.0za0 g.ozis g.0210 [ Mrfy

* Note that process 1 finishes last, as predicted
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Distribution of Sends

‘SEND' state length distribution

oppz  0.0003  O0.0004  OD.0Q0DS  D.oOODBE  D.OOODY OD.0OD8  OD.0ODDS

{in seconds)
B8 states of 86 (70%)
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Why Six Steps?

B Ordering of Sends introduces delays when there is contention at the
receiver

B Takes roughly twice as long as it should
B Bandwidth is being wasted
B Same thing would happen if using memcpy and shared memory

B The interference of communication is why adding an MPI_Barrier
(normally an unnecessary operation that reduces performance) can
occasionally increase performance. But don’'t add MPI_Barrier to
your code, please :-)
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Fix 2: Use Isend and Irecv

B Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPIl_REAL,nbr(i),tag,&
comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)
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Mesh Exchange - Steps 1-4

M Four interleaved steps (at least, in principle)
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Timeline from IBM SP

Logfile Title: Ma

-BAFIFIIEFI I:lIFIEIT."..'h.II -ISEHD I:lWMTA.LL

0.355%  0.3560 0.356% 0.3570 0.357% 0.3580 0.3585 0.3590 0.359% 0.35600 0.3605

Note processes 5 and 6 are the only interior processors;
these perform more communication than the other
Dr0Cessors
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Lesson: Defer Synchronization

B Send-receive accomplishes two things:
— Data transfer
— Synchronization
@ In many cases, there is more synchronization than required

B Use nonblocking operations and MPI_Waitall to defer
synchronization

B However, this relies on the MPI implementation taking advantage of
the opportunities provided by MPI_Waitall (more on this later)

Argonne National i
Laboratory Petascale Workshop



MPI-2: Revisiting Mesh Communication

B Do not need full generality of send/receive
— Each process can completely define what data needs to be
moved to itself, relative to each process’s local mesh
* Each process can “get” data from its neighbors
— Alternately, each can define what data is needed by the neighbor
processes
« Each process can “put” data to its neighbors
B MPI-2 provides these “one-sided” or “remote memory access”
routines
— BGJ/L does not support these
— BG/P and Cray XTn do, but performance is still an open question
— It is possible to implement these well and get an advantage over
point-to-point communications
® First, we’ll cover some of the RMA basics. Then we’ll see some
examples of a good implementation

A\ /roonne National Petascale Workshop
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Remote Memory Access

B A key feature is that it separates data transfer from indication of
completion (synchronization)

B |[n message-passing, they are combined:

Proc O Proc 1 Proc O Proc 1
store fence fence
send receive put
load fence fence
load
or
store
fence fence
get

Argonne National
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Remote Memory Access in MPI-2
(also called One-Sided Operations)

B Goals of MPI-2 RMA Design

— Balancing efficiency and portability across a wide class of
architectures

» shared-memory multiprocessors
 NUMA architectures
« distributed-memory MPP’s, clusters
« Workstation networks

— Retaining “look and feel” of MPI-1

— Dealing with subtle memory behavior issues: cache coherence,
sequential consistency

Argonne National [
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Remote Memory Access Windows and
Window Objects

Process 0 Process 1
j = .
Put
window Process 2 Process 3
B O

= address spaces = window object

Petascale Workshop



Basic RMA Functions for Communication

B MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator

— Collective operation

— Creates window object
®m MPI_Win_free deallocates window object

B MPI_Put moves data from local memory to remote memory

B MP1_Get retrieves data from remote memory into local memory
B MPI_Accumulate updates remote memory using local values
B Data movement operations are non-blocking

B Subsequent synchronization on window object needed to
ensure operation is complete

#&  Argonne National -
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Performance of RMA (early results)

Comm Perf far MPI {denali.mecs.anl.gov) Comm Ferf for MPI {denall.mes.anl.gov)
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Caveats: On SGI, MPI_Put uses specially allocated memory
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Advantages of RMA Operations

B Can do multiple data transfers with a single synchronization
operation

— like BSP model
B Bypass tag matching
— effectively precomputed as part of remote offset

B Some irregular communication patterns can be more economically
expressed

B Can be significantly faster than send/receive on systems with
hardware support for remote memory access, such as shared
memory systems

Argonne National
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Irregular Communication Patterns with
RMA

B If communication pattern is not known a priori, the send-
recv model requires an extra step to determine how
many sends-recvs to issue

B RMA, however, can handle it easily because only the
origin or target process needs to issue the put or get call

B This makes dynamic communication easier to code in
RMA

Argonne National
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RMA Window Objects

MP1_Win_create(base, size, disp_unit, info, comm, win)

B Exposes memory given by (base, size) to RMA operations by other
processes in comm

B win is window object used in RMA operations
B disp _unit scales displacements:

— 1 (no scaling) or sizeof(type), where window is an array of
elements of type type

— Allows use of array indices
— Allows heterogeneity

Argonne National
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Put, Get, and Accumulate

B MP1 _Put(origin_addr, origin_count,
origin_datatype,
target_rank, target offset,
target _count, target datatype,
window)

mMPI Get( ... )
® MP1_Accumulate( ..., op, --- )
® opisasin MPI1_Reduce, but no user-defined operations are allowed

Argonne National [
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The Synchronization Issue

MPI] Get

local

stores _—

B |ssue: Which value is retrieved?

— Some form of synchronization is required between local
load/stores and remote get/put/accumulates

B MPI provides multiple forms

-'l Argonne National
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Synchronization with Fence

Simplest methods for synchronizing on window objects:
B MP1_Win_fence - like barrier, supports BSP model

Process O Process 1

MPI_Win_fence(win) MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win) MPI_Win_fence(win)

Argonne National
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Scalable Synchronization with
Post/Start/Complete/Walit

B Fence synchronization is not scalable because it is collective over
the group in the window object

B MPI provides a second synchronization mode: Scalable
Synchronization

— Uses four routines instead of the single MP1_Win_fence:

* 2 routines to mark the begin and end of calls to RMA
routines

— MPI_Win_start, MPl_Win_complete

« 2 routines to mark the begin and end of access to the
memory window

— MPI_Win_post, MPI_Win_wait

B P/S/C/W allows synchronization to be performed only among
communicating processes

A& Argonne National
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Synchronization with P/S/C/W

B Origin process calls MPI_Win_start and MPI_Win_complete
M Target process calls MPI_Win_post and MPI_Win_wait

Process O Process 1
MPI_Win_start(target_grp) MPI_Win_post(origin_grp)
MPI_Put

MPI_Put

MPI_Win_complete(target grp)  MPI_Win_wait(origin_grp)

Argonne National
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Lock-Unlock Synchronization

B “Passive” target: The target process does not make any
synchronization call

® When MPI_Win_unlock returns, the preceding RMA operations are
complete at both source and target

Process 0O Process 1 Process 2
MPI_Win_create MPI _Win_create MPI_Win_create

MP1 _Win_lock(shared,1l) MP1 _Win_lock(shared,1l)
MP1_ Put(l) MPI1_Put(l)

MP1_ Get(1) MPI_Get(1)
MPI_Win_unlock(l) MPI_Win_unlock(l)

MPI _Win_free MPI_Win_free MPI_Win_free

Argonne National
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Fence vs Lock/Unlock Synchronization

B Fence synchronization method requires all processes in the
communicator (that created the window) to call the fence function. It
Is almost like a batrrier.

B Lock/unlock synchronization is called only by the process that needs
to do the Put or Get. The target process does not call anything.

— But this is more challenging for the MPI implementation to make
fast, especially if the underlying hardware doesn’t support direct
RMA operations

Argonne National
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An Application: Modeling the Human
Brain

W Goal: Understand conditions, causes, and possible
corrections for epilepsy

B Approach: Study the onset and progression of
epileptiform activity in the neocortex

M Technique: Create a model of neurons and their
Interconnection network, based on models combining
wet lab measurements of resected tissue samples and
In vivo studies

B Computation: Develop a simulation program that can
be used for detailed parameter studies

Argonne National
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Model Neurons

signal wiring between neurons

i )\ Gl 7 - Excitatory and inhibitory

“._N"eil;jr'ons' in the fQ,cal:neoCort-ef)‘( Compartmental neural model

Mpsenke i Se Sese i Soma Soma
i\ —“‘*& LR Tk s £y Soma
Splke Spike IS Spike

NaK
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Modeling Approach

B Individual neurons are modeled using electrical  ——— T T
analogs to parameters measured in the R e I R
laboratory FEE I § i

B Differential equations describe evolution of the 0 B BT NN =8
neuron state variables YA N K S

ey = . . IOOO Q ~ g \ - o

B Neuron spiking output is wired to thousands of |~ B ES N T P

cells in a neighborhood e Oqo—"%- N
. . . . . o Ne |® ° ® So o o

B Wiring diagram is based on wiring patterns SR e U A B H
observed in neocortex tissue samples RN R R G CINE) X

B Computation is divided among available o (] odo[Toope g o
Processors Schematic of a two dimensional

patch of neurons showing
communication neighborhood for
one of the cells in the simulation
and partitioning of the patch
among processors.
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Abstract pNeo for Tutorial Example

B “Simulate the simulation” of the evolution of neuron
state instead of solving the differential equations

B Focus on how to code the interactions between cells in
MPI

B Assume one cell per process for simplicity

— Real code multiplexes many individual neurons onto
one MPI process

Argonne National 44
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What Happens In Real Life

B Each cell has a fixed number of connections to some other cells
m Cell “state” evolves continuously

B From time to time “spikes” arrive from connected cells.

B Spikes influence the evolution of cell state

B From time to time the cell state causes spikes to be sent to other
connected cells

Argonne National
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What Happens In Existing pNeo Code

M In pNeo, each cell is connected to about 1000 cells
— Large runs have 73,000 cells
— Brain has ~100 billion cells
B Connections are derived from neuro-anatomical data
M There is a global clock marking time steps
B The state evolves according to a set of differential equations
B About 10 or more time steps between spikes
— l.e., communication is unpredictable and sparse
B Possible MPI-1 solutions

— Redundant communication of communication pattern before
communication itself, to tell each process how many receives
to do

— Redundant “no spikes this time step” messages
B MPI-2 solution: straightforward use of Put, Fence

Argonne National
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What Happens in Tutorial Example

M There is a global clock marking time steps

B At the beginning of a time step, a cell notes spikes from connected
cells (put by them in a previous time step).

B A dummy evolution algorithm is used in place of the differential
equation solver.

B This evolution computes which new spikes are to be sent to
connected cells.

B Those spikes are sent (put), and the time step ends.
B We show both a Fence and a Post/Start/Complete/Wait version.

Argonne National 47
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Two Examples Using RMA In Pneo

B Global synchronization
— Global synchronization of all processes at each step
— lllustrates Put, Get, Fence

B Local synchronization

— Synchronization across connected cells, for improved
scalability (synchronization is local)

— lllustrates Start, Complete, Post, Wait

Argonne National

Laboratory Petascale Workshop

) 48
48



F Y

Halo Exchange Benchmark

B Part of the mpptest benchmark; works with any MPI implementation

— Even handles implementations that only provide a subset of MPI-
2 RMA functionality

— Similar code to that in halocompare, but doesn’t use process
topologies (yet)
B Available from
B hitp://www.mcs.anl.gov/mpi/mpptest

B Mimics a halo, or ghost-cell, exchange that is a common component
of parallel codes that solve partial differential equations

Argonne National i
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Persistent Send/recv

B Persistent Send/recv:

— This version uses nonblocking operations for both sending and
receiving; primarily, this is to handle the buffering issues. In order
to increase the efficiency, MPI persistent operations are used

B This is very similar to the simple nonblocking example.

— The halo experiments with the LC systems did not show an
advantage to using persistent operations in the halocompare
tests.

Argonne National
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Halo Performance (8 nbrs) Columbia 21
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Columbia 20
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Columbia 20
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MPI RMA on SGI Altix

B Performance of Columbia 21 > Columbia 20 > Columbia 8
B Performance of “GET” > “PUT"”

B Performance of “PUT” and “GET” iIs much better than “SEND” and
“RECV”

B Performance MPI RMA is much better than the POINT-TO-POINT
communication on Columbia

B RMA performance on Columbia is excellent
B On Columbia “lock-put-unlock” is 10 times better than “send-receive”
B On Columbia “fence” method is 2 times better than “send-receive”

Argonne National 0
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MPI| and Threads

B MPI describes parallelism between processes

B Thread parallelism provides a shared-memory model within a
process

B OpenMP and Pthreads are common models

— OpenMP provides convenient features for loop-level
parallelism

Argonne National
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MPI| and Threads (contd.)

B MPI-2 defines four levels of thread safety
— MPI_THREAD_ SINGLE: only one thread
— MPI_THREAD_ FUNNELED: only one thread that makes MPI calls

— MPI_THREAD_ SERIALIZED: only one thread at a time makes MPI
calls

— MPI_THREAD_ MULTIPLE: any thread can make MPI calls at any
time

B User calls MPI_Init_thread to indicate the level of thread support
required; implementation returns the level supported

#&  Argonne National 2
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Threads and MPI in MPI-2

B An implementation is not required to support levels higher than
MPI_THREAD_ SINGLE; that is, an implementation is not required to
be thread safe

m A fully thread-compliant implementation will support
MPI_THREAD MULTIPLE

B A portable program that does not call MPI_Init_thread should assume
that only MPI_THREAD_ SINGLE is supported

Argonne National
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For MPI_THREAD MULTIPLE

B When multiple threads make MPI calls concurrently, the outcome
will be as if the calls executed sequentially in some (any) order

B Blocking MPI calls will block only the calling thread and will not
prevent other threads from running or executing MPI functions

M |t is the user's responsibility to prevent races when threads in the
same application post conflicting MPI calls

B User must ensure that collective operations on the same

communicator, window, or file handle are correctly ordered among
threads

Argonne National
Laboratory Petascale Workshop



Threads on LC Machines

® MPI and Threads
— MPIL_Init_thread(&argc, &argv, requested, &provided)
— The four levels of thread safety
« MPI_THREAD_SINGLE
« MPI_THREAD_FUNNELED
« MPI_THREAD_ SERIAL
« MPI_THREAD_ MULTIPLE
B Using threads
— OpenMP
* Compiler handles most operations
— Pthreads
 Like MPI, you get to do everything yourself :)
— Limitations imposed by OS
* On BG/P, threads bound to cores (so four threads)
 Linux will enable real thread programming (now true on Jaguar)
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Thread Performance

B Thread safety is not free

— Managing atomic access to shared data structures adds
overhead (you never know when a thread might update the same
item)

— Scheduling access to shared resources (e.g., interconnect) can
Introduce additional contention

Argonne National
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Overhead of Providing Thread Safety

M This test uses a single-threaded
MPI process, but uses the
“requested” argument to
MPI_Init_thread to select either
MPI_THREAD_SINGLE or
MPI_THREAD_MULTIPLE

B The IBM SP implementation has
very low overhead

B The Sun implementation has about
a 3.5 usec overhead

— Shows cost of providing thread
safety

— This cost can be lowered, but
requires great care

Laboratory
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Thread Overhead

B These tests compare the

performance of short message a5
sends when using single-threaded

MPI processes and multiple

threaded processes, with the same

total number of threads

B For these systems, thread
overhead is high

— Achieving low-overhead

thread-safe code is difficult
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Threads vs. Processes

B This test compares using

processes or threads to d: ap-ap o
communicate between nodes on | B e
an SMP; the machines are a Sun % il .
and an IBM SP g
M Processes achieve a much higher E ’
bandwidth el
— Likely that processes share f |
interconnect more effectively s Yl m=
than threads on these systems Bl
oL i —
Sun MPI 18R MPI
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Some Recommendations on the Use of
Threads

M Best used when threads can help balance compute load
or distribute communication

B Always estimate performance and measure.

M Provide realistic (but simple) test cases to help
Implementations identify and solve real performance
ISsues

B The impact of the multithreaded programming model on
scalable scientific applications is a new issue for
vendors, middleware developers, and applications alike.

A& Argonne National
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Standards Issues

B Hybrid programming (two programming models) requires that the
standards make commitments to each other on semantics.

B OpenMP’s commitment: if a thread is blocked by an operating
system call (e.g. file or network 1/O), the other threads remain
runnable.

— This is a major commitment; it involves the thread scheduler in
the OpenMP compiler’s runtime system and interaction with the
OS.

— What this means in the MPI context: An MPI call like MPIl_Recv
or MPI_Wait only blocks the calling thread.

B MPI's commitments are more complex.

.-"I"' rgonne National
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MPI’s Four Levels of Thread Safety

B Note that these are not specific to OpenMP

B The are in the form of commitments that the multithreaded
application makes to the MPI implementation

— MPI_THREAD_SINGLE: there is only one thread in the
application

— MPI_THREAD_ FUNNELED: there is only one thread that makes
MPI calls

— MPI_THREAD_ SERIALIZED: Multiple threads make MPI calls,
but only one at a time

— MPI_THREAD_ MULTIPLE: Any thread may make MPI calls at
any time
B MPI-2 defines an alternative to MPI_Init
— MPI_Init_thread(requested, provided)

 Allows applications to say what level it needs, and the MPI
implementation to say what it provides

A Argonne National
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What This Means in the OpenMP Context

B MPI_THREAD_SINGLE
— There is no OpenMP multithreading in the program.
B MPI_THREAD_FUNNELED
— All of the MPI calls are made by the master thread. l.e. all MPI calls are
* Outside OpenMP parallel regions, or
* Inside OpenMP master regions, or
* Guarded by call to MPI_Is_thread main MPI call.
— (same thread that called MPI_Init_thread)

® MPI_THREAD_ SERIALIZED
#pragma omp parallel

#pragma omp atomic

{

...MPI calls allowed here...

}
® MPI_THREAD_MULTIPLE

— Anything goes

#& Argonne National
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The Current Situation

H All MPI implementations support MPI_ THREAD_SINGLE (duh).

B They probably support MPI_THREAD_ FUNNELED even if they don’t
admit it.

— Does require thread-safe malloc
— Probably OK in OpenMP programs
B “Thread-safe” usually means MPI_THREAD_ MULTIPLE.

B This is hard for MPI implementations that are sensitive to
performance, like MPICH2.

— Lock granularity issue

B “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED.

— So don’'t need “thread-safe” MPI for many hybrid programs
— But watch out for Amdahl’'s Law!
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Visualizing the Behavior of Hybrid Programs

B Jumpshot is a logfile-based parallel program visualizer of the
“standard” type. Uses MPI profiling interface.

B Recently it has been augmented in two ways to improve scalabllity.

Summary states and messages are shown as well as individual
states and messages.

* Provides a high-level view of a long run.

* SLOGZ2 logfile structure allows fast interactive access
(jumping, scrolling, and zooming) for large logfiles.
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Jumpshot and Multithreading

B Newest additions are for multithreaded and hybrid programs that use
pthreads.

— Separate timelines for each thread id

— Support for grouping threads by communicator as well as by
process

TimelLine : pthread_sendrecv.slog2 <Communicator-Thread View>

III BE ¢ Wﬂlﬂﬂﬂ Wﬂﬂ 80

‘ Argonne National
Laboratory

Petascale Workshop



Using Jumpshot with Hybrid Programs

B SLOG2/Jumpshot needs two properties of the OpenMP
Implementation that are not guaranteed by the OpenMP standard

— OpenMP threads must be pthreads

* Otherwise, the locking in the logging library necessary to
preserve exclusive access to the logging buffers would need to
be modified.

— These pthread ids must be reused (threads are “parked” when
not in use)

e Otherwise Jumpshot would need zillions of time lines.

Argonne National
Laboratory Petascale Workshop



Three Platforms for Hybrid Programming

B Linux cluster
24 nodes, each consisting of two Opteron dual-core processors, 2.8 Ghz

each

Intel 9.1 fortran compiler

MPICH2-1.0.6, which has MPI_THREAD_MULTIPLE
Multiple networks; we used GigE

H IBM Blue Gene/P

40,960 nodes, each consisting of four PowerPC 850 MHz cores
XLF 11.1 Fortran cross-compiler

IBM’s MPI V1R1M2 (based on MPICHZ2), which has
MPI_THREAD_MULTIPLE

3D Torus and tree networks

B SiCortex SC5832

972 nodes, each consisting of six MIPS 500 MHz cores
Pathscale 3.0.99 fortran cross-compiler

SiCortex MPI implementation based on MPICH2, has
MPI_THREAD_ FUNNELED

Funky Kautz graph network
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Experiments

M Basic
— Proved that necessary assumptions for our tools hold
* OpenMP threads are pthreads
* Thread id’s are reused
B NAS Parallel Benchmarks
— NPB-MZ-MPI, version 3.1
— Both BT and SP
— Two different sizes (W and B)
— Two different modes (“MPI everywhere” and OpenMP/MPI)
« With four nodes on each machine

B Demonstrated satisfying level of portability of programs and tools
across three quite different hardware/software environments

B But we didn’t get it right the first time...

“




It Might Not Be Doing What You Think

B An early run:

TimeLine : bt_mz_np4_3.slog2 <Process-Thread View>
AV = (€Y alagaa K8 2@
.I:owest | Max. Depth|4|Zoom Level Global Min Time Wiew Init Time Zoom Focus Time Wiew Final Time Global Max Time Time Per Pixel 1

0¢s * [ 0.0001039505 01829626906 0.1576964957 0.1924303001 0.5858665915 0.0000119543 @ﬂ *
Cumulati\teExc...|v TimeLines -

slog-2 .'

o

Do || (I ————

o || —

0z

Oz

AE!

Os |
1

S

| R

e ss

O
? lj;o

4] | »
@ wearld_rank
@ thread

ENINY IR

q] DNk

=
=
B
=
L

B Nasty interaction between the environment variables
OMP_NUM_THREADS and NPB_ MAX_THREADS
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More Like What You Expect

® BT class B on 4 BG/P nodes, using OpenMP on each node

= TimeLine : bi_B_np4x4_bgp.slog2 <Process-Thread View> P
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MPI| Everywhere

® BT class B on 4 BG/P nodes, using 16 MPI processes
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Observations on Small Experiments

Experiment Cluster BG/P SiCortex
Bt-mz.W.16x1 1.84 9.46 20.60
Bt-mz-W.4x4 0.82 3.74 11.26
Sp-mz.W.16x1 0.42 1.79 3.72
Sp-mz.W.4x4 0.78 3.00 7.98

BEMZ.B.10.1 2431 T13.3T Z25T.07 |
Bt-mz.B.4x4 27.96 124.60 399.23
Sp-mz.B.16x1 21.19 70.69 165.82
Sp-mz.B.4x4 24.03 81.47 246.76
Rt.mz R 24x1 241 .95
Bt-mz.B.4x6 337.86
Sp-mz.B.24x1 127.28
Sp-mz.B.4x6 211.78

B On the small version of BT (W), hybrid was better
B For SP and size B problems, MPI everywhere is better
B On Sicortex, more processes or threads are better than fewer

& Argonne National n
£ Laboratory Petascale Workshop



Conclusions

M This particular benchmark has been studied much more deeply
elsewhere

— Rolf Rabenseifner, “Hybrid parallel programming on HPC
platforms,” Proceedings of EWOMP’03.

— Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using
OpenMP: Portable Shared Memory Parallel Programming, MIT
Press, 2008.

B Adding Hybridness (Hybriditude?) to a well-tuned MPI application is
not going to speed it up. So this NPB study doesn’t tell us much.

B More work is needed to understand the behavior of hybrid programs
and what is needed for future application development.

B (This work is reported on in the Proceedings of EWOMP ‘08.)
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The OpenMP Books

B Both old book and new book (and OpenMP tutorials) have two parts:
B The Front:

— OpenMP is magically convenient

— A few comments added to serial code and voila!
B The Back:

— Scalabllity is not so easy

— Performance issues are subtle

— Need more than comments — function calls

— SPMD structure

— It starts to look like MPI...

B (But the new book is really good; both front and back parts.)
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What is OpenMP For?

B Word on laptop? Probably not.

B Matlab back end on desktop? Probably so.

B Small scientific applications on desktops? Yes.

B HPC on biggish SMPs? Maybe, but hard.

B Collaborating with MPI on big machines? Almost certainly.

Argonne National
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Solving Performance Problems

B Solving your performance problem requires that
— You understand how fast your code should go
— How fast it actually goes
— Possible interactions that may help explain the behavoir

B MPI provided a powerful hook on which tools can and are built - the
profiling interface

— In addition to general-purpose tools, this interface is available to
all

* You can build custom tools to explore application-specific
hypotheses

Argonne National
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Tools Enabled by the MPI Profiling
Interface

® The MPI profiling interface: how it works
B Some freely available tools
— Those to be presented in other talks
— A few that come with MPICH2
* SLOG/Jumpshot: visualization of detailed timelines
 FPMPI. summary statistics

e Collcheck: runtime checking of consistency in use of
collective operations

Argonne National
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The MPI Profiling Interface

‘o )

Profiling
Library

- /

Petascale Workshop



Performance Visualization with
Jumpshot

B For detailed analysis of parallel program behavior, timestamped
events are collected into a log file during the run.

B A separate display program (Jumpshot) aids the user in
conducting a post mortem analysis of program behavior.

B We use an indexed file format (SLOG-2) that uses a preview to
select a time of interest and quickly display an interval, without
ever needing to read much of the whole file.

Processes

Logfile

Jumpshot
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Viewing Multiple Scales
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Pros and Cons of this Approach

B Cons:
— Scalability limits
« Screen resolution
* Big log files, although
— Jumpshot can read SLOG files fast
— SLOG can be instructed to log few types of events
— Use for debugging only indirect
® Pros:
— Portable, since based on MPI profiling interface
— Works with threads
— Aids understanding of program behavior
» Almost always see something unexpected
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Looking at MILC in SPEC2007

B Curious amount of All_reduce in initialization - why?

E

TimeLine : specmpi_milc_np16_merged.slog2 <Process View>
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MILC

B The answer, and how

E Preview_arrow o -
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I:I Presdew_State 0
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I | 60
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[ Jimpi comm size 24540
_Jimercomm spii 15
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MILC

B The answer - why

— Deep In innermost of quadruply nested loop, an innocent-looking
line of code:

If (1> myrank()) ...
And myrank is a function that calls MPI_Comm_rank
— It actually doesn’t cost that much here, but

— It illustrates that you might not know what your code is doing what
you think it is
— Not a scalability issue (found on small # of processes)
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Detecting Consistency Errors in MPI
Collective Operations

B The Problem: the specification of MPI_Bcast:
MP1_ Bcast( buf, count, datatype, root, comm )
requires that
— root is an integer between 0 and the maximum rank.
— root is the same on all processes.

— The message specified by buf, count, datatype has the same
signature on all processes.
B The first of these is easy to check on each process at the entry to the
MPI_Bcast routine.
B The second two are impossible to check locally; they are consistency
requirements requiring communication to check.

B There are many varieties of consistency requirements in the MPI collective
operations.
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Datatype Signatures

B Consistency requirements for messages in MPI (buf, count, datatype) are on not
on the MPI datatypes themselves, but on the signature of the message:

— {type,, type, ...} where type, is a basic MPI datatype
B So a message described by (bufl, 4, MPI1 _INT) matches a message
described by (buf2, 1, vectype), where vectype was created to be a
strided vector of 4 integers.
B For point-to-point operations, datatype signatures don’t have to match exactly (it is

OK to receive a short message into a long buffer), but for collective operations,
matches must be exact.
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Approach

B Use the MPI profiling interface to intercept the collective calls,
“borrow” the communicator passed in, and use it to check argument
consistency among its processes.

B For example, process O can broadcast its value of root, and each
other process can compare with the value it was passed for root.

B For datatype consistency checks, we will communicate hash values
of datatype signatures.

B Reference: Falzone, Chan, Lusk, Gropp, “Collective Error Detection
for MPI Collective Operations”, Proceedings of EuroPVM/MPI 2005.
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Datatype Signature Hashing

® Gropp — EuroPVM/MPI 2000

B Matching is done on pairs (a, n), where a is a hash value and n is the number of
basic datatypes in the message.

B Elementary datatypes assigned (a, 1) for chosen values of a.
B Concatenate types with
— (a,n) # (b,n) = (a xor (b << n), n+m), where << s circular left shift
— Note non-commutative to prevent (int, float) from colliding with (float, int)

B The pairs (a,n) are easy to communicate to other processes, unlike the signatures
themselves
— (No MPI datatype for MPI_Datatype)

— We will use PMPI_Bcast, PMPI_Scatter, PMPI_Allgather, PMPI _Alltoall as
needed to communicate the (vector of) hash pairs to the other processes.
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Types of Consistency Checks

B Call — checks that all processes have made the same collective call (not
MPI_Allreduce on some processes and MPI_Reduce on others).

— Used in all collective functions
B Root — checks that the same value of root was passed on all processes

— Used in Bcast, Reduce, Gather(v), Scatter(v), Spawn, Spawn_multiple,
Connect

B Datatype — checks consistency of data arguments
— Used in all collective routines with data buffer arguments
B Op - checks consistency of operations
— Used in Reduce, Allreduce, Reduce_scatter, Scan, Exscan

Argonne National
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More Types of Consistency Checks

B MPI_IN_PLACE - checks whether all process or none of the processes
specified MPI_IN_PLACE instead of a buffer.

— Used in Allgather(v), Allreduce, and Reduce_scatter
B Local leader and tag — checks consistency of these arguments
— Used only in MPI_Intercomm__create
B High/low — checks consistency of these arguments
— Used only in MPI_Intercomm_merge
B Dims — checks consistency of these arguments
— Used in Cart_create and Cart_map

#& Argonne National
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Still More Types of Consistency Checks

B Graph — checks graph consistency
— Used in Graph_create and Graph_map
B Amode — checks file mode argument consistency
— Used in File_open
B Size, datarep, flag — checks consistency of these 1/0O arguments
— Used in File_set_size, File_set _automicity, File _preallocate
B Etype — checks consistency of this argument
— Used in File_set view
B Order — checks that split-collective calls are properly ordered
— Used in Read_all_begin, Read _all end, other split collective 1/O

44 Argonne National

Laboratory Petascale Workshop



Example Output

B We try to make error output instance specific:

B Validate Bcast error (Rank 4) — root parameter (4)
IS 1nconsistent with rank 0’s (0)

B Validate Bcast error (Rank 4) — datatype signhature
1S 1nhconsistent with Rank 0’s

B Validate Barrier (rank 4) — collective call
(Barrier) is i1nconsistent with Rank 0’s (Bcast)
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Experiences

B Finding errors

— Found error in MPICH2 test suite, in which a message with one MPI_INT was
allowed to match sizeof(int) MPI_BYTEs.

— MPICH2 allowed the match, but shouldn’t have. ® (©)
— Ran large astrophysics application (FLASH) containing many collective operations

« Collective calls all in third-party AMR library (Paramesh), but could still be
examined through MPI profiling library approach.

* Found no errors © (®)
B Portability, Performance
— Linux cluster (MPICH2)
— Blue Gene (IBM’s BG/L MPI)
— Relative overhead decreases as size of message increases
* The extra checking messages are much shorter than the real messages
— Overhead can be relatively large for small messages
* Opportunities for optimization remain
— Profiling library can be removed after finding errors

*l Argonne National
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The (Foggy) Future of Programming
Models
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Looking out to Exascale...
Concurrency will be Doubling every 18 months

Power and Memory costs dominate
Novel technologies introduced 6

Growth of massive parallelism within chips

Growth fueled primarily by transmtars cm a chip

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
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Outline of the Situation

« Million core systems and beyond are on the horizon

* Today labs and universities have general purpose
systems with 10k-200K cores (BGL@ LLNL 200K,
BGP@Argonne 160K, XTS@ORNL 150K cores)

* By 2012 there will be more systems deployed in the
200K-1M core range

* By 2020 there will be systems with perhaps 100M cores
* Personal systems with > 1000 cores within 5

* Personal systems with requirement for 1M threads is not
too far fetched (GPUs for example)
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How Will We Program Them?

® Still an unsolved problem

B Some believe a totally new programming model and
language (e.g. X10, Chapel, Fortress).

B Some mechanism for dealing with shared memory will be
necessary
— This (whatever it is) plus MPI is the conservative view

B Whatever it is, it will need to interact properly with MPI
B May also need to deal with on-node heterogeneity

M The situation is somewhat like message-passing before

MPI
— And it is too early to standardize

nﬁi Argonne National
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L

MPIl is Current HPC Programming Model

B MPI represents a very complete definition of a well-defined
programming model

B MPI programs are portable

B There are many implementations
— Vendors
— Open source

B Enables high performance for wide class of architectures
— Scalable algorithms are key

B Small subset easy to learn and use

B Expert MPI programmers needed most for libraries, which are
encouraged by the MPI design.
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The MPI Forum Continues to Refresh MPI

B New signatures for old functions
— E.g. MPI_Send(...,MPI_Count,...)
B Details
— Fortran binding issues..
B New features
— MPI_Process_Group and related functions for fault tolerance
— New topology routines aware of more hierarchy levels
— Non-blocking collective operations
— A simpler one-sided communication interface

* Or perhaps standardized semantics for interacting with shared-
memory programming systems in general

— More scalable versions of the “v” collectives

B See hitp://www.mpi-forum.orq for details of working groups

J‘ Argonne National
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why Won't “MPI Everywhere” suffice?

B Core count on a node is increasing faster than memory size.
B Thus memory available per MPI process is going down.

B Thus we need parallelism within an address space, while continuing
to use MPI for parallelism among separate address spaces.

B We don’t have a good way to do this yet.

B Whatever we use, it must cooperate with parallelism across address
spaces, so its APl must interact in a well-defined way with MPI.

B Some applications are expressing the need for large address spaces
that span multiple multi-core nodes, yet still are each a small part of
the memory of the entire machine.

Argonne National
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Traditional Sources of Performance
Improvement are Flat-Lining (2004)

« New Constraints TR :
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- I\/Iultlple parallel general-purpose processors (GPPs)
— Multiple application-specific processors (ASPs)  fas=
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Moving Beyond MPI

B Any alternative to MPI (at its own level) will have to have some of the
good properties of MPI

— Portabllity
— Scalability
— Performance
B Perhaps alternatives exist at different levels.

B But they will still have to interact with MPI, in order to provide a path
from where we are now to more abstract models

— Clear interoperability semantics
— Can be used either above or below C/Fortran/MPI code

Argonne National
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Some Families of Programming
Models and Associated Languages

B Shared-memory and annotation languages
— Especially OpenMP
— Likely to coexist with MPI
® Partitioned Global Address Space Languages
— UPC, Co-Array Fortran, and Titanium
— One step removed from MPI
® The HPCS languages
— X10, Chapel, Fortress
— Two steps removed from MPI

l. Argonne National
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OpenMP

B OpenMP is a set of compiler directives (in comments, like HPF) plus
some library calls

B The comments direct the execution of loops in parallel in a
convenient way.

B Data placement is not controlled, so performance is hard to get
except on machines with real shared memory.

B Likely to be more successful on multicore chips than on previous
SMP’s (multicore = really, really shared memory).

B Can co-exist with MPI

— MPI’s levels of thread safety correspond to programming
constructs in OpenMP

« Formal methods can be applied to hybrid programs
B New book by Barbara Chapman, et al.

J!i Argonne National
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Other Annotation-based approaches

B The idea is to retain the sequential programming model

B Annotations guide source-to-source transformations or compilation
Into a parallel program

B HPF and OpenMP (part 1) are examples
B Others in research mode

Argonne National
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The PGAS Languages

B PGAS (Partitioned Global Address Space) languages attempt to
combine the convenience of the global view of data with awareness
of data locality, for performance

— Co-Array Fortran, an extension to Fortran-90)
— UPC (Unified Parallel C), an extension to C
— Titanium, a parallel version of Java

Global address

space /4 \

Local address
spaces

B Fixed number of processes, like MPI-1
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Status

B Compilers exist
— In some cases more than one

B Applications are being tried

B Substantial support, at least for UPC

B Early experiments are encouraging with respect to performance
— Some reports are misleading.

F Y Argonne National
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The DARPA HPCS Language Project

B The DARPA High Productivity Computer Systems (HPCS) Project is
a 10-year, three-phase, hardware/software effort to transform the
productivity aspect of the HPC enterprise.

M In Phase ll,three vendors were funded to develop high productivity
language systems, and each assigned a small group to language
development

— IBM: X10
— Cray. Chapel
— Sun: Fortress

® In Phase lll, Sun was dropped from DARPA support. Both IBM and
Cray efforts are continuing. Actually, Sun’s effort is too, internally
supported.
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The Transition Is Starting

* In large-scale scientific computing today essentially all codes are
message-passing based. Additionally many are starting to use some
form of multithreading on SMP or multicore nodes.

* Multicore is challenging programming models but there has not yet
emerged a dominate model to augment message passing

* There is a need to identify new hierarchical programming models
that will be stable over long term and can support the concurrency
doubling pressure

e Current approaches to programming GPU'’s are for library
developers, not application developers
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Hybrid Programming Models

B Some shared-memory API’s that can be used with MPI
— POSIX threads -- explicit thread creation, locks, condition vars
— OpenMP

» Sequential programming model with annotations, parallel
execution model

— Yet to be invented...
B The current situation: OpenMP + MPI

— Works because of well-thought-out explicit contracts between the
models.

* MPI standard defines levels of thread safety
* OpenMP defines types of code regions

* These work together in ways defined by the respective
standards

— Hard to get performance with OpenMP because of lack of locality
management, excessive synchronization.

Laboratory Petascale Workshop

122



One Possible Near Future: PGAS+MPI

B | ocality management within an address space via local, remote
memory

B An address space could be bigger than one node
— Might need more hierarchy in PGAS definitions
MW Just starting to work with PGAS folks on UPC+MPI and CAF+MPI

— Center for Programming Models base program project with ANL,
LBNL, Rice, Houston, PNNL, OSU

B Until recently PGAS has focused either on competing with MPI or
with OpenMP on single node

— Need to make interoperability with MPI a priority to attract current
HPC applications

Ah Argonne National
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A More Distant Future

B HPCS-type languages have many interesting ideas for exploiting
less obvious parallelism

B Need coordination and freedom from vendor ownership
B A convergence plan

— (DARPA briefly funded a convergence project, which was
promising until cancelled)

B A migration plan for current applications
— Interaction with MPI
— Use in libraries

J‘ Argonne National

Laboratory Petascale Workshop 124



Avoiding MPI. The Asynchronous
Dynamic Load-Balancing Library

B Overview of ADLB

B The API in a nutshell
B How it works

M Tutorial example

Petascale Workshop



Master/Slave Algorithms and Load Balancing

. Shared
aster Work queue
Slave Slave Slave Slave Slave

B Advantages

— Automatic load balancing

B Disadvantages

— Scalability - master can become bottleneck

B Wrinkles

— Slaves may create new work
— Multiple work types and priorities that impose work flow

Argonne National
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The ADLB Vision

B No explicit master for load balancing; slaves make calls to ADLB
library; those subroutines access local and remote data structures
(remote ones via MPI).

B Simple Put/Get interface from application code to distributed work
gueue hides most MPI calls

— Advantage: multiple applications may benefit

— Wrinkle: variable-size work units, in Fortran, introduce some
complexity in memory management

B Proactive load balancing in background

— Advantage: application never delayed by search for work from
other slaves

— Wrinkle: scalable work-stealing algorithms not obvious

Petascale Workshop
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The ADLB Model (no master)

Slave Slave Slave Slave Slave

Shared

Work queue

B Doesn'’t really change algorithms in slaves
B Not a new idea (e.g. Linda)

B But need scalable, portable, distributed implementation of shared
work queue

— MPI complexity hidden here.

44 Argonne National
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API for a Simple Programming Model

M Basic calls
— ADLB_Init( num_servers, am_server, app_comm)
— ADLB_Server()
— ADLB_Put( type, priority, len, buf, answer_dest )
— ADLB_Reserve( req_types, handle, len, type, prio, answer_dest)
— ADLB_lIreserve( ...)
— ADLB_Get_Reserved( handle, buffer)
— ADLB_Set_Done()
— ADLB_Finalize()
B A few others, for tuning and debugging
— ADLB_{Begin,End} Batch_Put()
— Getting performance statistics with ADLB_Get_info(key)

l. Argonne National
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Parallel Sudoku

Solver with ADLB

Program:

7 If (rank = 0)

ADLB_Put initial board
ADLB_Get board (Reserve+Get)

while success (else done)

ooh

\l
N|W|00 | O

6 find first blank square

If failure (problem solved!)
print solution

ADLB_ Set Done

N/ |01 O
o

else

2 5 3

g for each valid value

Work unit =
partially completed “board”

u"'-fi Argonne National
Laboratory

set blank square to value
ADLB_Put new board
ADLB _Get board
end while
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How 1t Works

9
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W After initial Put, all processes execute same loop (no master)
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Optimizing Within the ADLB Framework

B Can embed smarter strategies in this algorithm
— o0oh = “optional optimization here”, to fill in more squares
— Even so,potentially a lot of work units for ADLB to manage
B Can use priorities to address this problem
— On ADLB_Put, set priority to the number of filled squares

— This will guide depth-first search while ensuring that there is
enough work to go around

* How one would do it sequentially

B Exhaustion automatically detected by ADLB (e.g., proof that there is
only one solution, or the case of an invalid input board)

Argonne National
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Experiments with GFMC/ADLB on BG/P

B Using GFMC to compute the binding energy of 14 neutrons in an
artificial well ( “neutron drop” = teeny-weeny neutron star )

B A weak scaling experiment

BG/P ADLB . Time Efficiency
Configs . :
cores Servers (min.) (incl. serv.)
4K 130 20 38.1 93.8%
8K 230 40 38.2 93.7%
16K 455 80 39.6 89.8%
32K 905 160 44.2 80.4%

B Recent work: “micro-parallelization” needed for 2C, OpenMP in
GFMC.

n’i.'i Argonne National
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How It Works

O Application Processes
@ ADLB Servers

B Real numbers: 1000 servers out of 32,000 processors on BG/P
— And recently introduced other communication paths

F Y Argonne National
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The ADLB Server Logic

® Main loop:
— MPI _Iprobe for message in busy loop (emit diagnostics)
— MPI_Recv message
— Process according to type (20 types)
« Update status vector of work stored on remote servers
 Manage work queue and request queue
* (may involve posting MPI_lIsends to isend queue)
— MPI_Test all requests in isend queue
— Return to top of loop
B The status vector replaces single master or shared memory
— Circulates every .1 second at high priority

Ah Argonne National
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ADLB Uses Multiple MPI Features

B ADLB Init returns separate application communicator, so application
can use MPI for its own purposes if it needs to.

B Servers are in MPI_Iprobe loop for responsiveness.
B MPI_Datatypes for some complex, structured messages (status)

B Servers use nonblocking sends and receives, maintain queue of
active MPI_Request objects.

B Queue is traversed and each request kicked with MPI_Test each time
through loop; could use MPI_Testany.

B Client side uses MPI_Ssend to implement ADLB_Put in order to
conserve memory on servers, MPIl_Send for other actions.

B Servers respond to requests with MPI_Rsend since MPI_Irecvs are
known to be posted by clients before requests.

B MPI provides portability: laptop, Linux cluster, SiCortex, BG/P
B MPI profiling library is used to understand application/ADLB behavior.
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Looking at GFMC/ADLB with Jumpshot
(in the good old days)

[
o

Time Per Pivel Row

& world_rank Fit Al Bz

052 Te0s22 TeDs24 TSN TE0S2E 7053 e85z DI TE.0538 0838 TeD54 )

‘ Argonne National Petascale i ; i

Laboratory



Things Can Get Worse at Larger Scale

TimeLine : adlb.14n-m0.np256.mic-a.mpilog.256k.slog2 <Process View>
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Multiple Load-Balancing Regimes

B The original objective was to do balancing of processing load

B Much of the last year has been spent on balancing of the memory
load
— Work units may to be moved from server to server

— Even proactively

B We may now be having problems that can only be solved by
balancing of the message-passing load.

Argonne National
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Summary

B MPI provides effective ways to access communication performance
— You may need to help the implementation out
— MPI RMA merits consideration
 But perform timing tests before committing to it

» Best to form a communication abstraction with RMA one
available implementation

— MPI Profiling interface gives you access to ways to diagnose
performance problems

B Programming models for exascale are still in experimental stages

B Hiding MPI calls in higher-level libraries can be a useful approach to
programmer productivity
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The End

":i Argonne National

Laboratory Petascale Workshop 141




":i Argonne National

Laboratory Petascale Workshop




