
M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Configurable instrumentation components
and their use by Scalasca

2010-08-02 Markus Geimer
Jülich Supercomputing Centre

m.geimer@fz-juelich.de



Source-code instrumentation

Generic source-code analysis frameworks
Program Database Toolkit (PDT)
ROSE

Special-purpose source-code instrumenters
OPARI (OpenMP)
TAU instrumentor

Conclusion I

No configurable source-code instrumenter available.

Conclusion II

Take the initiative and create one!

Based on the TAU instrumentor

Developed in collaboration with UOregon

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 2



Source-code instrumentation

Generic source-code analysis frameworks
Program Database Toolkit (PDT)
ROSE

Special-purpose source-code instrumenters
OPARI (OpenMP)
TAU instrumentor

Conclusion I

No configurable source-code instrumenter available.

Conclusion II

Take the initiative and create one!

Based on the TAU instrumentor

Developed in collaboration with UOregon

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 2



Source-code instrumentation

Generic source-code analysis frameworks
Program Database Toolkit (PDT)
ROSE

Special-purpose source-code instrumenters
OPARI (OpenMP)
TAU instrumentor

Conclusion I

No configurable source-code instrumenter available.

Conclusion II

Take the initiative and create one!

Based on the TAU instrumentor

Developed in collaboration with UOregon

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 2



TAU source-code instrumentor

Based on Program Database Toolkit (PDT)
Uses commercial-grade compiler frontends
Creates a database of source-code entities
Provides a C++ library to access this data

Pros
Robust, well tested
Works for C, C++, Fortran
Able to instrument routines, methods, and loops
Provides extensive filtering capabilities

Cons
Only inserts instrumentation code for the TAU Performance System

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 3



TAU instrumentor workflow

Application or
library source code

C/C++ parser
C/C++

IL

F77/F90 parser
Fortran

IL

IL analyzer

PDB

Instrumentor

Instrumented
application or

library source code

Filter file

Specification file

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 4



TAU instrumentor workflow

Application or
library source code

C/C++ parser
C/C++

IL

F77/F90 parser
Fortran

IL

IL analyzer

PDBInstrumentor

Instrumented
application or

library source code

Filter file

Specification file

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 4



TAU instrumentor workflow

Application or
library source code

C/C++ parser
C/C++

IL

F77/F90 parser
Fortran

IL

IL analyzer

PDBInstrumentor

Instrumented
application or

library source code

Filter file

Specification file

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 4



TAU instrumentor workflow

Application or
library source code

C/C++ parser
C/C++

IL

F77/F90 parser
Fortran

IL

IL analyzer

PDBInstrumentor

Instrumented
application or

library source code

Filter file

Specification file

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 4



“Building blocks” for user-defined instrumentation

Entering a routine
entry file="..." routine="..." code="..."

Leaving a routine
exit file="..." routine="..." code="..."

Insert arbitrary code (e.g., to include header files)
file="..." line=... code="..."

Declaration of local variables
decl file="..." routine="..." code="..."

Aborting the application
abort file="..." routine="..." code="..."

Initialization
init file="..." code="..."

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 5



“Building blocks” for user-defined instrumentation

Entering a routine
entry file="..." routine="..." code="..."

Leaving a routine
exit file="..." routine="..." code="..."

Insert arbitrary code (e.g., to include header files)
file="..." line=... code="..."

Declaration of local variables
decl file="..." routine="..." code="..."

Aborting the application
abort file="..." routine="..." code="..."

Initialization
init file="..." code="..."

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 5



Wildcards

Files and routines can be specified using wildcards
‘?’ matches a single character
‘*’ matches multiple characters in file names
‘#’ matches multiple characters in routine names

Avoids escaping ‘*’ characters in pointer types of arguments
and return values

If file and/or routine clause is omitted, ‘*’ or ‘#’ is implicitly
assumed

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 6



Code clauses

Code clauses support C-style escaping of characters
\" Quotation mark
\n Newline character
\t Horizontal tab
...

Instrumentor knowledge can be referenced through
keyword substitution

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 7



Keyword substitution

Keyword Substitution

All constructs:
@FILE@ File name
@LINE@ Source line of insertion
@COL@ Column of insertion

decl, init, entry, exit, abort only:
@ROUTINE@ Routine name
@BEGIN LINE@ Begin line of routine body
@BEGIN COL@ Begin column of routine body
@END LINE@ End line of routine body
@END COL@ End column of routine body

decl, entry, exit, abort only (C++):
@RTTI@ Dynamic routine name (class/member function templates)

init only (C/C++):
@ARGC@ Name of first paramater to main()
@ARGV@ Name of second parameter to main()

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 8



Example

Print a message at each routine entry stating
the routine name
how often it has been called so far

Do this only for routines in files with prefix foo

Specification

decl file="foo *" code="static int count=0;"
entry file="foo *"

code="printf(\"@ROUTINE@ called %d times\\n\",
++count);"

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 9



Example

Print a message at each routine entry stating
the routine name
how often it has been called so far

Do this only for routines in files with prefix foo

Specification

decl file="foo *" code="static int count=0;"
entry file="foo *"

code="printf(\"@ROUTINE@ called %d times\\n\",
++count);"

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 9



Language issues

Rules often need to be restricted to a particular language
All rules accept an optional lang="..." clause
Argument: comma-separated list of language names
(“c”, “c++”, “fortran”)

Fortran issues
Line-length limit
Different line continuation syntax for free-/fixed-form

C++ issues
Template support

Solvable for member function templates through RTTI
Information returned is implementation-dependent
For non-members, only generic template prototype available

Exception support
Needs to be (partially) handled by the user’s code

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 10



Language issues

Rules often need to be restricted to a particular language
All rules accept an optional lang="..." clause
Argument: comma-separated list of language names
(“c”, “c++”, “fortran”)

Fortran issues
Line-length limit
Different line continuation syntax for free-/fixed-form

C++ issues
Template support

Solvable for member function templates through RTTI
Information returned is implementation-dependent
For non-members, only generic template prototype available

Exception support
Needs to be (partially) handled by the user’s code

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 10



Language issues

Rules often need to be restricted to a particular language
All rules accept an optional lang="..." clause
Argument: comma-separated list of language names
(“c”, “c++”, “fortran”)

Fortran issues
Line-length limit
Different line continuation syntax for free-/fixed-form

C++ issues
Template support

Solvable for member function templates through RTTI
Information returned is implementation-dependent
For non-members, only generic template prototype available

Exception support
Needs to be (partially) handled by the user’s code

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 10



Evaluation

Usability evaluated using three different performance-analysis
toolsets

Scalasca
Documented user API uses macros and FILE / LINE
Lower-level API needs to be used
Requires line, decl, entry and exit constructs

VampirTrace
API very similar to Scalasca
Only minor modifications required

TAU
Far more challenging
Use of all provided constructs required
Two minor differences remaining

Default function grouping for C/C++
Slightly different semantics for C++ templates

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 11



Evaluation

Usability evaluated using three different performance-analysis
toolsets

Scalasca
Documented user API uses macros and FILE / LINE
Lower-level API needs to be used
Requires line, decl, entry and exit constructs

VampirTrace
API very similar to Scalasca
Only minor modifications required

TAU
Far more challenging
Use of all provided constructs required
Two minor differences remaining

Default function grouping for C/C++
Slightly different semantics for C++ templates

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 11



Evaluation

Usability evaluated using three different performance-analysis
toolsets

Scalasca
Documented user API uses macros and FILE / LINE
Lower-level API needs to be used
Requires line, decl, entry and exit constructs

VampirTrace
API very similar to Scalasca
Only minor modifications required

TAU
Far more challenging
Use of all provided constructs required
Two minor differences remaining

Default function grouping for C/C++
Slightly different semantics for C++ templates

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 11



Current status

Instrumentor available as part of the PDT distribution
Supported by Scalasca as optional component on most
platforms

Configure Scalasca using
--with-pdt=<DIR>

Instrument your code using
scalasca -instrument -comp=none -pdt <compile cmd>

Optionally provide filter using
-optTauSelectFile=<filter file>

Language-specific issues still work in progress

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 12



Lessons learned

Writing a configurable instrumenter is possible!
Can leverage existing technologies
Keyword substitution provides enough information for
existing instrumentation APIs

New keywords can be added if needed

Usage by existing tool compiler wrappers is no big deal either

However...
Combining code specification and definition of what to
instrument does not always work
Example: loops

User: “Instrument loop 2 in routine ‘foo’ ”
Tool developer: “Use code snippet ‘...’ to instrument loops”

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 13



Lessons learned

Writing a configurable instrumenter is possible!
Can leverage existing technologies
Keyword substitution provides enough information for
existing instrumentation APIs

New keywords can be added if needed

Usage by existing tool compiler wrappers is no big deal either
However...

Combining code specification and definition of what to
instrument does not always work
Example: loops

User: “Instrument loop 2 in routine ‘foo’ ”
Tool developer: “Use code snippet ‘...’ to instrument loops”

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 13



Binary instrumentation

Dynamic instrumentation frameworks
PIN
Dyninst

Better portability
Also allows static binary rewriting (though x86/x86 64 only)

Special-purpose binary instrumenters
PnMPI
tau pin / tau run

Conclusion I

No configurable binary instrumenter available.

Conclusion II

Take the initiative and create one!

Based on Dyninst with support from UW Madison

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 14



Binary instrumentation

Dynamic instrumentation frameworks
PIN
Dyninst

Better portability
Also allows static binary rewriting (though x86/x86 64 only)

Special-purpose binary instrumenters
PnMPI
tau pin / tau run

Conclusion I

No configurable binary instrumenter available.

Conclusion II

Take the initiative and create one!

Based on Dyninst with support from UW Madison

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 14



Binary instrumentation

Dynamic instrumentation frameworks
PIN
Dyninst

Better portability
Also allows static binary rewriting (though x86/x86 64 only)

Special-purpose binary instrumenters
PnMPI
tau pin / tau run

Conclusion I

No configurable binary instrumenter available.

Conclusion II

Take the initiative and create one!

Based on Dyninst with support from UW Madison

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 14



Design decisions

Focus on static binary rewriting
Prototype new specification language

XML-based
Fully separate code and filter specifications

Experiment with property-based filters
Number of instructions
Lines of Code
Cyclomatic complexity
Callpaths to MPI/OpenMP only
...

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 15



Binary instrumenter workflow

Application
binary

Instrumenter

Instrumented
application binary

Measurement
library

Filter file

Specification file

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 16



Filter file

Specifies what to instrument
Functions
Callsites
Loops (as a whole / loop body)

Allows filtering by
Function names
Class names
Namespaces / Fortran modules
Properties

Supports black- and whitelisting

Supports boolean operations

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 17



Example

Instrument all functions in files with prefix foo
Use code snippet “func inst” provided by specification file

Specification

<?xml version="1.0" encoding="UTF-8"?>
<filter name="foo funcs"

instrument="functions=func inst"
start="none">

<include>
<modulenames match="prefix">foo </modulenames>

</include>
</filter>

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 18



Example

Instrument all functions in files with prefix foo
Use code snippet “func inst” provided by specification file

Specification

<?xml version="1.0" encoding="UTF-8"?>
<filter name="foo funcs"

instrument="functions=func inst"
start="none">

<include>
<modulenames match="prefix">foo </modulenames>

</include>
</filter>

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 18



Specification file (adapter)

Provides named code snippets referenced from filter file
This is the tool specific part!
Uses a C-like syntax

Allows specification of additional library dependencies

Can contain special adapter filter to exclude, e.g., functions
of a measurement library

Supports keyword substitution

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 19



Example

Print a message at each routine entry stating
the routine name and how often it has been called so far

Specification

<?xml version="1.0" encoding="UTF-8"?>
<instrumentation>
<dependencies>
<library name="libc.so" />

</dependencies>

<!-- continued on next slide -->

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 20



Example

Print a message at each routine entry stating
the routine name and how often it has been called so far

Specification

<?xml version="1.0" encoding="UTF-8"?>
<instrumentation>
<dependencies>
<library name="libc.so" />

</dependencies>

<!-- continued on next slide -->

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 20



Example (cont.)

Specification

<!-- continued from previous slide -->

<code name="func inst">
<variables>
<var name="count" type="int" size="4" />

</variables>
<init>
count = 0;

</init>
<enter>
count = count + 1;
printf(@functionname@);
printf("called %d times\n", count);

</enter>
</code>

</instrumentation>

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 21



Current status

Work in progress
Any feedback is welcome!

Evaluation mostly using Scalasca
DROPS (C++)
Cactus benchmarks PUGH / Carpet (C++)
Gadget (C)

Small proof-of-concept experiments using TAU

Full integration into Scalasca pending

Release as a component is planned

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 22



Acknowledgments

Jan Mußler (JSC)

Bernd Mohr (JSC)

Sameer Shende (UOregon)

Madhavi Krishnan (UW Madison)

Drew Bernat (UW Madison)

2010-08-02 CScADS Workshop 2010, Snowbird, UT Slide 23


