
Hierarchical Pointer Analysis for Distributed Programs

Amir Kamil and Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick}@cs.berkeley.edu

Abstract. We present a new pointer analysis for use in shared memory programs
running on hierarchical parallel machines. The analysis is motivated by the parti-
tioned global address space languages, in which programmers have control over
data layout and threads and can directly read and write to memory associated with
other threads. Titanium, UPC, Co-Array Fortran, X10, Chapel, and Fortress are
all examples of such languages. The novelty of our analysis comes from the hier-
archical machine model used, which captures the increasingly hierarchical nature
of modern parallel machines. For example, the analysis can distinguish between
pointers that can reference values within a thread, within a shared memory mul-
tiprocessor, or within a network of processors. The analysis is presented with
a formal type system and operational semantics, articulating the various ways in
which pointers can be used within a hierarchical machine model. The hierarchical
analysis has several applications, including race detection, sequential consistency
enforcement, and software caching. We present results of an implementation of
the analysis, applying it to data race detection, and show that the hierarchical
analysis is very effective at reducing the number of false races detected.

1 Introduction

The introduction of multi-core processors marks a dramatic shift in software develop-
ment: parallel software will be required for laptops, desktops, gaming consoles, and
graphics processors. These chips are building blocks in larger shared and distributed
memory parallel systems, resulting in machines that are increasingly hierarchical and
use a combination of cache-coherent shared memory, partitioned memory with (remote)
direct memory access (DMA or RDMA), and message passing. The partitioned global
address space (PGAS) model is a natural fit for programming these machines, and lan-
guages that use it include Unified Parallel C (UPC) [7,26], Co-Array Fortran (CAF)
[25], Titanium [28,12] (based on Java [10]), Chapel [8], X10 [24], and Fortress [1]. In
all of these languages, pointers to shared state is permitted, and a fundamental question
is whether a given pointer can be proven to access data in only a limited part of the
machine hierarchy. Some applications of this are: 1) a pointer that accesses data that is
private to a single thread cannot be involved in a data race; 2) a pointer that accesses
data within a chip multiprocessor may require memory fences to ensure ordering, but
those fences only need to make data visible within the chip level; 3) pointer limits may
inform a software caching system that coherence protocols may be restricted to a subset
of processors; 4) a pointer with a limited domain may use fewer bits in its representa-
tion, since only a fraction of the total address space is accessible.

H. Riis Nielson and G. Filé (Eds.): SAS 2007, LNCS 4634, pp. 281–297, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

282 A. Kamil and K. Yelick

In this paper we introduce a pointer analysis that is designed for a hierarchical setting.
Our analysis allows for an arbitrarily deep hierarchy, such as the abstract machine model
in Fortress, although in this paper we apply it to the three-level model of Titanium. In
Titanium, a pointer may refer to data only within a single thread, or to data associated
with any threads within a SMP node, or to any thread in the machine.

We develop a model language, Ti, for presenting our analysis and give both a type
system and operational semantics for the language. Ti has the essential features of any
global address space language: the ability to create references to data, share data with
other machines in the system through references, and dereference them for either read
or write access. Ti also has a hierarchical machine model, which is general enough to
cover all of the existing PGAS languages. We implement our analysis in the context of
the full Titanium language and then apply the analysis, in conjunction with an existing
concurrency analysis [15], towards race detection, and show that it greatly reduces the
number of false races detected on five application benchmarks. In previous work we
demonstrated some of the other applications of pointer analysis in Titanium [14], but
without the generality of the hierarchical analysis presented here.

2 Background

In this section, we describe some machines and languages that use a hierarchical mem-
ory model and discuss the aspects of Titanium that are relevant to the pointer analysis.

2.1 Hierarchical Memory

Parallel machines are often built with hierarchical memory systems, with local caches or
explicitly managed local stores associated with each process. For example, partitioned
global address space (PGAS) languages may run on shared memory, distributed mem-
ory machines or hybrids, with the language runtime providing the illusion of shared
memory through the use of wide pointers (that store both a processor node number and
an address), distributed arrays, and implicit communication to access such data. Hierar-
chies also exist within processors in the form of caches and local stores. For example,
the Cell game processor has a local store associated with each of the SPE processors,
which can be accessed by other SPEs through memory move (DMA) operations. Addi-
tional levels of partitioning are also possible, such as partitioning memory in a compu-
tational grid into clusters, each of which is partitioned into nodes, as in Figure 1.

Most PGAS languages use a two level abstraction of memory, where data is either
local to a thread or shared by all, although Titanium uses three levels and Fortress has
an arbitrary number. In many PGAS languages, pointers are restricted in what they can
reference. In Figure 1, pointers A, B, and C are examples of pointers that can only
refer to thread-local, node-local, and cluster-local locations, respectively, while D can
point anywhere in the grid. The width of a pointer specifies what locations it can ref-
erence, with a higher width allowing further locations, as shown by the edge labels
in Figure 1. Wider pointers consume more space and are more expensive to manipu-
late and access. For example, thread-local and node-local pointers could be represented
simply by an address, while a cluster-local pointer contains an address and a node num-
ber. Wider pointers also have added costs to dereference, even if they happen to refer

Hierarchical Pointer Analysis for Distributed Programs 283

Fig. 1. A possible machine hierarchy with four levels. The width of arrows and their labels indi-
cate the hierarchy distance between the endpoints.

to nearby data; the pointer must be checked to see whether it is local, and coherence
traffic or fences may be required to ensure the data is consistent with that viewed by
other threads. The trend in hardware is towards more levels of hierarchy, and towards
high costs between levels. Thus, software that can take advantage of the hierarchy is
increasingly important.

2.2 Titanium

The Titanium programming language [28] is a high performance dialect of Java de-
signed for distributed machines. It is a single program, multiple data (SPMD) language,
so all threads execute the same code image. In addition, Titanium has a global address
space abstraction, so that any thread can directly access memory on another thread. At
runtime, two threads may share the same physical address space, in which case such
an access is done directly, or they may be in distinct address spaces, in which case the
global access must be translated into communication through the GASNet communica-
tion layer [6].

In addition to dereferencing, communication between threads can be done through
the one-to-all broadcast and the all-to-all exchange operations. Program variables, in-
cluding static variables, are not shared between threads, so they cannot be used for
communication.

Since threads can share a physical address space, they are arranged in the following
three-level hierarchy:

– Level 1: an individual thread
– Level 2: threads within the same physical address space
– Level 3: all threads

In the Titanium type system, variables are implicitly global, meaning that they can point
to a location on any thread (level 3). A variable can be restricted to only point within a
physical address space (level 2) by qualifying it with the local keyword. Downcasts
between global and local are allowed and only succeed if the actual location referenced
is within the same physical address space as the executing thread. Our analysis takes

284 A. Kamil and K. Yelick

advantage of existing such casts in a program in determining what variables must refer-
ence data in the same address space.

The Titanium type system does not separate levels 1 and 2 of the hierarchy. The
distinction between 1 and 2 is important for many applications, such as race detection
[21], data sharing analysis [17], and sequential consistency enforcement [14], since
references to level 1 values on different threads cannot be to the same location. Other
applications such as data locality inference [16] can benefit from the distinction between
levels 2 and 3. Though we could perform a two-level analysis twice to obtain a three-
level analysis, we show in §4.5 that the three-level analysis we have implemented is
much more efficient.

3 Analysis Background

We define a machine1 hierarchy and a simple language as the basis of our analysis. This
allows the analysis to be applied to languages besides Titanium, and it avoids language
constructs that are not crucial to the analysis. While the language we use is SPMD, the
analysis can easily be extended to other models of parallelism, though we do not do so
here.

3.1 Machine Structure

Consider a set of machines arranged in an arbitrary hierarchy, such as that of Figure 1.
A machine corresponds to a single execution stream within a parallel program. Each
machine has a corresponding machine number. The depth of the hierarchy is the number
of levels it contains. The distance between machines is equal to the level of the hierarchy
containing their least common ancestor. A pointer on a machine m has a corresponding
width, and it can only refer to locations on machines whose distance from m is no more
than the pointer’s width

3.2 Language

Our analysis is formalized using a simple language, called Ti, that illustrates the key
features of the analysis. Ti is a generalization of the language used by Liblit and Aiken
in their work on locality inference [16]. Like Titanium, Ti uses a SPMD model of par-
allelism, so that all machines execute the same program text. The height of the machine
hierarchy is known statically, and we will refer to it as h from here on. References thus
can have any width in the range [1, h].

The syntax of Ti is summarized in Figure 2. Types can be integers or reference types.
The latter are parameterized by a width n, in the range [1, h]. Expressions in Ti consist
of the following

– integer literals (n)
– variables (x). We assume a fixed set of variables of predefined type. We also assume

that variables are machine-private.

1 Throughout this paper, we will use machine interchangeably with thread.

Hierarchical Pointer Analysis for Distributed Programs 285

n ::= integer literals

x ::= variables

τ ::= int | refn τ (types)

e ::= n | x | newl τ | ∗ e | convert(e, n)

| transmit e1 from e2 | e1; e2

| x := e | e1 ← e2

(expressions)

Fig. 2. The syntax of the Ti lan-
guage

expand(refmτ, n) ≡ refmax(m,n) τ

expand(τ, n) ≡ τ otherwise

robust(refmτ, n) ≡ false if m < n

robust(τ, n) ≡ true otherwise

Fig. 3. Type manipulating functions

Γ � n : int Γ � newl τ : ref1 τ

Γ (x) = τ

Γ � x : τ

Γ � e : refn τ

Γ � ∗ e : expand(τ, n)
Γ � e : refn τ

Γ � convert(e, m) : refm τ

Γ � e1 : τ Γ � e2 : int

Γ � transmit e1 from e2 : expand(τ, h)
Γ � e1 : τ1 Γ � e2 : τ2

Γ � e1; e2 : τ2

Γ � e : τ Γ (x) = τ

Γ � x := e : τ

Γ � e1 : refn τ Γ � e2 : τ robust(τ, n)
Γ � e1 ← e2 : τ

Γ � e : refn τ n < m

Γ � e : refm τ

Fig. 4. Type checking rules

– reference allocations (newl τ). The expression newl τ allocates a memory cell of
type τ and returns a reference to the cell. In order to facilitate the pointer analysis
in §4, each allocation site is given a unique label l.

– dereferencing (∗e)
– type conversions (convert(e, n)), which widen or narrow the width of an expres-

sion, converting its type from refm τ to refn τ .
– communication (transmit e1 from e2). In transmit e1 from e2, machine e2

evaluates the expression e1 and sends the result to the other machines.
– sequencing (e1; e2)
– assignment to variables (x := e)
– assignment through references (e1 ← e2). In e1 ← e2, e2 is written into the location

referred to by e1.

For simplicity, Ti does not have conditional statements. Since the analysis is flow-
insensitive, conditionals are not essential to it.

The type checking rules for Ti are summarized in Figure 4. The rules for integer
literals, variables, sequencing, and variable assignments are straightforward.

The allocation expression newl τ produces a reference type ref1 τ of width 1, since
the allocated memory is guaranteed to be on the machine that is performing the allo-
cation. Pointer dereferencing is more problematic, however. Consider the situation in
Figure 5, where x on machine 0 refers to a location on machine 0 that refers to a loca-
tion on machine 1. This implies that x has type ref1 ref2 τ . The result of ∗x should

286 A. Kamil and K. Yelick

Fig. 5. Dereferences may require width ex-
pansion. The arrow labels correspond to
pointer widths.

Fig. 6. The assignment y ← z is forbidden,
since the location referred to by y can only
hold pointers of width 1 but requires a pointer
of width 2 to refer to z

be a reference to the location on machine 1, so it must have type ref2 τ . In general, a
dereference of a value of type refa refb τ produces a value of type refmax(a,b) τ .

The convert expression allows the top-level width of an expression to be up or
downcast. Upcasts are rarely used due to the subtyping rule below. A programmer can
use downcasts to inform the compiler that the reference is to data residing on a machine
closer than the original width, and usually does so only after a dynamic check that this
is the case. The resulting type is the same as the input expression, but with the provided
top-level width.

In the transmit expression, if the value to be communicated is an integer, then the
resulting type is still an integer. If the value is a reference, however, the result must be
promoted to the maximum width h, since the relationship between source and destina-
tion is not statically known.

The typing rule for the assignment through reference expression is also nontrivial.
Consider the case where y has type ref2 ref1 τ , as in Figure 6. Should it be possible
to assign to y with a value of type ref1 τ? Such a value must be on machine 0, but
the location referred to by x is on machine 1. Since that location holds a value of type
ref1 τ , it must refer to a location on machine 1. Thus, the assignment should be for-
bidden. In general, an assignment to a reference of type refa refb τ should only be
allowed if a ≤ b.

There is also a subtyping rule that allows for implicit widening of a reference. Sub-
sumption is only allowed for the top-level width of a reference.

As in the approach of Liblit and Aiken, [16], we define an expand function and a
robust predicate to facilitate type checking. The expand function widens a type when
necessary, and the robust predicate determines when it is legal to assign to a reference.
These functions are shown in Figure 3.

3.3 Concrete Operational Semantics

In this section we present the sequential operational semantics of Ti . We ignore concur-
rency in defining the semantics, since it is not essential to our flow-insensitive
analysis.

Hierarchical Pointer Analysis for Distributed Programs 287

We use the following semantic domains and naming conventions for their elements:

M (the set of machines)

H = {1, ..., h} (the set of possible widths)

A (the set of local addresses)

Id (the set of identifiers)

N (the set of integer literals)

V ar = M × Id (the set of variables)

L (the set of allocation site labels)

T (the set of all types)

G = L × M × A (the set of global addresses)

V = N ∪ G (the set of values)

Store = (G ∪ V ar) → V
(the contents of memory)

Exp (the set of all expressions)

m ∈ M (a machine)

v ∈ V (a value)

σ ∈ Store
(a memory state)

a ∈ A (a local address)

l ∈ L (a label)

g = (l, m, a) ∈ G (a global address)

e ∈ Exp (an expression)

Judgments in our operational semantics have the form 〈e, m, σ〉 ⇓ 〈v, σ′〉, which
means that expression e executed on machine m in a global state σ evaluates to the
value v and results in the new state σ′. We use the notation σ[g := v] to denote the
function λx. if x = g then v else σ(x).

The rules for integer and variable expressions are trivial.

〈n, m, σ〉 ⇓ 〈n, σ〉 〈x, m, σ〉 ⇓ 〈σ(x), σ〉

For allocations, we introduce a special null value to represent uninitialized pointers.
The result of an allocation is an address on the local machine that is guaranteed to not
already be in use.

〈newl τ, m, σ〉 ⇓ 〈(l, m, a), σ[(l, m, a) := null]〉 (a is fresh on m)

The rule for dereferencing is simple, except that it is illegal to dereference a null
pointer.

〈e, m, σ〉 ⇓ 〈g, σ′〉 g �= null

〈∗e, m, σ〉 ⇓ 〈σ′(g), σ′〉

The rule for variable assignment is also simple.

〈e, m, σ〉 ⇓ 〈v, σ′〉
〈x := e, m, σ〉 ⇓ 〈v, σ′[x := v]〉

The rule for assignment through a reference is the combination of a dereference and a
normal assignment.

〈e1, m, σ〉 ⇓ 〈g, σ1〉 〈e2, m, σ1〉 ⇓ 〈v, σ2〉 g �= null

〈e1 ← e2, m, σ〉 ⇓ 〈v, σ2[g := v]〉

288 A. Kamil and K. Yelick

The rule for sequencing is as expected.

〈e1, m, σ〉 ⇓ 〈v1, σ1〉 〈e2, m, σ1〉 ⇓ 〈v2, σ2〉
〈e1; e2, m, σ〉 ⇓ 〈v2, σ2〉

The type conversion expression makes use of the hier function, which returns the hier-
archical distance between two machines. The conversion is only allowed if that distance
is no more than the target type.

〈e, m, σ〉 ⇓ 〈g = (l, m′, a), σ′〉 hier(m, m′) ≤ n

〈convert(e, n), m, σ〉 ⇓ 〈g, σ′〉
In the transmit operation, the expression is evaluated on the given machine.

〈e2, m, σ〉 ⇓ 〈n, σ2〉 n ∈ M 〈e1, n, σ2〉 ⇓ 〈v, σ1〉
〈transmit e1 from e2, m, σ〉 ⇓ 〈v, σ1〉

4 Abstract Interpretation

We now present a pointer analysis for the Ti language. So that we can ignore any issues
of concurrency and also for efficiency, our analysis is flow-insensitive. We only define
the analysis on the single machine m – since Ti is SPMD, the results are the same for
all machines.

4.1 Concrete Domain

Since our analysis is flow-insensitive, we need not determine the concrete state at each
point in a program. Instead, we define the concrete state over the whole program. Since
we are doing pointer analysis, we are only interested in reference values, and since a
location can contain different values over the lifetime of the program, we must compute
the set of all possible values for each memory location and variable on machine m.
The concrete state thus maps each memory location and variable to a set of memory
locations, and it is a member of the domain CS = (G + Id) → P(G).

4.2 Abstract Domain

For our abstract semantics, we define an abstract location to correspond to the ab-
straction of a concrete memory location. Abstract locations are defined relative to a
particular machine m. An abstract location relative to machine m is a member of the
domain Am = L × H – it is identified by both an allocation site and a hierarchy width.
An element a1 of Am is subsumed by another element a2 if a1 and a2 have the same
allocation site, and a2 has a higher width than a1. The elements of Am are thus ordered
by the following relation:

(l, n1) � (l, n2) ⇐⇒ n1 ≤ n2

The ordering thus has height h.
We define R ⊂ P(Am) to be the maximal subset of P(Am) that contains no redun-

dant elements. An element S is redundant if:

∃x, y ∈ S. x � y ∧ x �= y

Hierarchical Pointer Analysis for Distributed Programs 289

In other words, S is redundant if it contains two related elements of Am, such that one
subsumes the other.

An element S ∈ R can be represented by an n-digit vector u, where n = |L| and the
digits are in the range [0, h]. The vector is defined as follows:

u(i) =

{
j if (li, j) ∈ S,

0 otherwise.

The vector has a digit for each allocation site, and the value of the digit is the width of
the abstract location in S corresponding to the site, or 0 if there is none.

We use the following Hoare ordering on elements of R:

S1 � S2 ⇐⇒ ∀x ∈ S1. ∃y ∈ S2. x � y

The element S1 is subsumed by S2 if every element in S1 is subsumed by some element
in S2. In the vector representation, the following is an equivalent ordering:

S1 � S2 ⇐⇒ ∀i ∈ {1, ..., |L|}. u1(i) ≤ u2(i)

In this representation, S1 is subsumed by S2 if each digit in S1 is no more than the
corresponding digit in S2. The ordering relation induces a lattice with minimal element
corresponding to u⊥(i) = 0, and a maximal element corresponding to u�(i) = h. The
maximal chain between ⊥ and � is derived by increasing a single vector digit at a time
by 1, so the chain, and therefore the lattice, has height h · |L| + 1.

We now define a Galois connection between P(G) and R as follows:

γm(S) =
{
(l, m′, a)

∣∣ (l, n) ∈ S ∧ hier(m, m′) ≤ n
}

αm(C) = �
{
S

∣∣ C � γm(S)
}

The concretization of an abstract location (l, n) with respect to machine m is the set
of all concrete locations with the same allocation site and located on machines that
are at most n away from m. The abstraction with respect to m of a concrete location
(l, m′, a) is an abstract location with the same allocation site and width equal to the
distance between m and m′.

Finally, we abstract the concrete domain CS to the following abstract domain, which
maps abstract locations and variables to points-to sets of abstract locations:

AS = (Am + Id) → R

An element σA of AS is subsumed by σ′
A if the points-to set of each abstract location

and variable in σA is subsumed by the corresponding set in σ′
A. The elements of AS

are therefore ordered as follows:

σA � σ′
A ⇐⇒ ∀x ∈ (Am + Id). σA(x) � σ′

A(x)

The resulting lattice has height in O(h · |L| ·(|Am|+ |Id|)) = O(h · |L| ·(h · |L|+ |Id|)).
Since the number of allocation sites and identifiers is limited by the size of the input
program P , the height is in O(h2 · |P |2).

290 A. Kamil and K. Yelick

4.3 Abstract Semantics

For each expression in Ti, we provide inference rules for how the expression updates
the abstract state σA. The judgments are of the form 〈e, σA〉 ⇓ 〈S, σ′

A〉, which means
that expression e in abstract state σA can refer to the abstract locations S and results in
the modified abstract state σ′

A. As in §3.3, we use the notation σ[g := v] to denote the
function λx. if x = g then v else σ(x). Most of the rules are derived directly from
the operational semantics of the language.

The rules for integer and variable expressions are straightforward. Neither updates
the abstract state, and the latter returns the abstract locations in the points-to set of the
variable.

〈n, σA〉 ⇓ 〈∅, σA〉 〈x, σA〉 ⇓ 〈σA(x), σA〉

An allocation returns the abstract location corresponding to the allocation site, with
width 1.

〈newl τ, σA〉 ⇓ 〈{(l, 1)}, σA〉

The rule for dereferencing is similar to the operational semantics rule, except that all
source abstract locations are simultaneously dereferenced.

〈e, σA〉 ⇓ 〈S, σ′
A〉

〈∗e, σA〉 ⇓ 〈
⋃

b∈S σ′
A(b), σ′

A〉

The rule for sequencing is also analogous to its operational semantics rule.

〈e1, σA〉 ⇓ 〈S1, σ
′
A〉 〈e2, σ

′
A〉 ⇓ 〈S2, σ

′′
A〉

〈e1; e2, σA〉 ⇓ 〈S2, σ
′′
A〉

The rule for variable assignment merely copies the source abstract locations into the
points-to set of the target variable.

〈e, σA〉 ⇓ 〈S, σ′
A〉

〈x := e, σA〉 ⇓ 〈S, σ′
A[x := σ′

A(x) � S]〉

The type conversion expression can only succeed if the result is within the specified
hierarchical distance, so it narrows all abstract locations that are outside that distance.

〈e, σA〉 ⇓ 〈S, σ′
A〉

〈convert(e, n), σA〉 ⇓ 〈{(l, min(k, n)) | (l, k) ∈ S}, σ′
A〉

The SPMD model of parallelism in Ti implies that the source expression of the trans-
mit operation evaluates to abstract locations with the same labels on both the source
and destination machines. The distance between the source and destination machines,
however, is not statically known, so the resulting abstract locations must be assumed to
have the maximum width.

〈e2, σA〉 ⇓ 〈S2, σ′
A〉 〈e1, σ′

A〉 ⇓ 〈S1, σ′′
A〉

〈transmit e1 from e2, σA〉 ⇓ 〈{(l, h) | (l, m) ∈ S1}, σ′′
A〉

Hierarchical Pointer Analysis for Distributed Programs 291

Fig. 7. The assignment x ← y on machine 0 results in the abstract location (l2, 2) being added
to the points-to set of (l1, 1), as shown by the first dashed arrow. The assignment on machine 1
results in the abstract location (l2, 2) being added to the points-to set of (l1, 2), as shown by the
second dashed arrow. The assignment must also be accounted for on the rest of the machines.
(Abstract locations in the figure are with respect to machine 0).

The rule for assignment through references is the most interesting. Suppose an abstract
location a2 = (l2, 2) is assigned into an abstract location a1 = (l1, 1), as in Figure 7. Of
course, we have to add a2 to the points-to set of a1. In addition, since Ti is SPMD, we
have to account for the effect of the same assignment on a different machine. Consider
the assignment on machine m′, where hier(m, m′) = 2. The location a1 relative to m
corresponds to a location a′

1 = (l1, 2) relative to m′. The location a2 can correspond to
a concrete location on m′, so its abstraction can be a′

2 = (l2, 1) relative to m′. But it can
also correspond to a concrete location on m′′ where hier(m, m′′) = hier(m′, m′′) =
2, so its abstraction can also be a′′

2 = (l2, 2). But since a′
2 � a′′

2 , it is sufficient to
assume that a2 corresponds to a′′

2 on m′. From the point of view of m′ then, the abstract
location (l2, 2) should be added to the points-to set of the location (l1, 2).

In general, whenever an assignment occurs from (l2, n2) to (l1, n1), we have to up-
date not only the points-to set of (l1, n1) but the sets of all locations corresponding to
label l1 and of any width. As we show below, the proper update is to add the location
(l2, max(n′

1, n1, n2)) to the points-to set of each location (l1, n′
1). The rule is then

〈e1, σA〉 ⇓ 〈S1, σ′
A〉 〈e2, σ′

A〉 ⇓ 〈S2, σ′′
A〉

〈e1 ← e2, σA〉 ⇓ 〈S2, update(σ′′
A, S1, S2)〉

,

with update defined as

update(σ, S1, S2) =
λ(l1, n′

1) : L × H .

σ((l1, n′
1)) �

{
(l2, max(n′

1, n1, n2))
∣∣ (l1, n1) ∈ S1 ∧ (l2, n2) ∈ S2

}
.

4.4 Soundness

An abstract intepretation is sound if the abstraction and concretization functions are
monotonic and form a Gallois connection, and the abstract inference rules for each
operation is correct. The former condition was shown in §4.2.

292 A. Kamil and K. Yelick

Most of the abstract inference rules are derived directly from the operational se-
mantics, so their correctness is obvious. The rule for assignment through a reference,
however, is nontrivial, so we prove its correctness here.

Let am
i represent the abstract location ai with respect to machine m. Let nm repre-

sent a width n with respect to m.
Consider an assignment e1 ← e2. Let m be the reference machine for the analy-

sis. Without loss of generality, assume that e1 evaluates to the lone abstract location
am
1 = (l1, nm

1), and that e2 evaluates to am
2 = (l2, nm

2). Consider the execution of this
assignment on the following machines:

– On machines m′ such that hier(m, m′) ≤ nm
1 . This implies that the (nm

1 − 1)th
ancestor of each m′ in the machine hierarchy is the same as that of m. As a result,
abstract locations of width at least n1 are the same with respect to both m and m′.
In particular, am′

1 = am
1 , so the assignment on any machine can target any concrete

location in am
1 .

Now suppose nm
2 < nm

1 . Then the am′

2 are not equivalent for all machines
m′. However, note that am′

2 contains the concrete locations (l2, m′, a) for any a.
Considering the assignment on all machines m′, the concrete locations in am

1 can
receive any of the source concrete locations (l2, m′, a) for all m′ and a. This set of
source locations corresponds exactly to the abstract location am

2′ = (l2, nm
1).

Suppose instead that nm
2 ≥ nm

1 . Then the machines m′ all agree on the set
am′

2 = am
2 . Thus, regardless of which machine the assignment is executed on, the

source locations correspond exactly to am
2 .

In either case, any of the concrete locations corresponding to am
1 can now point

to any of the concrete locations corresponding to am
2′ = (l2, max(nm

1 , nm
2)). To

capture this in the abstract inference, it is sufficient to add am
2′ to the points-to set

of am
1 . For consistency, am

2′ should also be added to the points-to set of any abstract
location am

1′ � am
1 , since any of the concrete locations corresponding to am

1′ can
point to any of the concrete locations corresponding to am

2′ .
Thus, it is sufficient to add the abstract location am

2′ = (l2, max(nm
1 , nm

2)) to
the points-to set of any am

1′ = (l1, nm
1′) such that nm

1′ ≤ nm
1 .

– On a machine m′, where hier(m, m′) > nm
1 . The set of concrete locations cor-

responding to am′

1 all reside on machines a distance of nm
1′ = hier(m, m′) away

from machine m. Thus, am′

1 � am
1′ , where am

1′ = (l1, nm
1′).

Now suppose nm
2 < nm

1′ . Then all the concrete locations corresponding to am′

2
reside at a distance of nm

1′ from machine m, so that am′

2 � am
2′ , where am

2′ =
(l2, nm

1′). Thus, the source locations can be soundly approximated by am
2′ .

Suppose instead that nm
2 ≥ nm

1′ . Then m and m′ agree on am′

2 = am
2 , so the

source locations correspond to am
2 .

In either case, some of the concrete locations corresponding to am
1′ can now

point to some of the concrete locations corresponding to am
2′ = (l2, max(nm

1′ , nm
2)).

Soundness can be maintained, though precision lost, if the analysis assumes that
any concrete location corresponding to am

1′ can point to any concrete location cor-
responding to am

2′ . Thus, am
2′ should be added to the points-to set of am

1′ .
Now consider an abstract location am

1′′ = (l1, nm
1′′), where nm

1′′ < nm
1′ . All

concrete locations represented by am
1′′ reside less than a distance of nm

1′ away from

Hierarchical Pointer Analysis for Distributed Programs 293

m. Since all concrete locations corresponding to am′

1 reside at a distance of nm
1′

from m, the abstract locations am
1′′ and am′

1 do not intersect. Thus, none of the
concrete locations in am

1′′ are targeted by the assignment, so its points-to set does
not need to be updated.

Thus, it is sufficient to add the abstract location am
2′ = (l2, max(nm

1′ , nm
2)) to

the points-to set of each am
1′ = (l1, nm

1′) such that nm
1′ > nm

1 .

Summarizing over all possibilities, we obtain the rule that the abstract location am
2′ =

(l2, max(nm
1′ , nm

1 , nm
2)) is to be added to the points-to set of any am

1′ = (l1, nm
1′). This

corresponds exactly to the update rule provided in §4.3.

4.5 Algorithm

The set of inference rules, instantiated over all the expressions in a program and applied
in some arbitrary order2, composes a function F : AS → AS. Only the two assignment
rules affect the input state σA, and in both rules, the output consists of a least upper
bound operation involving the input state. As a result, F is a monotonically increasing
function, and the least fixed point of F , F0 = �nFn(λx. ∅), is the analysis result.

The function F has a rule for each program expression, so it takes time in O(|P |)
to apply it3, where P is the input program. Since the lattice over AS has height in
O(h2 · |P |2), it takes time in O(h2 · |P |3) to compute the fixed point of F .

In our implementation, we have found that the running time of the analysis varies
little between one, two, and three levels of hierarchy. For the benchmarks in §5, a three-
level analysis takes no more than 10% longer than a single-level analysis and less than
5% longer than a two-level analysis. Thus, the three-level analysis is far more efficient
than running a two-level analysis twice.

5 Evaluation

The pointer information computed in §4 can be applied to multiple analyses and opti-
mizations for parallel programs. We evaluate the pointer analysis by using it for race
detection. In [13], we apply it as well to enforcement of sequential consistency and
describe how it can be used to infer data locality and privacy.

We use the following set of benchmarks:

– amr [27] (7581 lines) Chombo adaptive mesh refinement suite [3] in Titanium.
– gas [5] (8841 lines): Hyperbolic solver for a gas dynamics problem in computa-

tional fluid dynamics.
– ft [9] (1192 lines): NAS Fourier transform benchmark [4] in Titanium.
– cg [9] (1595 lines): NAS conjugate gradient benchmark [4] in Titanium.
– mg [9] (1952 lines): NAS multigrid benchmark [4] in Titanium.

2 Since the analysis is flow-insensitive, the order of application is not important.
3 We ignore the cost of the join operations here. In practice, points-to sets tend to be small, so

the cost of joining them can be neglected.

294 A. Kamil and K. Yelick

Static Races Detected

11493

3065

793

1514

4082

2029

951

207

446

198
286

517

67

262

66

10

100

1000

10000

100000

amr gas ft cg mg

Benchmark

R
a

c
e

s
 (

L
o

g
a

ri
th

m
ic

 S
c

a
le

)

concur concur+AA1 concur+AA3

Fig. 8. Number of data races reported for different levels of analysis

The line counts for the above benchmarks underestimate the amount of code actually
analyzed, since all reachable code in the 37,000 line Titanium and Java 1.0 libraries is
also processed.

A race condition occurs when two memory accesses can occur simultaneously on
different threads, they can be to the same memory location, and at least one is a write.
An existing concurrency analysis for Titanium [15] can conservatively determine which
accesses are simultaneous. The pointer analysis can detect if two accesses may be to the
same location by checking if they can operate on abstract locations whose concretiza-
tions with respect to different machines overlap. In a single-level analysis, all abstract
locations with the same label overlap, while in a multi-level analysis, they do not over-
lap if they are both machine-local (i.e. have width 1). Thus, a multi-level analysis results
in higher race detection precision than a single-level analysis.

Static information is generally not enough to determine with certainty that two mem-
ory accesses compose a race, so nearly all reported races are false positives. (The cor-
rectness of the concurrency and pointer analyses ensure that no false negatives occur.)
We therefore consider a race detector that reports the fewest races to be the most effec-
tive

Figure 8 compares the effectiveness of three levels of race detection:

– concur: Our concurrency analysis4 [15] is used to eliminate non-concurrent mem-
ory accesses. Sharing inference [17] is used to eliminate accesses to thread-private
data.

4 The most precise analysis in [15] is used, which was labeled as feasible in that paper.

Hierarchical Pointer Analysis for Distributed Programs 295

– concur+AA1: A single-level pointer analysis is added to eliminate false aliases.
– concur+AA3: A three-level pointer analysis is added to eliminate false aliases.

The results show that the pointer analysis can eliminate most of the races reported
by our detector. The addition of pointer analysis removes most of the races discovered
by only using the concurrency analysis, with a three-level analysis providing significant
benefits over a one-level analysis. However, the results are still not precise enough for
production use. The pointer analysis does not currently distinguish between array in-
dices, and since Titanium programs tend to make extensive use of arrays in their data
structures, this results in a significant number of false aliases. However, the addition
of an array index analysis [20,19,18,22] should remove most of these false aliases, and
consequently most of the false positives reported by the race detector.

6 Related Work

The language and type system we presented here are generalizations of those described
by Liblit and Aiken [16]. They defined a two-level hierarchy and used it to produce
a constraint-based analysis that infers locality information about pointers. Later with
Yelick, they extended the language and type system to consider sharing of data, and
they defined another constraint-based analysis to infer sharing properties of pointers
[17].

Pointer analysis was first described by Andersen [2], and later extended by oth-
ers to parallel programs. Rugina and Rinard developed a thread-aware alias analysis
for the Cilk multithreaded programming language [23] that is both flow-sensitive and
context-sensitive. Others such as Zhu and Hendren [29] and Hicks [11] have developed
flow-insensitive versions for multithreaded languages. However, none of these analyses
consider hierarchical, distributed machines.

The pointer analysis we presented here is a generalization and formalization of the
analysis sketched in a previous paper [14]. That analysis is similar to a two-level version
of our hierarchical analysis, but the abstraction is quite different. Only the abstraction
of the transmit operation was described in that paper, though an almost complete
implementation was done.

7 Conclusion

In this paper, we introduced a program analysis technique for pointers, which has ap-
plications in detecting program errors and enabling optimizations. The novelty of the
analysis derives from its view of the machine as an arbitrary hierarchy of processors,
with the analysis proving that the range of a pointer is limited to a given hierarchy.

Our analysis was presented on a small language, Ti, which decouples the analy-
sis from specifics of the language. The type system allows for references of different
widths, corresponding to local and global pointers in PGAS languages. We demon-
strated the analysis with an implementation in the Titanium language, a global address
space language with three levels of hierarchy. Our results show that the multi-level
analysis is significantly more accurate than one based on only a single level.

296 A. Kamil and K. Yelick

There are several potential clients of our analysis, and in this paper we presented one
such client, a static race detection algorithm, which combined the pointer analysis with
our existing concurrency analysis to detect races in Titanium programs. Even on rela-
tively complicated benchmarks codes, our results show that the more accurate pointer
analysis has a significant impact on the quality of the race analysis. Our results indicate
the value of exposing the hierarchy within the language and compiler to balance the
desire of programmers for both simplicity and high performance.

References

1. Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., Ryu, S., G. L. S. Jr., Tobin-Hochstadt,
S.: The Fortress Language Specification, Version 0.866. Sun Microsystem Inc. (February
2006)

2. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen (May 1994)

3. Applied Numerical Algorithms Group (ANAG). Chombo, http://seesar.lbl.gov/
ANAG/software.html

4. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS Parallel Benchmarks. The International Journal of Supercom-
puter Applications 5(3), 63–73 (1991)

5. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. Journal
of Computational Physics 82(1), 64–84 (1989) (Lawrence Livermore Laboratory Report No.
UCRL-97196)

6. Bonachea, D.: GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, University
of California, Berkeley (November 2002)

7. Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E., Warren, K.: Introduction to UPC
and language specification. Technical Report CCS-TR-99-157, IDA Center for Computing
Sciences (1999)

8. Cray Inc. Chapel Specification 0.4 (February 2005)
9. Datta, K., Bonachea, D., Yelick, K.: Titanium performance and potential: an NPB experi-

mental study. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC
2005. LNCS, vol. 4339, Springer, Heidelberg (2006)

10. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 2nd edn.
Addison-Wesley, London, UK (2000)

11. Hicks, J.: Experiences with compiler-directed storage reclamation. In: FPCA ’93: Proceed-
ings of the conference on Functional programming languages and computer architecture,
New York, USA, pp. 95–105. ACM Press, New York, USA (1993)

12. Hilfinger, P.N., Bonachea, D., Gay, D., Graham, S., Liblit, B., Pike, G., Yelick, K.: Titanium
language reference manual. Technical Report UCB/CSD-04-1163-x, University of Califor-
nia, Berkeley (September 2004)

13. Kamil, A.: Analysis of Partitioned Global Address Space Programs. Master’s thesis, Univer-
sity of California, Berkeley (December 2006)

14. Kamil, A., Su., J., Yelick, K.: Making sequential consistency practical in Titanium. In: Su-
percomputing 2005 (November 2005)

15. Kamil, A., Yelick, K.: Concurrency analysis for parallel programs with textually aligned
barriers. In: Proceedings of the 18th International Workshop on Languages and Compilers
for Parallel Computing (October 2005)

http://seesar.lbl.gov/ANAG/software.html
http://seesar.lbl.gov/ANAG/software.html

Hierarchical Pointer Analysis for Distributed Programs 297

16. Liblit, B., Aiken, A.: Type systems for distributed data structures. In: Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January
2000, ACM Press, New York (2000)

17. Liblit, B., Aiken, A., Yelick, K.: Type systems for distributed data sharing. In: International
Static Analysis Symposium, San Diego, California (June 2003)

18. Lin, Y., Padua, D.A.: Analysis of irregular single-indexed array accesses and its applications
in compiler optimizations. In: CC ’00: Proceedings of the 9th International Conference on
Compiler Construction, London, UK, pp. 202–218. Springer, Heidelberg (2000)

19. Maydan, D.E., Amarasinghe, S.P., Lam, M.S.: Array-data flow analysis and its use in array
privatization. In: POPL ’93. Proceedings of the 20th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, New York, NY, USA, pp. 2–15. ACM Press, New
York, NY, USA (1993)

20. Maydan, D.E., Amarsinghe, S., Lam, M.S.: Data dependence and data-flow analysis of ar-
rays. In: Proceedings of the 5th International Workshop on Languages and Compilers for
Parallel Computing, London, UK, pp. 434–448. Springer, Heidelberg (1993)

21. Netzer, R.H.B., Miller, B.P.: What are race conditions?: Some issues and formalizations.
ACM Lett. Program. Lang. Syst. 1(1), 74–88 (1992)

22. Paek, Y., Hoeflinger, J., Padua, D.: Efficient and precise array access analysis. ACM Trans.
Program. Lang. Syst. 24(1), 65–109 (2002)

23. Rugina, R., Rinard, M.: Pointer analysis for multithreaded programs. In: PLDI ’99.: Pro-
ceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, New York, NY, USA, pp. 77–90. ACM Press, New York, USA (1999)

24. Saraswat, V.: Report on the Experimental Language X10, Version 0.41. IBM Research
(February 2006)

25. Silicon Graphics. CF90 co-array programming manual. Technical Report SR-3908 3.1, Cray
Computer (1994)

26. The UPC Consortium. UPC Language Specifications, Version 1.2 (May 2005)
27. Wen, T., Colella, P.: Adaptive mesh refinement in titanium. In: Proceedings of the 19th Inter-

national Parallel and Distributed Processing Symposium (IPDPS) (2005)
28. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfinger,

P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-performance Java dialect. In:
Workshop on Java for High-Performance Network Computing, Stanford, California (Febru-
ary 1998)

29. Zhu, Y., Hendren, L.J.: Communication optimizations for parallel C programs. In: PLDI ’98.
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design
and Implementation, New York, NY, USA, pp. 199–211. ACM Press, New York, USA (1998)

	Hierarchical Pointer Analysis for Distributed Programs
	Introduction
	Background
	Hierarchical Memory
	Titanium

	Analysis Background
	Machine Structure
	Language
	Concrete Operational Semantics

	Abstract Interpretation
	Concrete Domain
	Abstract Domain
	Abstract Semantics
	Soundness
	Algorithm

	Evaluation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

