HPC challenges for aerothermal predictions in aeronautical engines

4th SciDAC CScADS Summer Workshop

CERFACS

European Center for Research and Advanced Training in Scientific Computing

- Research civil society
- 7 shareholders: CNES, EDF, Météo-France, ONERA, EADS, SAFRAN, TOTAL
- 110 people, 90 researchers and engineers coming from more than 10 countries
- Main research fields:
 - Aerodynamics
 - Climate and environment
 - Code coupling
 - Combustion

- Data assimilation
- Electromagnetism
- Parallel algorithms

Toulouse

Combustion in aeronautical engines

Noise Specific consumption

Compressor

Noise Specific Power Turbine Longevity

MAIN PHYSICAL PHENOMENA:

- 1. Fuel injection (two-phase flow)
- 2. Chemical Kinetics
- 3. Thermal transfers:
 - Wall heat transfer
 - Radiative heat transfer

GOALS:

- Prediction of pollutants (CO, Nox, Soot)
- Temperature profile at combustor exit (an increase of 20K at the exit divides the shelf life of the engine by 2)

Combustion chamber

MULTIPHYSICS

The full thermal problem

The objective is to describe a two-phase reactive flow in a complex geometry taking into account:

- Combustion & soot production
- Conduction
- Radiation
- Convection

STRATEGY = MULTIPHYSICS COUPLING

The full thermal problem is resolved coupling three codes dedicated to each separate phenomenon via a parallel dynamic coupler.

Outline

- Description of the codes developed
- Examples of partitioning problems
 - Efficient partitioning algorithms for two-phase flow simulations using a Lagrangian approach
 - Storage of huge chemical databases for tabulation methods
 - Parallelization of the radiative code
- Tomorrow challenge: the full thermal problem

Outline

- Description of the codes developed
- Examples of partitioning problems
 - Efficient partitioning algorithms for two-phase flow simulations using a Lagrangian approach
 - Storage of huge chemical databases for tabulation methods
 - Parallelization of the radiative code
- Tomorrow challenge: the full thermal problem

AVBP code main characteristics

- Started in 1993
- Compressible reactive NS equations
- Explicit in time
- Unstructured/hybrid meshes
- Moving meshes
- Centred schemes
 - Finite Volume/Finite
 Element (2nd/3rd order)
 - + controlled local artificial viscosity
- Massively Parallel
- Machine Independent

- Cray XT3 (Rochester, US)
- AMD bi-core Opteron 2.4 Ghz
- 700 processors

- Consumption: 112 000 h CPU
- Execution time : 160 h
- Physical time: 50ms

AVBP code main characteristics

- Started in 1993
- Compressible reactive NS equations
- Explicit in time
- Unstructured/hybrid meshes
- Moving meshes
- Centred schemes
 - Finite Volume/Finite
 Element (2nd/3rd order)
 - + controlled local artificial viscosity
- Massively Parallel
- Machine Independent

AVTP code main characteristics

- Heat Equation solver for a non-homogenous nonisotropic solid medium
- Data structure and numerical methods inherited by AVBP
- Unstructured/hybrid meshes

PRISSMA code main characteristics

- Radiative Transfert
 Equation (RTE) solver
- Based on the Discrete
 Ordinates Method (DOM)
- Unstructured/hybrid meshes
- Different global and narrow-band models for the spectral integration
- Radiation properties of combustion gases (CO, CO2, H2O) and soot

Outline

- Description of the codes developed
- Examples of partitioning problems
 - 1. Efficient partitioning algorithms for two-phase flow simulations using a Lagrangian approach
 - 2. Storage of huge chemical databases for tabulation methods
 - 3. Parallelization of the radiative code
- Tomorrow challenge: the full thermal problem

1. Two-phase flow and HPC

Development of 2 solvers in AVBP:

- Gas phase: Euler solver
- Liquid phase: Lagrange solver
 - X There are millions of fuel droplets to be tracked downstream from the injector
 - X Need for efficient two-constraint partitioning algorithms

1. Two-phase flow and HPC

RIB (one-constraint)

METIS (two-constraint)

For two-phase flows where particles are non-uniformly located, two-constraint partitioning algorithms are required to avoid load imbalancing.

1. Two-phase flow and HPC

OPEN QUESTIONS:

During the calculation of an unsteady case, particles do not remain at the same place:

- How to modify the partitioning with time in order to preserve a correct particles balance??
- Which criteria should be used to determine when and how to modify the partitioning???

For two-phase flows where particles are non-uniformly located, two-constraint partitioning algorithms are required to avoid load imbalancing.

2. Chemical kinetics and HPC

- In order to correctly describe intermediate species, pollutants and soot in a turbulent reactive flow, an accurate description of the chemical kinetics is required.
- Tabulation methods are widely worked on: a database of relevant chemical terms (mass fractions and temperature) based on simulations of simple combustion problems is used to rebuild the chemical source terms in a complex 3D calculation.

An *a priori* partitioning of the database is impossible: in an unsteady computation, each grid node must be able to access any part of the database at each timestep.

POTENTIAL SOLUTIONS:

- Read the whole database on each processor: a large amount of memory per processor is then required, which is contrary to the tendency of the new generation machines.
- Reduce the database size: some information could be neglected or single precision floating-point format could be used, which would decrease the accuracy of the chemical description.
- Read dynamically and partially the database on each processor: a very quick I/O comunication is then required.

3. Radiation and HPC

Radiative source term depends on the photon

frequency and the angular direction.

$$S_r(\mathbf{x}) = \int_0^\infty \kappa_{\nu} \left[\frac{4\pi L_{\nu}^0(\mathbf{x}) - \int_{4\pi} L_{\nu}(\mathbf{x}, \mathbf{u}) d\Omega}{d\nu} \right] d\nu$$

Speedup

FREQUENCY INTEGRATION:

quantities depend on local properties => **good subdomain parallelism.**

ANGULAR DIRECTION:

includes data from ALL the points of the domain (long distance iterations). Sequential algorithm => problem for subdomain parallelism.

Outline

- Description of the codes developed
- Examples of partitioning problems
 - 1. Efficient partitioning algorithms for two-phase flow simulations using a Lagrangian approach
 - 2. Storage of huge chemical databases for tabulation methods
 - 3. Parallelization of the radiative code
- Tomorrow challenge: the full thermal problem

The full thermal problem

The full thermal problem is resolved using specialized codes for each transfer mode.

A coupler (PALM) is used to exchange data between the codes.

The full thermal problem

The full thermal problem is characterized by:

- different physics (characteristic time)
- different meshes(CPU time)

Different computational resources and restitution times of calculations must be managed by the coupler: difficult to achieve the optimum on a massively parallel machine.

The full thermal description and HPC

- Multi code problem: how could the coupler manage the huge amount of information required and calculated by the three codes in a massively parallel way (memory and synchronisation problems)?
- Multi machine problem: how to manage the comunication of 3 codes running on different machines?
- Dynamical distribution of processors: how could processors be dynamically distributed between the different codes (i.e. unsteady cases or moving meshes).

This research project has been supported by a Marie Curie Early Stage Research Training Fellowship of the European Community's Sixth Framework Programme under contract number MEST-CT-2005-020426.

Special Thanks to:

J. Amaya, M. Garcia, D. Poitou, E. Riber, O. Vermorel, the PALM Team

