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Science Drivers for Neutronics

* Spatial resolution » Crud and distortion
— To resolve the geometry . .
+ 10%12 unknowns  Control rod insertion

* mm? cells in a m3 vessel

— Depletion makes it harder  * Ab initio design

* Energy resolution

— To resolve resonances

* 10%% unknowns
* Donein 0D or 1D today
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* Angular resolution

— To resolve streaming 1Eof
* 10%% unknowns
— Space-energy resolution

make it harder 1603 1.0E-07
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Application Areas

Reactor Analysis

National defense/
Urban modeling

Facility shielding/dosimetry



Denovo Capabilities

- State of the art transport methods * Modern, Innovative, High-Performance
— 3D, non-uniform, regular grid SN Solvers
— Multigroup energy, anisotropic Pn — Within-group solvers
scattering - Krylov (GMRES, BiCGStab) and source iteration
(i - DSA ditioning (SuperLU/ML-
— Forward/Adjoint preconditoned CGIRC)

— Fixed-source/k-eigenvalue — Multigroup solvers

— 6 spatial discretization algorithms - Transport Two-Grid upscatter acceleration of
. - . . Gauss-Seidel
* Linear and Trilinear discontinuous _
FE, step-characteristics, theta- *  Krylov (GMRES, BiCGtab)
weighted diamond, weighted — Eigenvalue solvers
diamond + ﬂux'f'qu Power iteration (with rebalance)
— Parallel first-collision — CMFD in testing phase
- Analytic ray-tracing (DR) * Krylov (Arnoldi)

Shifted-inverse iteration in development

* Monte Carlo (DR and DD)

— Multiple quadratures
* Level-symmetric

: Power distribution in a BWR bl

* Generalized Legendre Product owerdstbaion e it

* Galerkin




Denovo Capabilities

 Parallel Algorithms

Koch-Baker-Alcouffe (KBA) wavefront
decomposition

Domain-replicated (DR) and domain-
decomposed first-collision solvers

Multilevel energy decomposition in
development

Parallel I/0 built on SILO/HDF5

> 5M CPU hours on Jaguar with 2 bug

2010 INCITE Award
Uncertainty Quantification for Three
Dimensional Reactor Assembly
Simulations, 8 MCPU-HOURS

2010 ASCR Joule Code

2009-2011 2 ORNL LDRDs

* Advanced visualization, run-time, and
development environment

3 front-ends (HPC, SCALE, Python-
bindings)

Direct connection to SCALE geometry
and data

Direct connection to MCNP input
through ADVANTG

HDF5 output directly interfaced with
Vislt

Built-in unit-testing and regression
harness with DBC

Emacs-based code-development

environment

Support for multiple external vendors
GSL, BLAS/LAPACK, TRILINOS (required)
BRLCAD, SUPERLU/METIS, SILO/HDF5 (optional)
MPI (toggle for parallel/serial builds)
SPRNG (required for MC module)

PAPI (optional instrumentation)



Discrete Ordinates Methods

» We solve the first-order form of the transport equation:
— Eigenvalue form for multiplying media (fission):

Q- Vi(r, 0, E) +o(r, E)Y(r, ), E) =
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— Fixed source form:
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Discrete Ordinates Methods

- The S\, method is a collocation method in angle.
— Energy is discretized in groups.
— Scattering is expanded in Spherical Harmonics.

— Multiple spatial discretizations are used (DGFEM,
Characteristics, Cell-Balance).

Le) = MS¢ + Q
¢ = Dy

 Dimensionality of operators:
t = Ng x N X Ny X Ny,
n=Ng X N.x Ny, XN,
mxn)nx1l)=(Mmxt)(txt)(tx1)+(nx1)



Degrees of Freedom

* Total number of unknowns in solve:

unknowns = N, X N, X N, X Ny X Ny,

* An ideal (conservative) estimate.

N, = 238
N.=1 x 10’
N, =4
N,, = 16
N, = 288

unknowns > 4 x 10°




Solver Taxonomy

The innermost part of each solver are
transport sweeps

y=Tz=DL 'z
N——"

Ly =2

"TIt's turtles all the way down..."

Eigenvalue Solvers

Power iteration
Arnoldi
Shifted-inverse

Multigroup Solvers

Gauss-Seidel
Residual Krylov
Gauss-Seidel + Krylov

Within-group Solvers

Krylov
Residual Krylov
Source iteration




Parallel Performance

Angular Pipelining

 Angles in x z directions are pipelined

* Results in 2xM pipelined angles per octant
 Quadrants are ordered to reduce latency

2M By

6 angle pipeline (S;; M = 3)
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KBA Reality
0.6 |
KBA does not achieve closeto | i
the predicted maximum
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- Communication latency dominates as the block size becomes small

* Using a larger block size helps achieve the predicted efficency but,
— Maximum achievable efficiency is lower

— Places a fundamental limit on the number of cores that can be used for any
given problem



Efficiency vs Block Size

Deviation from Maximum
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Overcoming Wavefront Challenge

* This behavior is systemic in any wavefront-type
problem

— Hyberbolic aspect of transport operator

» We need to exploit parallelism beyond space-angle
— Energy
— Time

* Amortize the inefficiency in KBA while still retaining
direct inversion of the transport operator



Multilevel Energy Decomposition

-
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4x4 block partitioning

set partitioning
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1

438 domains = 3 sets x 16 blocks

The use of Krylov methods to solve
the multigroup equations effectively
decouples energy

domains = blocks x sets

-onae —  EACh energy-group Sy equation can be
swept independently

— Efficiency is better than Gauss-Seidel
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Multilevel Summary

* Energy decomposed into sets.

» Each set contains blocks constituting the entire spatial
mesh.

* The total number of domains is

domains = sets x blocks

» KBA is performed for each group in a set across all of
the blocks.

— Not required to scale beyond O(1000) cores.
» Scaling in energy across sets should be linear.

* Allows scaling to O(100K) cores and enhanced
parallelism on accelerators.
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17,424 cores is effectively the
maximum that can be used by

KBA alone
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Strong Scaling

Strong Scaling
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+ Communication improvements were significant at 100K core level (using 11 sets).
 They do not appear to scale to 200K core. Why?

 The problem isn't big enough to demonstrate strong scaling.

« We are not using the optimal block decomposition.

« Communication collision on torus across full machine.

 Multiset communication latency across entire machine dominates.



What do we need to do?

* Optimize scaling out to * New preconditioners

200K cores — Multigrid in energy

- Investigate multithreading ~ — Upper/lower diagonal
to reduce latency in energy matrix
space-angle sweep * Time-dependence

* GPU kernels for sweep * Multiphysics coupling

— Already in testing phase

 New strategies for pure-
downscatter (lower
triangular) systems?



