
CScADS Petascale Performance Tools Workshop, July 2007 1

Sampling-based Strategies for
Measurement and Analysis

John Mellor-Crummey
Department of Computer Science

Rice University

Center for Scalable Application Development Software

CScADS Petascale Performance Tools Workshop, July 2007 2

Collaborators

• Rice
– Nathan Tallent
– Mark Krentel
– Mike Fagan
– Gabriel Marin

• Former students
– Nathan Froyd
– Cristian Coarfa

• RENCI
– Rob Fowler

CScADS Petascale Performance Tools Workshop, July 2007 3

Rice’s HPCToolkit Philosophy

• Work at binary level for language independence
– support multi-lingual codes with external binary-only libraries

• Profile rather than adding code instrumentation
– minimize measurement overhead and distortion
– enable data collection for large-scale parallelism

• Collect and correlate multiple performance measures
– can’t diagnose a problem with only one species of event

• Compute derived metrics to aid analysis
• Support top down performance analysis

– intuitive enough for scientists and engineers to use
– detailed enough to meet the needs of compiler writers

• Aggregate events for loops and procedures
– accurate despite approximate event attribution from counters
– loop-level info is more important than line-level info

CScADS Petascale Performance Tools Workshop, July 2007 4

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

CScADS Petascale Performance Tools Workshop, July 2007 5

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

– launch optimized application binaries
– collect statistical profiles of events of interest

CScADS Petascale Performance Tools Workshop, July 2007 6

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

– decode instructions and combine with profile data

CScADS Petascale Performance Tools Workshop, July 2007 7

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

– extract loop nesting & inlining from executables

CScADS Petascale Performance Tools Workshop, July 2007 8

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

– synthesize new metrics as functions of existing metrics
– relate metrics and structure to program source

CScADS Petascale Performance Tools Workshop, July 2007 9

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

– support top-down analysis with interactive viewer
– analyze results anytime, anywhere

CScADS Petascale Performance Tools Workshop, July 2007 10

Outline

• Sampling based measurement
• Binary analysis
• User interface
• Scalability analysis
• Components

– ours
– our desires

• Related modeling activities

CScADS Petascale Performance Tools Workshop, July 2007 11

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

CScADS Petascale Performance Tools Workshop, July 2007 12

Measurement Challenges

Performance often depends upon context
• Layered design

– math libraries
– communication libraries in parallel programs

• Generic programming, e.g. C++ templates
– both data structures and algorithms

• Goals
– identify and quantify context-sensitive behavior
– differentiate between types of performance problems

• cheap procedure called many times
• expensive procedure called few times

CScADS Petascale Performance Tools Workshop, July 2007 13

Understanding Costs In Context

Call Path Profiling

• Measure time spent in each procedure
• Attribute time upward along call chain
• Report average time per call per calling context

50
d

c

a b

main

Call
Graph c

a b

40
d

main

10
d

c
 Calling
Context

Tree

CScADS Petascale Performance Tools Workshop, July 2007 14

A Torture Test

#define HUGE (1<<28)

void d() {}

void c(long n) {
 for(int j=0; j<HUGE/n; j++) d();
}

void a(void (*f)(long)) { f(1); f(1); }

void b(void (*f)(long)) { f(2); f(2); f(2); f(2); }

void main() { a(c); b(c); }

c

a b

d

main

d

c

CScADS Petascale Performance Tools Workshop, July 2007 15

csprof: 1.5% overhead; accurate context-based attribution

Results with Existing Tools

(for the torture test)
• Instrumentation-based profilers

– gprof: dilates execution by a factor of 3-14
• cannot distinguish different costs for calling contexts

– Vtune: dilates execution by a factor of 31 (Linux+P4)!
• Call stack sampling profilers

– e.g., Apple’s Shark, HP’s scgprof
• can’t distinguish different costs for calling contexts

CScADS Petascale Performance Tools Workshop, July 2007 16

Call Path Profiling Overview

• At each sample event
– use call stack unwinding to identify full context

• [vector of return addresses; PC]
– record sample in a calling context tree (CCT)

• captures common context between samples
– “mark the current procedure frame”

• replace frame’s return address with address of a “trampoline”
– remember CCT path to marked frame

• When returning from a marked procedure frame
– increment edge count of the last call edge in the memoized path
– pop the last edge in the memoized path
– mark the caller’s frame with the trampoline
– return control to caller

• Low-overhead unwinding: need not unwind beyond marked frame

CScADS Petascale Performance Tools Workshop, July 2007 17

SPECint 2000 Benchmarks

Average overhead: gprof 82%, csprof 2.7%

(Opteron, gcc 4.1)

CScADS Petascale Performance Tools Workshop, July 2007 18

SPECfp 2000 Benchmarks

Average overhead: gprof 31%, csprof 3.2%

(Opteron, gcc 4.1)

CScADS Petascale Performance Tools Workshop, July 2007 19

 Ongoing Call Path Profiler Refactoring

• Platform: OS, architecture
• Profiling flavor

– flat vs. calling context (CC)
• CC: precise vs. summary
• CC: naive vs. smart unwinding (SU)

– SU: compiler information vs. binary analysis (BA) vs. emulation
• BA: eager vs. lazy

– SU: edge counting vs. pure call stack sampling
– threaded vs. non-threaded

• Initiation: preloading vs. static vs. attaching
• Synchronous vs. asynchronous events
• Asynchronous sample sources

– timers, counters
– instruction-based sampling

• Online control API

CScADS Petascale Performance Tools Workshop, July 2007 20

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

CScADS Petascale Performance Tools Workshop, July 2007 21

Goal: understand transformed loops in the
context of transformed routines

Why Binary Analysis?

• Understanding a program’s performance requires understanding
its structure

• Program structure after optimization may only vaguely resemble
the program source
– complex patterns of code composition

• e.g. C++ expression templates
– understanding loops is important to for understanding performance

• account for significant time in data-intensive scientific codes
• undergo significant compiler transformations

CScADS Petascale Performance Tools Workshop, July 2007 22

Program Structure Recovery with bloop

Analyze an application binary
• Construct control flow graph from branches
• Identify natural loop nests using interval analysis
• Map instructions to source lines, procedures

– leverage line map + DWARF debugging information
• Recover procedure boundaries
• Identify inlined code & its nesting in procedures and loops
• Normalize loop structure information to recover source-level view

CScADS Petascale Performance Tools Workshop, July 2007 23

Sample Flowgraph from an Executable

Loop nesting structure
– blue: outermost level
– red: loop level 1
– green loop level 2

Observation
optimization complicates

program structure!

CScADS Petascale Performance Tools Workshop, July 2007 24

HPCToolkit Workflow

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

CScADS Petascale Performance Tools Workshop, July 2007 25

Data Correlation

• Problem
– any one performance measure provides a myopic view

• some measure potential causes (e.g. cache misses)
• some measure effects (e.g. cycles)
• cache misses not always a problem

– event counter attribution is often inaccurate
• Approaches

– multiple metrics for each program line
– computed metrics, e.g. peak FLOPs - actual FLOPS

• eliminates mental arithmetic
• serves as a key for sorting

– hierarchical structure
• errors with line level attribution still yield good loop-level information

CScADS Petascale Performance Tools Workshop, July 2007 26

HPCToolkit System Overview

profile execution

performance
profile

application
source

binary
object code

compilation
linking

binary analysis

program
structure

interpret profile

source
correlation

hyperlinked
database

hpcviewer

CScADS Petascale Performance Tools Workshop, July 2007 27

hpcviewer User Interface

source pane

navigation pane metric pane

 flatten/zoom control view control

CScADS Petascale Performance Tools Workshop, July 2007 28

hpcviewer Views

• Calling context view
– top-down view shows dynamic calling contexts in which costs were

incurred
• Caller’s view

– bottom-up view apportions costs incurred in a routine to the routine’s
dynamic calling contexts

• Flat view
– aggregates all costs incurred by a routine in any context and shows

the details of where they were incurred within the routine

CScADS Petascale Performance Tools Workshop, July 2007 29

 Calling Context View: Chroma Lattice QCD

• costs for inlined procedures
• costs for loops in CCT

• inclusive and exclusive costs

static + dynamic structure

CScADS Petascale Performance Tools Workshop, July 2007 30

Dynamically nested
loops

Routines marked
inline, not inlined

 Inlined routines

6 loops around
operator
evaluations

 Fusing Static + Dynamic Structure: Chroma

CScADS Petascale Performance Tools Workshop, July 2007 31

 Caller’s View: Chroma Lattice QCD

• costs for inlined procedure
• costs for loops in CCT

• inclusive and exclusive costs
show attribution of procedure

costs to calling contexts

CScADS Petascale Performance Tools Workshop, July 2007 32

flatten

Current scope

unflatten

Flattening Static Hierarchies

• Problem
– hierarchical view of a program is too rigid
– sometimes want to compare children of different parents

• e.g. compare all loops, regardless of the routine they are inside

• Solution
– flattening elides a scope and shows its children instead

CScADS Petascale Performance Tools Workshop, July 2007 33

Flat View: S3D Combustion Code

attribute costs to loops
implicit with F90 vector syntax

fine-grain attribution to loops
within a loop nest

CScADS Petascale Performance Tools Workshop, July 2007 34

 Another Flat View of S3D

highlights costs for an implicit
loop that copies non-contiguous

4D slice of 5D data to
contiguous storage

CScADS Petascale Performance Tools Workshop, July 2007 35

 Computed Metrics for S3D

Wasted Opportunity
(Maximum FLOP rate

* cycles - (actual
FLOPs))

highlighted loop accounts for
11.4% of total program waste

Overall performance (15% of peak)
2.05 x 1011 FLOPs / 6.73 x 1011 cycles= .305 FLOPs/cycle

CScADS Petascale Performance Tools Workshop, July 2007 36

Outline

• Sampling based measurement
• Binary analysis
• User interface
• Scalability analysis
• Components

– ours
– our desires

• Related modeling activities

☛

CScADS Petascale Performance Tools Workshop, July 2007 37

 The Lump Under the Rug: Scaling Bottlenecks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64
25

6

10
24

40
96

16
38

4

65
53

6

CPUs

E
ff

ic
ie

n
c
y

Ideal efficiency

Actual efficiency

?

Synthetic ExampleNote: higher is better

CScADS Petascale Performance Tools Workshop, July 2007 38

Impediments to Scalability

• Communication overhead
– synchronization
– data movement

• Computation overhead
– replicated initialization
– partially replicated computation

• Parallelization deficiencies
– load imbalance
– serialization

• Algorithmic scaling
– e.g. reductions: time increases as O(log P)

CScADS Petascale Performance Tools Workshop, July 2007 39

Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks
• Guide user to problems
• Quantify the magnitude of each problem
• Diagnose the nature of the problem

CScADS Petascale Performance Tools Workshop, July 2007 40

 Challenges for Pinpointing Scalability Bottlenecks

• Parallel applications
– modern software uses layers of libraries
– performance is often context dependent

• Monitoring
– bottleneck nature: computation, data movement, synchronization?
– size of petascale platforms demands acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

CScADS Petascale Performance Tools Workshop, July 2007 41

 Performance Analysis with Expectations

• Users have performance expectations for parallel codes
– strong scaling: linear speedup
– weak scaling: constant execution time

• Putting expectations to work
– define our expectations
– measure performance under different conditions

• e.g. different levels of parallelism or different inputs
– compute the deviation from expectations for each calling context

• for both inclusive and exclusive costs
– correlate the metrics with the source code
– explore the annotated call tree interactively

CScADS Petascale Performance Tools Workshop, July 2007 42

 Performance expectation for weak scaling
– work increases linearly with # processors
– execution time is same as that on a single processor

!

Xw (nq) =
C(nq) "C(np)

Tq!

C(nq) = C(np)

 Weak Scaling Analysis for SPMD Codes

• Execute code on p and q processors; without loss of generality, p < q
• Let Ti = total execution time on i processors
• For corresponding nodes nq and np

– let C(nq) and C(np) be the costs of nodes nq and np

• Expectation:

• Fraction of excess work:
parallel overhead

total time

CScADS Petascale Performance Tools Workshop, July 2007 43

 Performance expectation for strong scaling
– work is constant
– execution time decreases linearly with # processors

 Strong Scaling Analysis for SPMD Codes

• Execute code on p and q processors; without loss of generality, p < q
• Let Ti = total execution time on i processors
• For corresponding nodes nq and np

– let C(nq) and C(np) be the costs of nodes nq and np

• Expectation:

• Fraction of excess work:

!

Xs(C,nq) =
qCq (nq) " pCp (np)

qTq

)()(ppqq npCnqC =

parallel overhead

total time

CScADS Petascale Performance Tools Workshop, July 2007 44

Scaling Analysis with Expectations

• Excess work metrics are intuitive
= 0 ideal scaling
> 0 suboptimal scaling

• Using excess work metrics
– X(I,n) ≈ X(E,n): scaling loss due to computation in n
– X(I,n) >> X(E,n): scaling loss due n’s callees
– using multiple views

• losses associated with few calling contexts ⇒ CCT view suffices
• losses spread across many contexts ⇒ use callers view

CScADS Petascale Performance Tools Workshop, July 2007 45

LBMHD size 10242

 computation

 ARMCI_Init

 armci_notify

 ARMCI_Get

 ARMCI_Barrier

other comm

0%

20%

40%

60%

80%

100%

4 9 16 25 36 49 64

Number of processors

R
e

la
ti

v
e

 c
o

s
t

other comm

 ARMCI_Barrier

 ARMCI_Get

 armci_notify

 ARMCI_Init

 computation

CScADS Petascale Performance Tools Workshop, July 2007 46

inclusive
excess work

exclusive
excess work

Strong Scaling Analysis of LBMHD

53% excess work
= 47% efficiency

14% scalability
loss due to
computation

17% scalability
loss due to
barrier-based
reductions

CScADS Petascale Performance Tools Workshop, July 2007 47

LANL’s Parallel Ocean Program (POP)

successive global
reductions on scalars

degrade parallel
efficiency
(7 total)

12% loss in
scaling due to

scalar reductions

7% in this
routine alone

CScADS Petascale Performance Tools Workshop, July 2007 48

UPC NAS CG class B (size 75000)

63% excess
work =
36% efficiency

Remote data
prefetch

CScADS Petascale Performance Tools Workshop, July 2007 49

UPC NAS CG class B (size 75000)

loss of efficiency due
 to barrier-based
implementation
of sum reduction

CScADS Petascale Performance Tools Workshop, July 2007 50

 Weak Scaling Analysis of MILC’s su3_rmd

CScADS Petascale Performance Tools Workshop, July 2007 51

 Scalability Analysis Using Expectations

• Broadly applicable
– independent of programming model
– independent of bottleneck cause
– applicable to a wide range of applications and architectures

• Easy to understand and use
– fraction of excess work is intuitive and relevant metric
– attribution to calling context enables precise diagnosis of bottlenecks
– provides quantitative feedback

• Perfectly suited to petascale systems
– call stack sampling is efficient enough for production use
– uses only local performance information
– data volume is modest and scales linearly

• Drawback
– pinpoints bottleneck, but provides no intuition into cause

CScADS Petascale Performance Tools Workshop, July 2007 52

Outline

• Sampling based measurement
• Binary analysis
• User interface
• Scalability analysis
• Components

– ours
– our desires

• Related modeling activities

☛

CScADS Petascale Performance Tools Workshop, July 2007 53

Components to Share

• libmonitor - infrastructure for augmenting program with monitoring
– what

• monitors program launch thread creation/termination, fork/exec, exit
– how

• preloaded library for dynamically linked executables
• static library for statically-linked executables

• hpcviewer user interface
– three views: calling context, caller’s view, flat view
– scalability analysis

• bloop binary analyzer
– identify loops, inlined code

• OpenAnalysis - representation-independent program analysis tools
– call graph and control-flow graph construction
– dataflow analysis

CScADS Petascale Performance Tools Workshop, July 2007 54

Component Needs

• Metadata collection
• Standard OS interface for sampling-based measurement
• Ubiquitous stack unwinder for fully-optimized code

– instruction cracker
– engine for recovering frame state info at any point in an execution

CScADS Petascale Performance Tools Workshop, July 2007 55

Outline

• Sampling based measurement
• Binary analysis
• User interface
• Scalability analysis
• Components

– ours
– our desires

• Related modeling activities☛

CScADS Petascale Performance Tools Workshop, July 2007 56

 Analysis and Modeling of Node Performance

Object
Code

Binary
Analyzer

•Control flow graph
•Loop nesting
•Instruction
dependences

•BB instruction mix

Static Analysis

Binary
Instrumenter

Instrumented
Code

Execute

• BB & Edge Counts
• Memory Reuse Distance
• Communication Volume & Frequency

Dynamic
Analysis

Architecture
neutral model

Scalable Models

Modeling
Program

Evaluate

IR code

Architecture
Description

Performance
Prediction
for Target

Architecture

Cross Architecture Models

Modulo
Scheduler

CScADS Petascale Performance Tools Workshop, July 2007 57

Capabilities of Modeling Toolkit

Loop level attribution of metrics
• Attribute execution costs to underlying causes

– data dependencies that serialize operations
– insufficient CPU resources
– memory delays (latency and bandwidth)

• Explain patterns of data reuse
– pinpoint opportunities for enhancing temporal reuse
– pinpoint low spatial reuse

• Automatic “what if” scenarios
– infinite number of CPU resources
– no register or memory dependencies
– no memory delays

