

Sampling-based Strategies for Measurement and Analysis

John Mellor-Crummey Department of Computer Science Rice University

CScADS Petascale Performance Tools Workshop, July 2007

Collaborators

- Rice
 - Nathan Tallent
 - Mark Krentel
 - Mike Fagan
 - Gabriel Marin
- Former students
 - Nathan Froyd
 - Cristian Coarfa
- RENCI
 - Rob Fowler

- Work at binary level for language independence
 - support multi-lingual codes with external binary-only libraries
- Profile rather than adding code instrumentation
 - minimize measurement overhead and distortion
 - enable data collection for large-scale parallelism
- Collect and correlate multiple performance measures
 - can't diagnose a problem with only one species of event
- Compute derived metrics to aid analysis
- Support top down performance analysis
 - intuitive enough for scientists and engineers to use
 - detailed enough to meet the needs of compiler writers
- Aggregate events for loops and procedures
 - accurate despite approximate event attribution from counters
 - loop-level info is more important than line-level info

- launch optimized application binaries
- collect statistical profiles of events of interest

- decode instructions and combine with profile data

extract loop nesting & inlining from executables

synthesize new metrics as functions of existing metrics

- relate metrics and structure to program source

- support top-down analysis with interactive viewer
- analyze results anytime, anywhere

Outline

- Sampling based measurement
- Binary analysis
- User interface
- Scalability analysis
- Components
 - ours
 - our desires
- Related modeling activities

Performance often depends upon context

- Layered design
 - math libraries
 - communication libraries in parallel programs
- Generic programming, e.g. C++ templates
 - both data structures and algorithms
- Goals
 - identify and quantify context-sensitive behavior
 - differentiate between types of performance problems
 - cheap procedure called many times
 - expensive procedure called few times

Call Path Profiling

- Measure time spent in each procedure
- Attribute time upward along call chain
- Report average time per call per calling context


```
main
#define HUGE (1<<28)</pre>
                                             а
void d() {}
void c(long n) {
  for(int j=0; j<HUGE/n; j++) d();</pre>
                                            \d
}
void a(void (*f)(long)) { f(1); f(1); }
void b(void (*f)(long)) { f(2); f(2); f(2); f(2); }
void main() { a(c); b(c); }
```


(for the torture test)

- Instrumentation-based profilers
 - gprof: dilates execution by a factor of 3-14
 - cannot distinguish different costs for calling contexts
 - Vtune: dilates execution by a factor of 31 (Linux+P4)!
- Call stack sampling profilers
 - e.g., Apple's Shark, HP's scgprof
 - can't distinguish different costs for calling contexts

csprof: 1.5% overhead; accurate context-based attribution

- At each sample event
 - use call stack unwinding to identify full context
 - [vector of return addresses; PC]
 - record sample in a calling context tree (CCT)
 - captures common context between samples
 - "mark the current procedure frame"
 - replace frame's return address with address of a "trampoline"
 - remember CCT path to marked frame
- When returning from a marked procedure frame
 - increment edge count of the last call edge in the memoized path
 - pop the last edge in the memoized path
 - mark the caller's frame with the trampoline
 - return control to caller
- Low-overhead unwinding: need not unwind beyond marked frame

SPECint 2000 Benchmarks

SPECint 2000 profiling overhead 200 180 160 140 120 % overhead gprof overhead 100 csprof overhead 80 60 40 20 0 164.gzip 175.vpr 176.gcc 181.mcf 252.eon 254.gap 256.bzip2 300.twolf 197.parser Benchmark Average overhead: gprof 82%, csprof 2.7%

(Opteron, gcc 4.1)

SPECfp 2000 Benchmarks

Ongoing Call Path Profiler Refactoring

- Platform: OS, architecture
- Profiling flavor
 - flat vs. calling context (CC)
 - CC: precise vs. summary
 - CC: naive vs. smart unwinding (SU)
 - SU: compiler information vs. binary analysis (BA) vs. emulation
 - BA: eager vs. lazy
 - SU: edge counting vs. pure call stack sampling
 - threaded vs. non-threaded
- Initiation: preloading vs. static vs. attaching
- Synchronous vs. asynchronous events
- Asynchronous sample sources
 - timers, counters
 - instruction-based sampling
- Online control API

- Understanding a program's performance requires understanding its structure
- Program structure after optimization may only vaguely resemble the program source
 - complex patterns of code composition
 - e.g. C++ expression templates
 - understanding loops is important to for understanding performance
 - account for significant time in data-intensive scientific codes
 - undergo significant compiler transformations

Goal: understand transformed <u>loops</u> in the context of transformed <u>routines</u>

Program Structure Recovery with bloop

Analyze an application binary

- Construct control flow graph from branches
- Identify natural loop nests using interval analysis
- Map instructions to source lines, procedures
 - leverage line map + DWARF debugging information
- Recover procedure boundaries
- Identify inlined code & its nesting in procedures and loops
- Normalize loop structure information to recover source-level view

Sample Flowgraph from an Executable

Loop nesting structure

- blue: outermost level
- red: loop level 1
- green loop level 2

Observation optimization complicates program structure!

Data Correlation

- Problem
 - any one performance measure provides a myopic view
 - some measure potential causes (e.g. cache misses)
 - some measure effects (e.g. cycles)
 - cache misses not always a problem
 - event counter attribution is often inaccurate
- Approaches
 - multiple metrics for each program line
 - computed metrics, e.g. peak FLOPs actual FLOPS
 - eliminates mental arithmetic
 - serves as a key for sorting
 - hierarchical structure
 - errors with line level attribution still yield good loop-level information

HPCToolkit System Overview

hpcviewer User Interface

hpcviewer Views

- Calling context view
 - top-down view shows dynamic calling contexts in which costs were incurred
- Caller's view
 - bottom-up view apportions costs incurred in a routine to the routine's dynamic calling contexts
- Flat view
 - aggregates all costs incurred by a routine in any context and shows the details of where they were incurred within the routine

Calling Context View: Chroma Lattice QCD

qdp_parsc 7 7 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	calar_specific.h 77 { 78 QMP_sum_float_array(dest, len); 79 } 80 81 //! Low level hook to QMP_global_si 82 inline void globalSumArray(double *	<u>static + dynamic</u> • costs for loops	<u>c structu</u>	re	Ó
7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	77 { 78 QMP_sum_float_array(dest, len); 79 } 30 31 //! Low level hook to QMP_global_si 32 inline void globalSumArray(double * 33 {	 <u>static + dynamic</u> costs for loops 	<u>structu</u>	re	Ċ
81 82 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	<pre>30 30 31 //! Low level hook to QMP_global_st 32 inline void globalSumArray(double * 33 {</pre>	• costs for loops			
8 8 8 1 8	//! Low level hook to QMP_global_si inline void globalSumArray(double * {	• costs for loops	IN COT		
8	3 {	dest, int ien)			
1 8 [,]					
	QMP_sum_double_array(dest, len);	 costs for inlined 	d proced	ures	
8	5 } 6				
8	7 //! Global sum on a multi1d				
8/	template <class t=""></class>	 inclusive and e 	xclusive	cost	S
8	inline void globalSumArray(multi1d<	<t>& dest)</t>		0000	
90	0 {				
		alling Context View Callers View Elat View			
		callers view Plat view			
	Scopes		# samples (I) 🔻	# samples	; (E)
▼ 🗟 Ch	hroma::TwoElavorExactWilsonTypeFermMonomi	al <odp::multi1d<odp::olattice<odp::pscalar<odp::pcolormatrix< td=""><td>2.30e05 38.7%</td><td></td><td>6</td></odp::multi1d<odp::olattice<odp::pscalar<odp::pcolormatrix<>	2.30e05 38.7%		6
▼₿(Chroma::MdagMSvsSolverCG <odp::olattice<c< td=""><td>DP::PSpinVector < ODP::PColorVector < ODP::RComplex < float >. 3 ></td><td>2.20e05 37.0%</td><td></td><td></td></odp::olattice<c<>	DP::PSpinVector < ODP::PColorVector < ODP::RComplex < float >. 3 >	2.20e05 37.0%		
	loop at syssolver mdagm cg b: 66-70		2.20e05 37.0%		
· ·	Chroma:::SystemSolverResults_t_Chroma:::In	wCG2 < ODP: OLattice < ODP: PSpinVector < ODP: PColor/Vector < ODP	2.20e05 37.0%		
	Chroma::SystemSolverResults_t Chroma::	InvCC2_a <odp::olattice<odp::pspinvector<odp::pcolorvector<< td=""><td>2.20e05 37.0%</td><td>1.00e04</td><td>1.78</td></odp::olattice<odp::pspinvector<odp::pcolorvector<<>	2.20e05 37.0%	1.00e04	1.78
	Ioon at invcg2 cc: 147-182		1.85e05 31.1%	5.00e03	0.8%
	Chroma::EvenOddPrecWilsonLinOn::	operator()(ODP::OLattice <odp::pspinvector<odp::pcolorvector<(< td=""><td>1.05e05 17.6%</td><td>1.00e04</td><td>1.7%</td></odp::pspinvector<odp::pcolorvector<(<>	1.05e05 17.6%	1.00e04	1.7%
	Chroma::EvenOddPrecWilsonLinOp::/ B: Chroma::EvenOddPrecWilsonLinOp::/	operator()(ODP::OLattice < ODP::PSpinVector < ODP::PColorVector < C	7.00e04 11.8%	1.50e04	2.5%
	II dobalSumArray		5.00e03 0.8%		
			5.00e03 0.8%	5.00e03	0.8%
	 III local sumso 				
	► Chroma::EvenOddPrecWilsonLinOn::on	erator()(ODP::OLattice < ODP::PSpin/vector < ODP::PColor/vector < OD	2.00e04 3.4%		
	Chroma::EvenOddPrecWilsonLinOp::op	verator()(ODP::OLattice < ODP::PSpinVector < ODP::PColorVector < OD	5.00e03 0.8%		-
CE	P By ChromaEvenouur recwisonEmopop				

-Fusing Static + Dynamic Structure: Chroma

Caller's View: Chroma Lattice QCD

00	0	hmc								
se_si	u3dslasł	1_w.c								
	686 687 688 689 690	/* the basic operations in this routine include loading the halfspinor * from memory, multiplying it by the appropriate gauge field, doing the * spin reconstruction, and summing over directions, and saving the partial * sum over directions */								
A	691	void mvv_recons_plus(size_t lo,size_t hi, int id, const void *ptr)								
U	693 694 695 696	DECL_COMMON_ALIASES_TEMPS; const Arg_s *a =(Arg_s *)ptr; int_low = (int)lo; const Arg_s *a =(Arg_s *)ptr; int_low = (int)lo; const Arg_s *a =(Arg_s *)ptr; int_low = (int)lo; const Arg_s *a =(Arg_s *)ptr; const	of pr	OCE	edure	Э				
	697	int high = (int)hi;								
	698 699	MY SPINOR* spinor field = $a \rightarrow spinfun$:								
	700									
	700 701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */								
	700 701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */		_)4	•			
	700 701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View)∢	•			
	700 701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes	# sample	s (I) 🔻	# samples) ∢ s (E))			
	700 701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes QM TH	# sample 5.50e04	s (I) ₹ 9.2%	# sample:	s (E) 9.2%				
	700 701 ₩₩₩_re *	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Q	# sample 5.50e04 5.50e04	s (I) ▼ 9.2% 9.2%	# sample: 5.50e04 5.50e04	s (E) 9.2% 9.2%				
	700 701 ₩wv_re *1 sse_s ▼ 41 Chr	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus u3dslash_wilson roma::SSEWilsonDslash::apply(QDP::OLattice <qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float< td=""><td># sample 5.50e04 5.50e04 5.50e04</td><td>s (I) ▼ 9.2% 9.2% 9.2%</td><td># sample: 5.50e04 5.50e04 5.50e04</td><td>s (E) 9.2% 9.2% 9.2%</td><td></td></qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float<>	# sample 5.50e04 5.50e04 5.50e04	s (I) ▼ 9.2% 9.2% 9.2%	# sample: 5.50e04 5.50e04 5.50e04	s (E) 9.2% 9.2% 9.2%				
	700 701 ********************************	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus u3dslash_wilson roma::SSEWilsonDslash::apply(QDP::OLattice <qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float chroma::EvenOddPrecWilsonLinOp::operator()(QDP::OLattice<qdp::pspinvector<qdp::pcolorvector<qdp::f< td=""><td># sample 5.50e04 5.50e04 5.50e04 3.50e04</td><td>s (I) ▼ 9.2% 9.2% 9.2% 5.9%</td><td># sample: 5.50e04 5.50e04 5.50e04 3.50e04</td><td>s (E) 9.2% 9.2% 9.2% 5.9%</td><td></td></qdp::pspinvector<qdp::pcolorvector<qdp::f<></qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float 	# sample 5.50e04 5.50e04 5.50e04 3.50e04	s (I) ▼ 9.2% 9.2% 9.2% 5.9%	# sample: 5.50e04 5.50e04 5.50e04 3.50e04	s (E) 9.2% 9.2% 9.2% 5.9%				
	700 701 ^{mvv_re} ∜a sse_s ▼ a Chr ▼ a Chr	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus u3dslash_wilson roma::SSEWilsonDslash::apply(QDP::OLattice <qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float chroma::EvenOddPrecWilsonLinOp::operator()(QDP::OLattice<qdp::pspinvector<qdp::pcolorvector<qdp::f Chroma::SystemSolverResults_t_Chroma::InvCG2_a<qdp::olattice<qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector<< td=""><td># sample 5.50e04 5.50e04 5.50e04 3.50e04 3.00e04</td><td>s (I) ▼ 9.2% 9.2% 5.9% 5.0%</td><td># sample: 5.50e04 5.50e04 3.50e04 3.00e04</td><td>s (E) 9.2% 9.2% 5.9% 5.0%</td><td></td></qdp::olattice<qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector<<></qdp::pspinvector<qdp::pcolorvector<qdp::f </qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float 	# sample 5.50e04 5.50e04 5.50e04 3.50e04 3.00e04	s (I) ▼ 9.2% 9.2% 5.9% 5.0%	# sample: 5.50e04 5.50e04 3.50e04 3.00e04	s (E) 9.2% 9.2% 5.9% 5.0%				
	700 701 ^{mwv_re} ∜a sse_s ▼a Chr ▼a C	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus cons_plus cons_plus cons_plus cons_stantiana cons_plus	# sample 5.50e04 5.50e04 3.50e04 3.50e04 3.00e04 5.00e03	s (I) ▼ 9.2% 9.2% 5.9% 5.0% 0.8%	# sample: 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03	s (E) 9.2% 9.2% 5.9% 5.0% 0.8%				
	700 701 *@ sse_s ▼@ Chr ▼@ Chr ▼@ C	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus ru3dslash_wilson roma::SSEWilsonDslash::apply(QDP::OLattice <qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float chroma::EvenOddPrecWilsonLinOp::operator()(QDP::OLattice<qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector<qdp::f Chroma::SystemSolverResults_t Chroma::InvCG2_a<qdp::olattice<qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector< Chroma::EvenOddPrecWilsonLinOp::operator()(QDP::OLattice<qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector< p=""></qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector<></qdp::olattice<qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector< </qdp::pspinvector<qdp::pspinvector<qdp::pcolorvector<qdp::f </qdp::pspinvector<qdp::pcolorvector<qdp::rcomplex<float 	# sample 5.50e04 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03 2.00e04	s (I) V 9.2% 9.2% 5.9% 5.0% 0.8% 3.4%	# sample: 5.50e04 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03 2.00e04	s (E) 9.2% 9.2% 9.2% 5.9% 5.0% 0.8% 3.4%				
	700 701 *@ sse_s *@ Chr *@ C ▶@ •@ •@ •@	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus u3 dslash_wilson roma::SSEWilsonDslash::apply(QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::RComplex < float chroma::EvenOddPrecWilsonLinOp::operator()(QDP::OLattice < QDP::PSpinVector < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F	# sample 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03 2.00e04 1.50e04	s (1) 9.2% 9.2% 9.2% 5.9% 5.0% 0.8% 3.4% 2.5%	# sample: 5.50e04 5.50e04 3.50e04 3.50e04 3.00e04 5.00e03 2.00e04 1.50e04	5 (E) 9.2% 9.2% 9.2% 5.9% 5.0% 0.8% 3.4% 2.5%				
	700 701 *@ sse_s ♥@ Chr ♥@ C ♥@ C ♥@ C	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus u3dslash_wilson roma::SSEWilsonDslash::apply(QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::RComplex < float chroma::EvenOddPrecWilsonLinOp::operator()(QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::F Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::PColorVector < Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < Chroma::TwoFlavorFxactWilsonTvpeFermMonomial < ODP::multitid < ODP::OLattice < QDP::PScalar < ODP::PColorVector < Chroma::TwoFlavorFxactWilsonTvpeFermMonomial < ODP::multitid < ODP::OLattice < QDP::PScalar < ODP::PColorVector < Chroma::TwoFlavorFxactWilsonTvpeFermMonomial < ODP::multitid < ODP::OLattice < QDP::PScalar < ODP::PColorVector < Chroma::TwoFlavorFxactWilsonTvpeFermMonomial < ODP::multitid < ODP::OLattice < QDP::PScalar < ODP::PColorVector < Chroma::TwoFlavorFxactWilsonTvpeFermMonomial < ODP::multitid < ODP::OLattice < QDP::PScalar < ODP::PColorVector < Chroma::TwoFlavorFxactWilsonTvpeFermMonomial < ODP::multitid < ODP::OLattice < QDP::PScalar < ODP::PColorVector < Chroma::TwoFlavorFxactWilsonTvpeFermMonomial < ODP::multitid < ODP::OLattice < QDP::PScalar < ODP::PColorVector < Chroma::TwoFlavorFxactW	# sample 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03 2.00e04 1.50e04 5.00e03	s (I) ▼ 9.2% 9.2% 9.2% 5.9% 5.0% 0.8% 3.4% 2.5% 0.8%	# sample: 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03 2.00e04 1.50e04 5.00e03	5 (E) 9.2% 9.2% 9.2% 5.9% 5.0% 0.8% 3.4% 2.5% 0.8%				
	700 701 701 *@ sse_s ▼@ Chr ♥@ C ▶@ ♥@ C ₽@ ₽@ €@	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View Scopes Cons_plus u3dslash_wilson roma::SSEWilsonDslash::apply(QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < QDP::RComplex < float chroma::EvenOddPrecWilsonLinOp::operator()(QDP::OLattice < QDP::PSpinVector < QDP::PColorVector < CDP::PColorVector < QDP::PColorVector < QDP::PColorVecto	# sample 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03 2.00e04 1.50e04 5.00e03 5.00e03 5.00e03	s (1) 9.2% 9.2% 9.2% 5.9% 5.0% 0.8% 3.4% 2.5% 0.8% 8.4%	# sample: 5.50e04 5.50e04 3.50e04 3.00e04 5.00e03 2.00e04 1.50e04 5.00e03 5.00e03	5 (E) 9.2% 9.2% 9.2% 5.9% 5.0% 0.8% 3.4% 2.5% 0.8% 8.4%				

Flattening Static Hierarchies

- Problem
 - hierarchical view of a program is too rigid
 - sometimes want to compare children of different parents
 - e.g. compare all loops, regardless of the routine they are inside
- Solution
 - flattening elides a scope and shows its children instead

Flat View: S3D Combustion Code

00	0	s3d_f90.x
mixav	g_trans	port_m.f90
¥.	/34	aimFlux(:,:,:,n_spec,:) = 0.0
V	735	DIRECTION: do m=1,3
U	736	SPECIES: do $n=1,n_spec-1$
	737	if (have quitch) then
	730	If (Baro_switch) then
	739	diffeling force includes gradient in mole fraction and baro-diffusion. $diffeling(i + i + n m) = -D_{in} mixpup(i + i + n) * (aread Ve(i + i + n m)) * (aread Ve(i + n m)) * (aread Ve(i + i + n m)) * (aread Ve(i + n m)) * (area$
	740	$unriux(.,.,n,n) = -Ds_m(xavy(.,.,n)) (grad_1s(.,.,n,n)) \alpha$
	741	+ $r_{S(,n)}$ (grad_nixMiw(,n)) &
	743	else ottribute coste to loopo
	744	I driving force is just the gradient in mole fraction:
6	745	diffElux(totonm) = - Ds_mixayo(toton) * (grad Ys(totonm)) to see all all states $\Box \cap O$ and all a states are set of a
	746	+ Ys(total) * grad_mixMW(totalm)) IMPIICIT WITH F90 VECTOR SYNTAX
	747	endif
	748	
	749	! Add thermal diffusion:
	750	if (thermDiff_switch) then
0	751	diffFlux(:,:,:,n,m) = diffFlux(:,:,:,n,m) & IIIIE-Grain all IDULION to IOODS
	752	- Ds_mixavg(:,:,:,n) * Rs_therm_diff(:,:,:,n) * molwt(n) &
	753	* avmolwt * grad_T(:,:,:,m) / Temp WITNIN & OOD NEST
	754	endif
	755	
		Calling Contact View Callers View Elat View
		Calling Context view Callers view Flat view
		Scopes 😥 🔂 🐨 🗰 🗰 🗰 Scopes (I) 🗰 samples (E) 1
T	loon a	t mixaya transport m f90: 735-760 2.17e07 11.3% 2.17e07 11.3
Ľ.,		at mixava transport m f00: 736-758 2.17e07 11.38 2.17e07 11.3
		at mixavg_transport_m.190, 745
		bp at mixavg_transport_m.r90: 745
	► lo	op at mixavg_transport_m.r90: 758
	lo	op at mixavg_transport_m.f90: 740
	lo	op at mixava transport m.f90: 751

Another Flat View of S3D

00	0	s3d_f90.x	
thsf.fs t	90 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	<pre>! grad_Y - Species mass fraction gradients may be required in tran ! evaluation as well as for boundary conditions. ! !notes by ramanan - 01/05/05 !The array dimensioning can be misleading !For grad_u, 4th dimension is the direction and 5th dimension is !For grad_Ys, 4th dimension is the species and 5th dimension is call computeVectorGradient(u, grad_u) call computeScalarGradient(temp, grad_T) do n=1,n_spec call computeScalarGradient(yspecies(:,:,:,n), grad_Ys(:,:,:,n,:)) enddo !Added by Ramanan - 01/05/05 !Store the boundary grad values if(vary_in_x==1)then if (xid==0) then grad_u_x0 = grad_u(1,:,:,1,:) grad_Ys_x0 = grad_Ys(1,:,:,:) h_spec_x0 = h_spec(1,:,:) end if</pre>	the velocity component the direction highlights costs for an implicit loop that copies non-contiguous 4D slice of 5D data to contiguous storage
	Experime ~~~s3 loop at loop at loop at	Calling Context View Callers View F Scopes C Callers View F scopes C C Callers View F c C C C C C C C C C C C C C C C C C C	# samples (I) # samples (E) ▼ 1.91e08 100.0 2.60e07 13.6% 2.17e07 11.3% 2.17e07 11.3% 2.03e07 10.6% 1.94e00 4.7% 8.94e06 4.7%

CScADS Petascale Performance Tools Workshop, July 2007

Computed Metrics for S3D

💮 💮 🖉 /Users/johnmc/Documents/Admin/Grants/Active/DOE/PERI/Tiger Teams/S3D/s3d-opteron-1cpu-20iterations-hpctoolkit-db...

Outline

- Sampling based measurement
- Binary analysis
- User interface
- Scalability analysis
- Components
 - ours
 - our desires
- Related modeling activities

The Lump Under the Rug: Scaling Bottlenecks

Note: higher is better

Synthetic Example

CScADS Petascale Performance Tools Workshop, July 2007

Impediments to Scalability

- Communication overhead
 - synchronization
 - data movement
- Computation overhead
 - replicated initialization
 - partially replicated computation
- Parallelization deficiencies
 - load imbalance
 - serialization
- Algorithmic scaling
 - e.g. reductions: time increases as O(log P)

Goal: Automatic Scaling Analysis

- Pinpoint scalability bottlenecks
- Guide user to problems
- Quantify the magnitude of each problem
- Diagnose the nature of the problem

- Challenges for Pinpointing Scalability Bottlenecks

- Parallel applications
 - modern software uses layers of libraries
 - performance is often context dependent
- Monitoring
 - bottleneck nature: computation, data movement, synchronization?
 - size of petascale platforms demands acceptable data volume
 - low perturbation for use in production runs

Performance Analysis with Expectations

- Users have performance expectations for parallel codes
 - strong scaling: linear speedup
 - weak scaling: constant execution time
- Putting expectations to work
 - define our expectations
 - measure performance under different conditions
 - e.g. different levels of parallelism or different inputs
 - compute the deviation from expectations for each calling context
 - for both inclusive and exclusive costs
 - correlate the metrics with the source code
 - explore the annotated call tree interactively

Performance expectation for weak scaling

- work increases linearly with # processors
- execution time is same as that on a single processor
- Execute code on p and q processors; without loss of generality, p < q
- Let T_i = total execution time on i processors
- For corresponding nodes n_q and n_p

- let $C(n_q)$ and $C(n_p)$ be the costs of nodes n_q and n_p

• Expectation: $C(n_q) = C(n_p)$

• Fraction of excess work:
$$X_w(n_q) = \frac{C(n_q) - C(n_p)}{T_q}$$
 parallel overhead total time

Performance expectation for strong scaling

- work is constant
- execution time decreases linearly with # processors
- Execute code on p and q processors; without loss of generality, p < q
- Let T_i = total execution time on i processors
- For corresponding nodes n_q and n_p

- let $C(n_q)$ and $C(n_p)$ be the costs of nodes n_q and n_p

• Expectation: $qC_q(n_q) = pC_p(n_p)$

• Fraction of excess work:
$$X_s(C,n_q) = \frac{qC_q(n_q) - pC_p(n_p)}{qT_q}$$
 parallel overhead total time

Scaling Analysis with Expectations

- Excess work metrics are intuitive
 - = 0 ideal scaling
 - > 0 suboptimal scaling
- Using excess work metrics
 - $X(I,n) \approx X(E,n)$: scaling loss due to computation in n
 - X(I,n) >> X(E,n): scaling loss due n's callees
 - using multiple views
 - losses associated with few calling contexts \Rightarrow CCT view suffices
 - losses spread across many contexts \Rightarrow use callers view

LBMHD size 1024²

Strong Scaling Analysis of LBMHD

/users/ccristi/Research/cc-caf-experiments/bi	in/mhd-caf-0111		
File			53% excess work
mhd.cafctmp.w2f.f		- less trace	= 470/ officiancy/
153 PROGRAM mhd INCIUS	ve exc	ciusive	- 47% eniciency
154 use w2f_types	work exc	cess work	
155 use CafRuntime		1	
156 use Caf_Real8			
157 use Caf_Real4			
158 use Cat_Integer8			_
Calling Context View Callers View Flat View			
			🗻 🔰 14% scalability
Scopes 🙎 🔍 🐺	XS(I,n) # sam 🟹	XS(E,n) # sam	loss due to
🗈 main	0.53e00	4	computation
P B>mhd	0.53e00	0.00e00	
🗭 decomp	0.14e00	0.14e00	
🗢 🛱 cafinit_	0.10e00		
┝- 🛱> stream	0.09e00	0.02e00	17% scalability
► 🛱 caf_allsum_dp	0.06e00	=	
► 🖻 caf_allsum_dp	0.06e00		
┝- 🛱> caf_allsum_dp	0.05e00		barrier-based
∽ 🛱 cafglobalstartupinit_	0.02e00		
► 🛱 caffinalize_	0.01e00		reductions
⊶ 🛱> cafgetscalar_	0.00e00		
🗠 🛱 cafgetscalar_	0.00e00		
⊶ 🛱 cafgetscalar_	0.00e00		
🗠 🛱 cafsynchall_	0.00e00		
mhd.cafctmp.w2f.f: 1594	0.00e00	0.00e00	
		►	

CScADS Petascale Performance Tools Workshop, July 2007

LANL's Parallel Ocean Program (POP)

CScADS Petascale Performance Tools Workshop, July 2007

UPC NAS CG class B (size 75000)

UPC NAS CG class B (size 75000)

🛎 cg	u-bupc.	В							×
File									
cg.c									
	1543 1544 1545	double re {	duce_sum(dou	uble rs_a)					-
0	1546	int rs_i;							
	1547 1548	int rs_o;							
	1549	#if (TIMER	S_ENABLED =	= TRUE)	S	s of ef	fici	encv due	
	1550	timer_sta	art(TIMER_ALL	REDUCE);		horrio	r b		
	1551	#endif			J	pame	1-D	aseu	
	1552			in	۱p	olemer	ntat	ion	
	1553	upc_bari	ner;	of		sum ro	du	ction	
	1554	2.2.2. 2. Co			2	built re	uu	CIION	
	1555	$rs_0 = (n + i)$	IF_FOW ~ NOW_F	ANUL DES			1113		
A	1550	101(18_1=	-rs_0, rs_i<(rs_		···-	COLO, IS	_(***)		
	1558	if/rei	MYTHREAD						
	1550	II(13_1 {							-
		•							•
▲					1			<u></u>	
Call	ing Conte	ext View	Callers View	Flat View					
	Sco	pes		₽	000000	XS(l,n)	Δ.	XS(E,n)	
🗈 us	ser_main					0.63e00		0.00e00	
9	loop at c	g.c: 409-46	9		100	0.60e00		0.00e00	
9	conj_g	rad			100	0.60e00		0.08e00	
1	🕒 🕞	at 1.c: 12	06-1440		100	0.57e00		0.08e00	
	🔶 lo	op at cg.c: 1	1306-1334			0 33e00		0_05e00	
	⊶ 🖒 re	duce_sum				0.17e00		0.00e00	
	• 🛱 _u	ipcr_wait	-			0.03800			
	🗠 🖨 re	duce_sum			200	0.02e00		0.00e00	
	🔶 lo	op at cg.c: 1	224-1298		1000	0.02e00		0.02e00	
	🔶 lo	op at cg.c: 1	1400-1403		1111	0.00e00		0.00e00	
	- Iou	n at ca c	438-1440		1	0 00e00		0 00e00	

- Weak Scaling Analysis of MILC's su3_rmd

l≝ su3_rmd				
File				
com_mpi.c				
1581 void				-
1582 wait gather(msg tag *mtag)				
1583 {				=
1584 MPI_Status status;				
1585 int i;				-
				
Calling Cantaxt View Callers View Elat Vi				
Calling Context View Callers View Flat View	ew			
Scopes 🙎 🏚 🖡		XW(l,n) # 🔻	XW(E,n)	-
🔶 main		0.33e00	0.00e00 .	
🗠 update	100	0.31e00	0.00e00 .	•• =
🗣 path_product	100	0.24e00	-0.01e00 .	
		0.22e00		
P-≪∃ path_product	100	0.05e00	-	
⊶≪≣ path_product	100	0.04e00		
► ← ← € u_shift_hw_fermion	100	0.03e00		
⊶ 🔁 path_product		0.02e00		
e-≪e path_product	100	0.02e00		
e-≪≣ path_product		0.02e00		
e-≪≣ path_product		0.01e00		
•		0.01e00		_
		0.01e00		
delect for field exercicl	1000	0.00e00		
delach fo field eposial	100	0.00e00		
A distash_in_heid_special		0.00e00		
				-

CScADS Petascale Performance Tools Workshop, July 2007

- Scalability Analysis Using Expectations

- Broadly applicable
 - independent of programming model
 - independent of bottleneck cause
 - applicable to a wide range of applications and architectures
- Easy to understand and use
 - fraction of excess work is intuitive and relevant metric
 - attribution to calling context enables precise diagnosis of bottlenecks
 - provides quantitative feedback
- Perfectly suited to petascale systems
 - call stack sampling is efficient enough for production use
 - uses only local performance information
 - data volume is modest and scales linearly
- Drawback
 - pinpoints bottleneck, but provides no intuition into cause

Outline

- Sampling based measurement
- Binary analysis
- User interface
- Scalability analysis
- Components
 - ours
 - our desires
- Related modeling activities

- libmonitor infrastructure for augmenting program with monitoring
 - what
 - monitors program launch thread creation/termination, fork/exec, exit
 - how
 - preloaded library for dynamically linked executables
 - static library for statically-linked executables
- hpcviewer user interface
 - three views: calling context, caller's view, flat view
 - scalability analysis
- bloop binary analyzer
 - identify loops, inlined code
- OpenAnalysis representation-independent program analysis tools
 - call graph and control-flow graph construction
 - dataflow analysis

- Metadata collection
- Standard OS interface for sampling-based measurement
- Ubiquitous stack unwinder for fully-optimized code
 - instruction cracker
 - engine for recovering frame state info at any point in an execution

Outline

- Sampling based measurement
- Binary analysis
- User interface
- Scalability analysis
- Components
 - ours
 - our desires
- Related modeling activities

Analysis and Modeling of Node Performance

Loop level attribution of metrics

- Attribute execution costs to underlying causes
 - data dependencies that serialize operations
 - insufficient CPU resources
 - memory delays (latency and bandwidth)
- Explain patterns of data reuse
 - pinpoint opportunities for enhancing temporal reuse
 - pinpoint low spatial reuse
- Automatic "what if" scenarios
 - infinite number of CPU resources
 - no register or memory dependencies
 - no memory delays