<3

aaldinif-

GPU

Ben de Waal
Summer 2008

NVIDIA

Agenda

® Quick Roadmap

®A few observations

® And a few positions

© NVIDIA Corporation 2007

GPUs are Great at Graphics <X

NVIDIA

POWERED BY &°

¥ ot .
i
= -
I j L 4 -
'ﬁ 5 -
<€ Cn is'@MGGr%ek/Electronic Arts

NVIDIA.

© NVIDIA Corporaiion 2007

GPUs are Great at Other Things!

® An expanding trend over the last few years

® Successtul applications in many areas

® Computational geometry, biology, chemistry, physics,
finance...

® Computer vision
® Database management
® Signal processing

® Physics simulation
®

© NVIDIA Corporation 2007

C for the GPU R

New Architecture for Computing

\

RigidBody Marix
Physics Numerics ~ Equation Sequence
Solver

Unprecedented Performance

=
NVIDIA

-

Standard C Programming

dim3 DimGrid(100,50); /5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

New Applications

© NVIDIA Corporation 2007

<3

NVIDIA

45 iion US

70M CUDA GPUs

60K CUDA Developers

Rl T e R S s S

C U D a Heterogeneous Computing

Finance Medical Biophysics Numerics Audio Video Imaging

© NVIDIA Corporation 2007

GeForce GTX 280 Parallel Computing &
Architecture

21 20 20 2 21 21 3 R 2) 0 L L Rl 2 2) 2 21 2 B A 2 21 21 21 2)) O) O
4 A ' P '@ A l

2120 20 2 2L 21 3 R 1) L L L Rl 2 21 21 2 21 2 2 A 2 21 21 21 21 2 2 A A 2 2
4 A A A | @ l

o, e W T W e e

—_—

Memory Memory Memory Memory Memory Memory Memory Memory

© NVIDIA Corporation 2007

CUDA Terminology: FS%A
Grids, Blocks, and Threads |

® Programmer partitions problem GPU device
Grid 1

A kernel executes as a grid of B'°°k B'°°k B'°C
0 0 1 0 2 0
thread blocks

into a sequence of kernels.

A thread block is an array of
threads that can cooperate

Threads within the same block
synchronize and share data in
Shared Memory

Execute thread blocks on
multithreaded multiprocessor SM
cores

© NVIDIA Corporation 2007

CUDA Programming Model: rﬁ%ﬁ
Thread Memory Spaces g

Thread Id, Block Id ® Each kernel thread can read:
® ThreadId per thread

Kernel Registers ® BlockId per block
Thread ® Constants per grid

Program Local Memory ® Texture per grid
Written in C

Shared ® Each thread can read and write:
Memory ® Registers per thread
® Local memory per thread

Constants ® Shared memory per block
® Giobal memory per grid

Texture

® Host CPU can read and write:

: Constants per grid
Texture per grid

® Giobal memory per grid

© NVIDIA Corporation 2007

Trends and Observations <X

NVIDIA
® cores generally doubles per family

® Lowend has substantially less cores than high end
® Ranges from 8 to 100s

® Memory hierarchy will likely remain

® .
Evol
volving

Processor expressiveness

Easy of programming

Reducing performance cliffs
Hierarchical scheduling & partitioning
Nested parallelism

® Heterogeneous computing

® Algorithms vary
® Run them on the most suitable processor

© NVIDIA Corporation 2007

Autotuning — Super Languages <X

NVIDIA

® One Possible extreme outcome:

People program in an expressive enough language that maps
fairly cleanly onto the installed base of processors

¢ Programmer driven
® Just very simple machine translation needed

As an example, CUDA’s programming paradigm also scales
with CPU cores

® Dpata parallel
® Memory hierarchy is explicit

® .e. It reflects an architectural superset of several different

designs

© NVIDIA Corporation 2007

Heterogeneous Tuning Space <A

NVIDIA

® Cache hit architectures
® Like traditional CPUs
® Thread driven execution
® NUMA / Cost of global coherence
® Cache cliffs (hits, misses, aliasing, etc.)
® Sscalar/ Vector (SIMD)

® Cache miss architectures
® Like many GPUs
® Data driven execution
® wide range of cores
® NUMA / sometimes no global coherence
® Memory technology exposure (banks, etc.)
® vector/ Scalar

© NVIDIA Corporation 2007

Autotuning — Really Smart Code

® Another extreme outcome:

Genetic programming style autotuners
® Evolves optimal code for any (local) architecture
Potential to find a diamond in the state of Texas
Somehow still generalize
Good news: It’s parallelizable!

Detour: Circuit Synthesis
® Similar Problem
® Remarkable success
® Remarkable exploitation

Genetic Programming lll, Koza, John R, et al, 1999
Chapter 25

© NVIDIA Corporation 2007

NVIDIA

Autotuning

® Both extremes seem to be too good to be true

® weln probably end up in the middle

® Programmer will do some of the parameterization
® Identify blocks
® Memory tradeoffs
® Serial code

® Autotuners explores smaller space

© NVIDIA Corporation 2007

Composition is key <X

NVIDIA

® Tuners likely need access to complete code base

® Need powerful/expressive enough IL that isnt source
® Allow investment

® Client side must be smart upfront, or binary ships its
own brains

® Smart client
® canhavelL logic for local system, supplied perhaps by IHVs

® Smart binary
® more flexible but may not understand the target

® Seems desirable for IL to include high level expression

© NVIDIA Corporation 2007

Compiling CUDA

C/C++ CUDA
Appllcatlon

CPU Code

Virtual PTX Code

J

PTX to Target
Translator

<3

NVIDIA

© NVIDIA Corporation 2007

Virtual to Target ISA Translation

1d.global.v4.f32 {$f1,$f3,$f5,$Ff73},[$r9+0];
mad. 32 $f1,$f5,%$f3,$f1;

PTX Code ® Pparallel Thread eXecution (PTX)

® virtual Machine and ISA
Distribution format for applications

PTX to Target Install-time translation

Translator “fat binary” caches target-specific
versions

\jlll u @ ® Target specific translation optimizes

® 2
Resource allocation
® Performance

0x103c8009 OXOfffffff
0xd00e0609 0xa0c00780
0x100c8009 0x00000003
0x21000409 0x07800780

© NVIDIA Corporation 2007

Interesting Architectures <X

NVIDIA

® Do more on GPUs

® Millions out there N JE

-

® Compact, well suited for server farma =~ i

¢ Plenty of tuning parameters

® A very hard problem

¢ Represents many issues many-core CPUs are going to

® |is like the future — Today

© NVIDIA Corporation 2007

Interesting Architectures <X
NVIDIA

® Heterogeneous Tuning

® Figuring out how to divide work appropriately among
asymmetrical cores

® E.g. partitioning a problem to map serial code onto an
aggressive out-of-order mono-core CPU plus parallel
parts of problem onto a plenty core GPU.

© NVIDIA Corporation 2007

<X

NVIDIA

Questions?

Ben de Waal
ben@nvidia.com

© NVIDIA Corporation 2007

