m [JNM SCHOOL of ENGINEERING

Department of Computer Science

Improving Tool Startup and
Runtime Performance

Dorian Arnold

University of New Mexico

MRNet architecture

(1) Launch processes
(2) Interconnect topology

(3) Runtime communication

.~
-~

This talk

» How do we plan to leverage native (high-speed)
services for improving MRNet?

o Job launchers/resource managers

o Communication services and fabrics

Current (sequential) process launch

» Parent creates children

» Local = fork()/exec()

’r 7/ AY \\
’r 7 \ \\
- 7/ N ~
-7 4 Ay S
- 4 A SS
e 4 A SS
-7 ’ N S
e 4 A S
/” /l \\ \‘\
» Remote = rsh-based - ' ‘ >
o Q Q
4 o V24
» MRNet’s “standard
/I:' ll“ III’ Il“ III' lI“ II:' ‘l“
/:I|“ Il||\\ /II“ lll‘\
] 1] 1
\

Problems with sequential launch

» Serialized process

o Often much slower than data collection and analysis

» Resource contention
o File system (e.g. for program binary)

o Network

i ®\UNMI Scalable Systems Lab

Current XT process launch

» Bulk-launch 1 process per node

» Process launches collocated
processes

ENUNM | Scalable Systems Lab

Current MRNet Topology Dissemination

» Hierarchical, sequential dissemination
o For both sequential and XT process launch mechanisms

1. Front-end passes to some processes

2. Processes iteratively propagate to other processes

i ®NUNMI Scalable Systems Lab

Current MRNet IPC

» TCP/IP for inter-process communication

» Broadcast & point-to-point primitives

» Doesn’t necessarily use high-performance networks
» Point-to-point messages transit multiple hops

» No scatter operation

i ®NUNMI Scalable Systems Lab

Generic Goals

» Use high-performance services (when available)
» Use reasonable defaults otherwise
o |.e., current default mechanisms

» Use uniform abstractions and protocols independent
of underlying mechanisms

» Increase MRNet portability to new systems

More specifically, we want to ...

» Develop a single set of abstractions and protocols for
job launch, information dissemination and IPC

» Use native resource managers/job launchers for
process creation

» Use scalable services for information dissemination

» Use high-performance runtime IPC

i ®\UNMI Scalable Systems Lab

Refactoring MRNet process launch

Startup

ALPS SLURM OpenRTE

LaunchMON

» Facilitate creating, porting and maintaining individual
tools to large scale HPC systems

» Abstract common operations into a single API with
plug-ins for platform specific implementations

» Basic (relevant) services
o Launch or attach to a job (priming it for tracing)

o Co-locate tool processes with running application processes

E\NUNMI Scalable Systems Lab

Have you heard the one about ...

We need a TBON to scalably™ bootstrap our TBON

“That’s just so crazy, it just might work!”

* I've applied for U.S. citizenship ©

i ®\UNMI Scalable Systems Lab

A lightweight framework for MRNet
bootstrapping

» LIBI: Lightweight infrastructure bootstrapping
infrastructure

> Name is a work in progress ©

o Generic service for scalable system instantiation and
initialization

o Used for MRNet startup and torn down afterwards

i ®NUNMI Scalable Systems Lab

LIBI Services

» Process launch

» Scalable, low-level collectives

ii ®NUNMI Scalable Systems Lab

Using LIBI to initialize MRNet

1. Front-end launches LIBI @

2. Use LIBI to launch MRNet ‘ _______________________ @
processes

3. Use LIBI to scatter topology ‘ _______ @ ‘ ______ @
information

. Parent info

4. MRNet finalizes initialization @ w @ w

Advantages of MRNet of LIBI

» Complete separation of process launch from topology
information dissemination

» Consistent, platform-independent framework for
process deployment and interconnection

» Refactors platform-dependent mechanisms into single,
isolated component

i ®NUNMI Scalable Systems Lab

Proposed LIBlI implementation

» On initialization, launch LIBI processes
o 1 LIBI process per relevant node
o Bulk-launch service when available
o Rsh-based mechanism when bulk-launch not available

» Organize LIBI processes into tree

» LIBI launch service

o LIBI front-end retrieves and distributes binaries via LIBI tree to limit
file system and network contention

+ Similar to our “scalable binary relocation service”
» LIBI communication service
o Rudimentary data transfer
o PMGR-based with COBO as reference implementation

Related work

» SLURM: Simple Linux utility for resource management
o Persistent daemons

o Dynamic trees when SLURM command is invoked
o LIBI would leverage SLURM when available
o SLURM offers no communication services

» SCELA: Scalable and extensible launching architecture
> MVAPICH MPI

o Launches nodes serially
> No mechanisms for easing file system load

o Unclear whether ScELA is readily extractable from MVAPICH
* Did the get the “componentization” memo?

MRNet IPC

send(“%s %d’, ...)

ﬁ packetize*

j MRNet packet

ﬁ buffer

E ' MRNet message
l serialize

[T I [[]]]bytearray

* Also in the GWBED, right after “misunderestimate”

unpack(“%s %d’, ...)

[

1
™
!

MRNet IPC

» TCP/IP connections

o Multicast over unicast approach

» Abstract communication layer

o Point-to-point, group, scatter operations

o Allow flexible implementation replacement
True multicast

TCP, Custom-networks, MPI, IP multicast, ...
Bypass tree for direct point-to-point

Shared memory

One-sided communication, RDMA, ...

Refactoring MRNet IPC

MRNet

low-level send()/recv() primitives

TCP/
IP Portals DCMF BTL

Basic primitives
» session establishment
° single end-point
o group of end-points
o bi-directional
o Should back-ends be allowed to establish sessions

» send data

o unicast, broadcast (implied by session establishment
parameters)

o gcatter

» receive data

Abrupt Transition Ahead ‘

Place abrupt transition here ...

» Tools and failure/recovery models

» As systems scale up and failures increase, how does
tools/tool infrastructure need to evolve?

» Failure models:

o crash stop, byzantine, silent errors,
hardware vs. software errors, ...

» Fault-tolerance models:

o |lgnore and continue, restart, save/restore (process/
communication) state, ...

