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MRNet architecture

(1) Launch processes
(2) Interconnect topology

(3) Runtime communication
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This talk

» How do we plan to leverage native (high-speed)
services for improving MRNet?

o Job launchers/resource managers

o Communication services and fabrics



Current (sequential) process launch

» Parent creates children

» Local = fork()/exec()
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Problems with sequential launch

» Serialized process

o Often much slower than data collection and analysis

» Resource contention
o File system (e.g. for program binary)

o Network
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Current XT process launch

» Bulk-launch 1 process per node

» Process launches collocated
processes

ENUNM | Scalable Systems Lab



Current MRNet Topology Dissemination

» Hierarchical, sequential dissemination
o For both sequential and XT process launch mechanisms

1. Front-end passes to some processes

2. Processes iteratively propagate to other processes
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Current MRNet IPC

» TCP/IP for inter-process communication

» Broadcast & point-to-point primitives

» Doesn’t necessarily use high-performance networks
» Point-to-point messages transit multiple hops

» No scatter operation
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Generic Goals

» Use high-performance services (when available)
» Use reasonable defaults otherwise
o |.e., current default mechanisms

» Use uniform abstractions and protocols independent
of underlying mechanisms

» Increase MRNet portability to new systems



More specifically, we want to ...

» Develop a single set of abstractions and protocols for
job launch, information dissemination and IPC

» Use native resource managers/job launchers for
process creation

» Use scalable services for information dissemination

» Use high-performance runtime IPC
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Refactoring MRNet process launch

Startup

ALPS SLURM OpenRTE



LaunchMON

» Facilitate creating, porting and maintaining individual
tools to large scale HPC systems

» Abstract common operations into a single API with
plug-ins for platform specific implementations

» Basic (relevant) services
o Launch or attach to a job (priming it for tracing)

o Co-locate tool processes with running application processes
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Have you heard the one about ...

We need a TBON to scalably™ bootstrap our TBON

“That’s just so crazy, it just might work!”

* I've applied for U.S. citizenship ©
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A lightweight framework for MRNet
bootstrapping

» LIBI: Lightweight infrastructure bootstrapping
infrastructure

> Name is a work in progress ©

o Generic service for scalable system instantiation and
initialization

o Used for MRNet startup and torn down afterwards
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LIBI Services

» Process launch

» Scalable, low-level collectives
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Using LIBI to initialize MRNet

1. Front-end launches LIBI @

2. Use LIBI to launch MRNet ‘ _______________________ @
processes

3. Use LIBI to scatter topology ‘ _______ @ ‘ ______ @
information

. Parent info

4. MRNet finalizes initialization @ w @ w




Advantages of MRNet of LIBI

» Complete separation of process launch from topology
information dissemination

» Consistent, platform-independent framework for
process deployment and interconnection

» Refactors platform-dependent mechanisms into single,
isolated component
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Proposed LIBlI implementation

» On initialization, launch LIBI processes
o 1 LIBI process per relevant node
o Bulk-launch service when available
o Rsh-based mechanism when bulk-launch not available

» Organize LIBI processes into tree

» LIBI launch service

o LIBI front-end retrieves and distributes binaries via LIBI tree to limit
file system and network contention

+ Similar to our “scalable binary relocation service”
» LIBI communication service
o Rudimentary data transfer
o PMGR-based with COBO as reference implementation



Related work

» SLURM: Simple Linux utility for resource management
o Persistent daemons

o Dynamic trees when SLURM command is invoked
o LIBI would leverage SLURM when available
o SLURM offers no communication services

» SCELA: Scalable and extensible launching architecture
> MVAPICH MPI

o Launches nodes serially
> No mechanisms for easing file system load

o Unclear whether ScELA is readily extractable from MVAPICH
* Did the get the “componentization” memo?



MRNet IPC

send( “%s %d’, ... )

ﬁ packetize*

j MRNet packet

ﬁ buffer

E ' MRNet message
l serialize

[T I [ []]]bytearray

* Also in the GWBED, right after “misunderestimate”

unpack( “%s %d’, ...)
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MRNet IPC

» TCP/IP connections

o Multicast over unicast approach

» Abstract communication layer

o Point-to-point, group, scatter operations

o Allow flexible implementation replacement
True multicast

TCP, Custom-networks, MPI, IP multicast, ...
Bypass tree for direct point-to-point

Shared memory

One-sided communication, RDMA, ...



Refactoring MRNet IPC

MRNet

low-level send()/recv() primitives

TCP/
IP Portals DCMF BTL




Basic primitives
» session establishment
° single end-point
o group of end-points
o bi-directional
o Should back-ends be allowed to establish sessions

» send data

o unicast, broadcast (implied by session establishment
parameters)

o gcatter

» receive data



Abrupt Transition Ahead ‘




Place abrupt transition here ...

» Tools and failure/recovery models

» As systems scale up and failures increase, how does
tools/tool infrastructure need to evolve?

» Failure models:

o crash stop, byzantine, silent errors,
hardware vs. software errors, ...

» Fault-tolerance models:

o |lgnore and continue, restart, save/restore (process/
communication) state, ...



