Linux new monitoring interface:
Performance Counter for Linux

CSCADS workshop, Lake Tahoe July 2009

eranian@google.com

Where does PCL come from?

« counter-proposal to perfmon
o as perfmon was introduced into linux-next (very late)

 created by Molnar, Zijlstra, Gleixner (Dec'08)
o all Linux x86 maintainers
o strong x86 influence
o ported to Power rapidly by McKerras (Linux PPC)

e code included in Linus's 2.6.31 kernel
o examples in tools/perf counters
o documentation in tools/perf counters

measurement breakdown

[MEASUHEMENTJ

i

[o]
!

FMLU events

+

fe atures

=

[G}rcles perINETJ
(CPI)

[Intel Core J
d

IR HAL TED_CORE_CYCLES

+

N 5T RUCTEOMNS _RETIRED

[G ycles per INS J
(CFI)

[AMDES

CPU_CL M _LFNHAL TED
RETIRED _ISTHLMCT MO M5

[1

event ; assignment

4 I

(register v alue) pairs

- /

!
[pmu}

4)

config
S R 0358 0= 0xaa

00 LTS

WS RE0x308=0 0
WS R 0x30 A=0x0

- /

|
[pmu}

4 I

config
'S R 0xZ001000 =0=510076
WS RE@0=CO01001=0=5100C0

COMSETS

WS RE@0=C001004=0:=0

WS RE@0=C001005=0:=0
N /

L
=

PCL key design choices

* supports per-thread and cpu-wide monitoring
o per-thread: state saved/restored on ctxsw
o cpu-wide: logical CPU, state persists across ctxsw

* supports counting and sampling
o save samples in a kernel buffer

* generic event-oriented API
o not limited to PMU events
o never expose actual hardware resource to users

* manages events independently of each other
o event identified by file descriptor
o no notion of a session (events + target thread or CPU)

» system call oriented API (not a driver)

event vs. register oriented API (1)

ﬁﬂEﬁ.EUH EMENTJ FCL

Il

[cpu}
§

FPMLU events

+

features

Liser

(t] kernel

. Y

(register value) pairs

- oy

[pmu]

[MEAEUH EMENTJ CPFrofile
Ferfrmaon
l Perfctr

Intel SEP driver

[.:.:-u]
§

FMLU events

+

features

[l]

' ™

(register value) pairs

N oy
Lser

event vs. register oriented API (2)

* event-oriented
o Pros:
= quick ramping up period (read Intel Appendix A)
* mapping event -> register can change dynamically
o CONS:
= event -> assignment logic pushed into kernel
= create an abstraction to expose non-counting events

* register-oriented
o Pros:
» simpler kernel, easier maintenance
" more error-prone code in user-land
o CONSs
» harder to change assignment dynamically
= more difficult to expose non register style features

PCL system calls (1)

* adds "one" system call to setup an event
o get a file descriptor back to identify event
o normal file sharing semantics apply

int perf counter open(struct perf counter attr*hw,
pid t pid,
int cpu,
int grp,
int flags)

nw describes event and sampling configuration (64-byte struct)

pid target thread, O=self, -1=cpu-wide mode

cpu |ICPU to monitor, -1=per-thread mode

tlags provision to extend the number of parameters

gre used to create groups

PCL perf _counter_attr structure

struct perf counter attr {

__u32 type;

__u32 size;

__ub4 config;

union {
__ub4 sample period;
__u64 sample freq;

};

__u64 sample type;

__ub4 read format;

u64 disabled

=
~

inherit
pinned
exclusive
exclude user
exclude kernel
exclude hv
exclude_idle
mmap
comm
freq
inherit stat
enable on_exec
__reserved 1
__u32 wakeup events;
__u32 __reserved 2;
__ub4 __reserved 3;
__u64 __reserved 4;

PFRRRPRRPRRBRRBRRBRERERRRR
Ne ™ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

(8]

PCL system calls (2)

e counts extracted via read ()
o +multiplexing timing infos, +sampling identifier
o counts are 64-bit wide (64-bit emulation)

e termination via close ()

e additional commands via 1octl ()
o enable, disable, reset, rewrite period, refresh

« kernel event buffer mapping via mmap ()
« sample notification via fcntl (O ASYNC/F SETOWN)

effectively a total of 6 system calls

PCL events

« events have types (defined as enum):
o hardware: used for generic PMU events
o software: page faults, context switches, ...
o tracepoint: ?7
o hw cache: generic cache events (cache, TLB, BPU)
o raw. actual PMU events
o more needed: uncore PMU, chipset counters

« generic PMU events (defined as enum):
o mimic Intel architected PMU
o mapped to actual PMU events by kernel
o lack precise definitions: what do they measure?

PCL generic hardware events

PERF COUNT CPU CYCLES

no precise definition yet

PEREF COUNT INSTRUCTIONS

no precise definition yet

PEREF COUNT CACHE REFERENCES

no precise definition yet

PERF COUNT CACHE MISSES

no precise definition yet

PEREF COUNT BRANCH INSTRUCTIONS

no precise definition yet

PERF COUNT BRANCH MISSES

no precise definition yet

PERF COUNT BUS CYCLES

no precise definition yet

PCL software events

PERF COUNT CPU CLOCK

wall-clock time

PERF COUNT TASK CLOCK

virtual time

PEREF COUNT PAGE FAULTS

page faults

PERF COUNT CONTEXT SWITCHES

context switches out of monitored task

PERF COUNT CPU MIGRATIONS

task migrations

PERF COUNT PAGE FAULTS MIN

minor page faults

PEREF COUNT PAGE FAULTS MAJ

major page faults

PCL generalized cache events

provide generic events for common cache metrics
o mapped onto actual PMU event if exist

covers 3-dimensions:

« {L1-D, L1-l, LLC, ITLB, DTLB, BPU }
« {read, write, prefetch }

« { accesses, misses }

o examples: L1D.read.misses

* no precise definitions exist for generic events

false good idea
o subtle differences make events difficult to compare

PCL event encoding

- event encoded as uint64 t
o if code > 64-bits, can use a reserved field

* privilege levels expressed via dedicated fields
o exclude user, exclude kernel, exclude hv

o overrides priv level in the raw event code

AMDe4 CHU CLK UNHALT ED = Uxa U0/ (RAW FMU HARDWAKE EVENT)

A1 1]

FPERF_TYPE _RA&WN

a2
63 1]

Che=1 0076

i

PCL event grouping

* events are independently scheduled on PMU
o reliable event ratios => guarantee on events scheduling

 PCL event group
o events are guaranteed scheduled together
o #events <= #counters
o created by chaining file descriptors
o 1st event = group leader

« start/stop group via group leader
o groups can be scheduled if all its events are enabled
o cannot read all counts via read () on group leader

~ 4 o N fd[0] = perf_counter_open(0x510076, -1)
M SR E0:=C 001000=0:510075
CPU_CLE_UNHALTED MSR @0:=C 00100 1=0x 510020 ‘

M SN - ¢

L=l gl -]

RET'R“""ETR”ET“"; \ﬂg:g:ggglgg;gﬁ fd[1] = perf_counter_open(0x5100C0, fd[0])

J

PCL event assignment logic

only performed by kernel

code is PMU or architecture specific

o fairly trivial on X86 (both Intel and AMD)

o very difficult on Itanium for certain events

o may need global view of all events sharing the PMU

assignment performed on every counter activation:

o activation: ctxsw in, multiplexing in, counter start

o necessary because of PMU sharing

o lazy approach to mitigate cost: try to reuse previous reg

If kernel wrong => kernel patch
o kernel.org release cycle != distro release cycle
o NO user bypass exists

PCL PMU sharing (1)

per-thread and cpu-wide can run concurrently
multiple tools may be monitoring the same thread or CPU

event groups are independently scheduled on PMU

PMU is shared between event groups by default
o groups may come from different tools/users
o kernel must ensure groups are compatible (no leaks)
o no back-to-back group scheduling guarantee

AL

CNTO | CNT1 | CNT2 |

E1

PCL PMU sharing(2)

¢ exclusive mode:
o only this group can use the PMU
o does not prevent multiplexing, just sharing
o can be combined with pinning

E1 EZ E1 Ef E4

\ |\ e

CNTO | CNT1 | CNT2 |

PCL group multiplexing

* multiplex events to allow sharing when overcommitted

« multiplexing occurs by default
o group granularity
o order: group creation (no back-to-back guarantee)

* time-based multiplexing only
o switch timeout = 1 tick (must disable tickless in syswide)
o not controllable at this point

 scaling of counts at the user level
o time tracking enabled via read format

o read () returns: count, total time, time_active

« can prevent multiplexing via pinned
o group stays on PMU until stopped

PCL group schedullng selection bias?

51 53 54
tick O }—E‘IIEEIEB—FE#IEE EEIE‘IIE?

CDIC‘1IC2IC3

tick 1 L E4lE5 . EE‘lE‘IIE?}—P E‘IIEEIEE

cn|c1|cz|c3

tick 2 }—EEIE‘IIE?—FEE—FE‘IIEEIEE FE#IEE

L/

cn|c1|cz|c3

tick 3 }— Eq

E‘IIEEIEB—FE#IEE—FEEIE‘IIE?

PCL mmap'd counts

» avoid cost of system call to read count for self-monitoring
o getpid () =500 cycles (Q6600 2.4GHz)
o read (count) = 2700 cycles (Q6600 2.4GHz)

 leverage HW ability to read registers from user level
o rdpmc(50 cycles) vs. rdmsr (226 cycles) (Q6600 2.4GHz)

 mmap () SW counter + recombine with HW counter
o uses 1 page/event (pressure on RLIMIT MEMLOCK)

o timing to scale count exposed to support multiplexing
do {
barrier () ;prev_lock = mmap->lock
1f (mmap->1index)
count = rdpmc (mmap->index -1);
else
goto regular read syscall;
count += mmap->offset;barrier ()
} while (prev lock != mmap->lock);

PCL sampling periods

PCL has notion of a sampling period (!= counter value)
o sampling period is 64-bit wide

support for event-based sampling
o period = #occurrences (e.g., 2000 LLC MISSES)

o sampling on SW events possible

sampling interval can be expressed as frequency
o kernel adjusts period each tick to achieve desired Hz
o updated period logged in event buffer

no period randomization yet

PCL sampling buffer

« samples saved in kernel event buffer
o size determined via mmap ()
o at least 2 pages
o one buffer per event or group

 buffer format
o fixed size header: position + mmap'd count (1 page)
o universal sample: variable-size (type, size)
o can record more than just PMU events

« cyclic read-write buffer
o when buffer full, wait for user notification via write to hdr
o current offset via data head index in header
o buffer cycle detection possible via data head
o can have lost samples: LOST event type

PCL sampling buffer positioning

20000

el FFF

A
o mm aped court
=
[
=
=

sl data_tail

¥ LEd data_head
=
=
=
=
=

Y

A
=
=
[
=
[

after one
buffer cycle

Ty

pOS
i}

_ O0x1000

O0x1000

Y

mm aped count

LiEd data_tail
LEd data_head

pos = getpagesize() + data_head & (getpagesize()*(nr_paages-1} 1)

0x2800

PCL sampling notifications

 event notification on buffer page crossing
o 2-page = double-buffer (notify halfway)
o no control over notification point

* multiple events can be written concurrently
o events appear (data head) in order to user

e support for poll () /select ()
« asynchronous notification via SIGIO

o required for self-sampling
o signal handler nesting possible

PCL sample attributes

« fixed size sample header: { type, misc, size }
o variable-size body

* sample type bitmask to select what to record/event
o layout: order of increasing enum value

PERF SAMPLE IP interrupted code address

PERF SAMPLE TID PID, TID

PERF SAMPLE TIME sched clock()

PERF SAMPLE ADDR extra 64-bit address??

PERF SAMPLE GROUP values of other events in the group
PERF SAMPLE CALLCHAIN call stack (kernel OR user)

PERF SAMPLE CONFIG event encoding

PERF SAMPLE CPU current CPU at time of intr

PERF SAMPLE PERIOD last sampling period

PCL event buffer sample types

PERF EVENT MMAP executable file mmapped
PERF EVENT COMM process name was changed (prctl ())
PERF EVENT PERIOD sampling period was changed (to adjust frequency)
PERF EVENT THROTTLE event group monitoring stopped because of
excessive interrupts
PERF EVENT UNTHROTTLE event group monitoring restarted after being
throttled due to excessive interrutps
PERF EVENT FORK fork() event
PERF EVENT LOST report number of events lost due to user being too
o o slow to extract events
PERF EVENT READ report event count a specific sites, e.g, parent ->
- o child

PERF EVENT SAMPLE counter generated sample

PCL PMU interrupt throttling

prevent system breakdown with bogus sampling periods
o on X86 using NMlI

« sysadmin can set maximum threshold via sysctl()
o /proc/sys/perf counter int limit
o rate is per CPU per second

* when rate is exceeded counter/group is stopped
o throttling recorded in event buffer

« Restart on next timer tick
o unthrottling recorded in event buffer

PCL symbolization support

 correlate sample addresses => binary/module/function
o needed for both per-thread and system-wide

« can request per-event mmap () tracking
o content: pid, tid, addr, len, pgoff, filename

 mmap sample recorded in event buffer
o basis for tools to track full address space changes
o cannot afford to lose one!

PCL inheritance

« event is inherited across fork () /pthread create()
o counts aggregated into parent
o set inherit inperf counter attr

* enable/disable controls entire hierarchy

« sampling support except for group sampling
o works only in single event sampling

PCL tools

 perf: sample tool in kernel tree (tools/perf counters)
o top mode: sys-wide kernel sampling
o stat mode: similar to pfmon
o report, annotate (similar to OProfile)

S perf stat date
Mon Jun 8 13:41:45 CEST 2009

Performance counter stats for 'date':

3.132542 task clock ticks # 0.914 CPU utilization factor
2 context switches # 0.001 M/sec
1 CPU migrations # 0.000 M/sec
239 pagefaults # 0.076 M/sec
4938179 CPU cycles # 1576.413 M/sec
4056211 instructions # 1294.862 M/sec
74924 cache references # 23.918 M/sec
3637 cache misses # 1.161 M/sec

Wall-clock time elapsed: 3.426563 msecs

 PAPI substrate
o libpfm adapted by IBM to support PCL (proof-of-concept)

PCL still missing...

« AMDG64: IBS support
o probably new sample type + pseudo event

Intel Core, Nehalem: PEBS support
o probably new sample type + eventtag

 Intel Core i7: uncore PMU support
o probably new event type

* Intel Core, Nehalem: LBR support
o probably new sample type + pseudo event

« X86 event constraints support

True test will be full |IA-64 support
o opcode matching, range restrictions, BTB

PCL issues

cherry-picking features which they think are useful (to them)
o e.g.: no motivation for Intel Core i7 uncore PMU

o unfortunately different people have different needs

o tool developers don't want to become kernel developers

need to address advanced features (IBS, PEBS)
« must invent an abstraction: not too high, not too low
* increased kernel complexity

illusion of simplicity
o PMU deals with micro-architecture which is complex
o must understand what is actually measured and when

power-user
o need advanced features now
o like to have full control

PCL vs. perfmon

PCL
"CYCLES"
r‘/._ helperlil:urar'g,r_-\‘]
La CYCLES [E =i
INST_RETIRED (=
LLC MISSES (= 5a
L
user fd = perd_open{lxcO)
kernel
,_.,..-"" Oxaa
event_assign_counten) yes 21
constrained? Ox5a

MER

next awail _counten)

MSH

L

wrmsrk MSRE, Csel)

cansranad evants

PERFMON

"CYCLES" A

VA,

CYCLES [iE e

\ e
— oo mred 7

INST_RETIRED Q=i

|
e

|
pr——

i

LWC MISSES O=5a no

+ N

cansiranad :
next_avail_counter)

PRC2

event_assign_counten)

PRIC

li\ helper library |

)

user pfm_write_pmes(fd, PMC2, Oxcd)
kernel
[~ wsr N
(el &G PRCO
187 PMCA
(el & PRCE |

l__ kernel madule __/‘l

L
wrms rE MSR, Oxed)

PCL code examples

PCL self-monitor+count example

#include <perf counter.h>

uinto64 t val;

struct perf counter attr attr = {0, };
int fd;

attr.type = PERF_TYPE_HARDWARE;

attr.config = PERF_COUNT_HW_CPU_CYCLES,‘ /* generic PMU event*/
attr.disabled = 1;

fd = perf counter open(&attr, getpid(), -1, -1, 0);
ioctl (fd, PERF_COUNTER_ IOC _ENABLE, 0);

/* RUN CODE TO MONITOR */

ioctl (fd, PERF_COUNTER_IOC_DISABLE, 0) ;

read (fd, &val, sizeof(val));
printf ("$"PRIu64" CYCLES\n", val);
close (£d) ;

PCL self sampling example

#include <perf counter.h>

struct perf counter attr attr = {0, };
struct mmap page *header;

size t map size;

int f£d;

attr.type = PERF TYPE HARDWARE;
attr.config = PERF COUNT HW CPU CYCLES;
attr.sample period = 2400000;
attr.sample type = PERF SAMPLE IP;
attr.disabled = 1;

fd = perf counter open(&attr, getpid(), -1, -1, 0);

map size = getpagesize() * 3;

header = mmap (NULL, map size, PROT READ, MAP SHARED,

ioctl (fd, PERF COUNTER IOC ENABLE, O0);
/* RUN CODE TO MONITOR */

fd,

0)

PCL group self-sampling example

#include <perf counter.h>

struct perf counter attr attr = { 0, };
struct mmap page *header;

size t map size;

int £d[2];

attr.type = PERF TYPE HARDWARE;

attr.config = PERF COUNT HW CPU CYCLES;

attr.sample period = 2400000;

attr.sample type = PERF SAMPLE IP|PERF SAMPLE GROUP;
attr.disabled = 1;

fd[0] = perf counter open(&attr, getpid(), -1, -1, 0);

memset (&attr, 0, sizeof (attr)):;
attr.config = PEREF COUNT INSTRUCTIONS;

fd[1l] = perf counter open(&attr, getpid(), -1, £4[0], 0);

map size = getpagesize() * 3;

header = mmap (NULL, map size, PROT READ, MAP SHARED, £d[0], O);
ioctl (£d[0], PERF COUNTER IOC ENABLE, 0); /* start group */

/* RUN CODE TO MONITOR */

