What it Takes to Assign Blame

Nick Rutar
Jeffrey K. Hollingsworth

University of Maryland

University of Maryland

Parallel Framework Mapping

e Traditional profiling represented as
- Functions, Basic Blocks, Statement

e Frameworks have intuitive abstractions

- Direct ties with mathematical terms
- PETSc, Cactus, POOMA, GrACE

e Map profiling information to variables
- Maps to abstractions in case of frameworks

- Also can be used for standard programs

* Map Structs, Classes, Arrays, Scalars

University of Maryland

Example PETSC Program™

* - $PETSC_DIR/src/ksp/ksp/examples/tutorials/ex23.c

50% cache int main(int argc,char **args) {
misses » Vec Xx,/* approx solution */
b, /* right hand side */
o u; /* exact solution®/
0 LNt » Mat A; [* linear system matrix */
KSP ksp; [* linear solver context */
40% run » PC pc; /* preconditioner context */
time VecCreate(PETSC_COMM_WORLD,8x);
VecDuplicate(x,&b);
VecDuplicate(x,&u);
MatCreate(PETSC_COMM_WORLD,&A);
MatAssemblyBegin(AMAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A MAT_FINAL_ASSEMBLY);
[* Set exact solution */
VecSet(u,one);
MatMult(A,u,b);
[* Create linear solver context */
KSPCreate(PETSC_COMM_WORLD,&ksp);
KSPGetPC(ksp,&pc);
PCSetType(pc,PCJACOBI);
[* Solve linear system */
ierr = KSPSolve(ksp,b,x); }

operations

University of Maryland

Variable "Blame"

Record writes in a function
Build association tree of writes from ground up

Use transfer function to filter information up
- Up the call stack
- Aggregate over distributed nodes

Eventually reach high level abstractions
- Example: Matrix abstraction
* Allocated storage for actual data
- Sparse or Dense
+ Storage for bookkeeping

Augments traditional profiling approaches

University of Maryland

Blame Calculation Components

Runtime

(Instances)
1 N

Transfer Functions PAPI
Hardware
Generation Application Counter

Implicit/ :
Explicit — Sampling

: Variabl
Data Flow Mem Containers -

Relationships DyninstAPI

Stubs Allocation/Free
|

Container Resoution

Static Dynamic StackWalker API

Static Analysis

Symtab API

University of Maryland

Preliminary Experimental Results

e Chose programs with similar properties to
those found in parallel frameworks

e Blame metric is number of cycles

e For each sampling point (instance)
- Instance gets blamed for set number of cycles
- Variable that instance maps up to gets blame

University of Maryland

FFP_SPARSE

e C++ program that solves Poisson's Equation
- Approximately 6,700 lines of code & 63 Functions

e Non-parallel program
e Uses Sparse Matrices

- No specific data structure for representation
- Composite of primitive pointers declared in 'main’

e Recorded 101 samples from program run

University of Maryland

element_neighbor
node_boundary

f

FFP_SPARSE Results

Description

Solution vector

Coefficient matrix

Non-zero row indices of a
Non-zero column indices of a
Estimate of non-zeroes

Bool vector for boundary

Right hand side of vector

University of Maryland

Direct

o)
0

Blame (%)
35 (34.7)
245 (24.3)
5 (5.0)
5 (5.0)
10 (9.9)
9 (8.9)
3.5 (3.5)

9(8.9)
101 (100)

HPL

e C program that solves a linear system
Utilizes MPTI and BLAS
Has wrappers for functions from both libraries
Operations done on dense matrices
Approximately 18,000 lines of code

149 source files

e 32 Red Hat nodes connected via Myrinet
- OpenMPI 1.2.8
- Range of 149-159 samples over the nodes

University of Maryland

Blame
Points

HPL R@SUITS Blame over 32 Nodes
Name Mean (Total %) Node St. Dev.
All Instances 154.7(100) 2.7

main
gr'id HPL_T_gr'id 2.2(1.4)

main—>HPL_pdtest
mat HPL_T_pmat 139.3(90.0)

Anorml double 1.4(0.9)
AnormI double 1.1(0.7)
XnormI double 0.5(0.3)

Xnorml double 0.2(0.1)
main>HPL_pdtest>HPL_pdgesv

A HPL_T_pmat * 136.6(88.3)
main>HPL_pdtest>HPL_pdgesv>HPL_pdgesv0
PANEL->L2 HPL_T_pmat 112.8(72.9)

PANEL>A double 12.8(8.3)
PANEL->U double 10.2(6.6)

University of Maryland

Implementation Details

e Mixture of Static and Runtime Tools

e Static Analysis
- LLVM
- Boost

e Runtime Analysis
Dyninst APT
Symtab API
Stackwalker API
PAPI

University of Maryland

LLVM (Low Level Virtual Machine)

e What is it?
- Compiler Infrastructure
- Provides Intermediate Representation
» Each instruction in SSA form

e Why we use it?
- Need intermediate representation for static analysis
- SSA form useful for creating dependency relationships

- Intuitive API for accessing
- Def-use chains
» Dominator & CFG information
* Language Independent representation of complex types
Integration with GCC
Multiple Language support
- C, C++, Fortran

e Limitations
- llvm-gcc versus gcc

University of Maryland

Boost

e What is it?
- Widely used portable C++ Libraries
e Why we use it?
- Implicit/Explicit data flow relationships
- Can create very large graphs

- Boost provides graph libraries

+ Efficient representation of nodes/edges
- Descriptors assigned to both

- DFS, BFS, Uniform Cost Search
» Dijkstra's Shortest Path, Kruskal's MST, ...

e Limitations

- Trade efficiency for requiring one more library

University of Maryland

StackWalker API

e What is it?

- API for runtime ftraversing of stack

e Why we use it?

- Instance Generation
» Used in combination with PAPI
* Each sample point we need full path information
» Use full context given from PAPI

- Walk up stack until we reach the top

- Mem-Container Information

- Used in combination with Dyninst

* Wrapper functions mean we need full path
- Every allocation we get full allocation path

e Limitations

- Frame pointer removal decreases accuracy

14
University of Maryland

DyninstAPT

e What is it?

- Dynamic instrumentation tool

e Why we use it?
- Need to instrument memory allocation sites
- Integrated with StackWalker API

e Limitations
- Instrumentation overhead

University of Maryland

SymtabAPT

e What is it?
- API for accessing symbol information
e Why we use it?
- General Module/Function Information
- Line Number Mappings
* Runtime information mapped back to source
» Use line number mappings for this
e Limitations
- Debugging Information needed

University of Maryland

PAPI
e What is it?

- APT that provides interface to hardware counters

e Why we use it?
- Instance (Sample Point) Generation

* PAPI provides sampling interface

» User chooses metric to trigger sample
- Metrics can be any measurable event on system
- PAPI hardware counters

e Limitations
- Special kernel patch required on certain systems

University of Maryland

Advantage of Using Tools

Application/APT

Blame

Dyninst APT 6.0
Symtab APT 6.0
Stackwalker API 6.0
LLVM 2.3

PAPT 3.6

Boost (Graph) 1.36

LOC (w/comments)
6K (8K)

292K (360K)
51K (65K)
52K (66K)
298K (375K)
278K (320K)
29K (33K)

University of Maryland

Conclusion

e Variable "blame"” mapping
- Switch analysis from delimited regions to variables
- Alfernative to standard profiling techniques

e Lessons Learned
- Standards are a good things
- PAPT gives ucontext
- Stackwalker uses information for context
- Best not to reinvent the wheel ... BUT
- Tool interoperability can be a problem
- Compiler, OS compatibilities
* Runtime tool interoperability
- Target application/end-user requirements

e QQuestions?

19
University of Maryland

