Revisiting Data Models for
Data-Intensive Scientific Computing

Dries Kimpe dkimpe@mcs.anl.gov
Argonne National Laboratory

#*= %, U.S. DEPARTMENT OF

i 64 3

%/ ENERGY
N

mailto:dkimpe@mcs.anl.gov

Overview

Introduction & Context

Short introduction to
= Trident
= Container Abstraction

Triton Data Model
= QOverview
= Operations
= Examples

Conclusion
= Open Questions
= Future work

CScADS 2012, Snowbord

Context

= Many novel data-intensive storage models have emerged
(mainly from the cloud computing and internet services community)

NoSQL, Column-Store, Map-Reduce, Object-Storage, Key-Value

= Why? Limitations of legacy storage models with respect to scalability, resiliency
and expressiveness.

= This talk:

Present some alternative data models under exploration at Argonne.
Goal: Interact with audience to assess interest and usability.

Feel free to interrupt or ask questions at any time!

Target audience: applications/library not afraid to experiment
Ongoing work: things might change

CScADS 2012, Snowbord

Why a new data model?

Expressiveness of AP complex data concurrency aware
- > model| ’7
S Application Application
S
(1] |
E POSIX
s >]
=
=] L POSIX | D& POSIX |
flat
file _{ sector
access

objects, attributes

= Model? (!=API, = Implementation)

= POSIX I/0O API dates from ~1970: Plenty of research above and below POSIX
but relatively little changes to POSIX (POSIX HPC extensions?)

= High-Level Libraries adapt to the application’s data model but are more and more
restricted by the POSIX API.

» The landscape changed: smart (object) distributed storage, application
concurrency (need for scalable synchronization primitives and metadata
operations)

CScADS 2012, Snowbord

v

Known Problems

Model Issues

=)

Implementation Issues

File locking & synchronization (inter-node synchronization)
Implementing MPI-10 shared file pointer
Manipulate meta data in high level I/O data formats (HDF5)
Mapping application model to the file model (flat file)
Chunking, space efficiency, unlimited dimensions, ...

Scalable metadata operations

« Readdir + stat (readdirplus)
= Generic namespace support
« POSIX HPC Extensions (open by handle now in linux kernel)

File partitioning
= N-N/N-1/N-M writing
File Provenance

CScADS 2012, Snowbord

Situation of this work
Related Research at Argonne

Note:

HDF5/NetCDF —

MPI-IO/Damaris —

OS/FS —

Application

POSIX

Sy

Container Abstraction
(NoLoSS)

PVFS2/Trident
PNetCDF / PLFS

Model Complexity

CScADS 2012, Snowbord

= Not trying to create another
high level I/0 library

» |nstead provide new
foundation for 1/0
middleware and high level 1/0
to build on.

T~

Triton
(ASG)

In-System Storage Abstraction:
Storage Containers

CScADS 2012, Snowbord

Container Abstraction (NoLoSS Project)

ComputeNode

Applicatio
Task orag

SCR

" Designed for in-system storage

-

" Expects memory mapped storage
hardware.

e container
API

" Targets checkpointing, staging, in-
situ analysis

" Currently porting SCR

ComputeNode| ComputaNode| ComputeMod . Pe e
N . P Ople:
4 | =

— LLNL: Maya Gokhale, Kathryn
Mohror, Brian Van Essen, Adam
Moody, Bronis de Supinski

IOFSLK

lfOMod

GlobalStorag

Integrated In-System Storage Architecture for High Performance Computing (ROSS 2012)
Diries Kimpe, Kathryn M obror, Adam Moody, Brian Yan Essen, M aya Gokhale, Rob Rossand Bronis B, de Supinski

CScADS 2012, Snowbord

— ANL: Kamil Iskra, Dries Kimpe, Rob
Ross

v

Container Abstraction

-

Explicit location (also remote)

More restrictive than POSIX
Drop costly (unused?) features

Restricted model enables some new
features

‘Direct Storage Access'
(True zero-copy)

pped Storage Device
e |

a

metadata

N

Container Set

/

4

\

G

Space reservation
(!= preallocation)

emory-M

3rd party transfers

Mer

= Status: Early evaluation
Implementation Available

—

CScADS 2012, Snowbord

\

_Logical View

Reserved space
for container set

Direct Storage Access

= EXpose container storage layout

— Storage format designed for direct
access

— Application transfers data
e Avoid extra copy (processing data)

* No complicated non-contiguous
|/0 description needed.

= Compare:
— memory-mapped I/0 (extra copy)

— XIP (no write support, fs
dependent)

— direct-io (alignment restrictions,
API bottleneck)
= Layout returned as set of pointers
Into storage.

CScADS 2012, Snowbord

Application Data

M
S EH ==

+— —
33| = ==
— - . —
am| =4 —
S — —
S | |
o
/1. process and copy{ "] get storage

into buffer ; map

. 2. process and
= store

temporary
buffer

| 2. create iovec or |
i issue multiple writes:

$5([Tod PeFe{)

Storage

Remote Container Access & Transport

Forward container

access = Containers are a purely local
5 concept

— No global namespace
= Some applications need remote
access

— Use storage hierarchy abstraction to
identify remote location.

— Remote read/write

= Extension: remote copy operation

— Request duplication of a container
to another location

— Remote source and dest (3™ party)

— Global scheduling of data
movement

= Implementation using IOFSL

CScADS 2012, Snowbord

System Information Library

= Exposing node local storage
forces the application/library to
decide which (where) storage to
use.

= For optimal performance,
topology of system needs to be
taken into account.

____Machine

= Library allows enumeration of
__________________________ storage (and other?) properties
for a node.

|

|

= Provides actions to move to the
| next or previous level in the
|
|
|
|

File System
Nodes

Storage

hierarchy.

= (General problem very difficult!

CScADS 2012, Snowbord

Exposing The True Nature of PVFS:
Trident

Y

High-Level Data Models over Object Storage

" Investigating object storage as a
more natural fit for high level
libraries

PnetCDF

" Objects are independently accessed
byte streams, with attributes

" Objects grouped into “containers”,
roughly similar to traditional “file
names”

“trident”
object API

" Experimenting with modified
versions of PnetCDF and PVFS2

" Earlyresults show complexity
reduction for PnetCDF

" Explicit control over variable striping
(downside: explicit control over
variable striping)

Modified

parallel FS PV/ES?

Dave Goodell {ANL)
CScADS 2012, Snowbord

PLFS on Trident

= Port of PLFS to Trident MPICH?
= PLFSis an I/0 library which transforms 1/0
into a set of contiguous log writes ROMIO
ADIO
= Research directions: ad_bgliiad_nfs; -- iad_panfs
= Control placement ad_lustre| {ad_plfs| {ad_pvfs2
= Reduce metadata overhead \
PLFS Virtual Layer

Status: PVES?
= ad_plfs (ROMIO driver) complete

= Starting work on PLFS port

Shawn Kim (Penn State)
[summer internship @ ANL]

CScADS 2012, Snowbord

The Advanced Storage Group:
Triton

CScADS 2012, Snowbord

Situation of this work
Advanced Storage Group (ASG)

{Local Storage

{_consistency)
Secunty \ <:>

7

5 Network

(SSM)
/ \< Language

CScADS 2012, Snowbord

-—

7 \
/ { consistency 2 "

POSlx
key val

Concept: Friendly
competition in designing an
exascale storage system

Different design choices,
but shared building blocks
simplifying exchange
(codes, ideas)

Periodical evaluation of
design decisions with
adoption of the best one.

Triton
Introduction

The model presented in this talk is one of
the models implemented by Triton.

— (key,val), POSIX, variants .
Self-healing, resilient

Triton: ANL effort towards development of
an exascale storage system

Comparison to T10 (object standard) OSD:
eTriton is more like PanFS
*Own local storage abstraction

Detail of Triton Resiliency Scheme

e

Objects (red) are likewise
addressed by an [D in this
space. The primary for an
object is located at the server
with the clesest D in the

Servers (grey) are
arranged in an n-
dimensional address
space and referenced by
an |D in that space.

Here, n=I. address space.
0 “u 0 “
¢ 10 m 10 Y
/[8o / 80 -
30 ¢ 30 4
% 50 0 s0
-_-__.-" "-..__._- -..___.-"

CScADS 2012, Snowbord

In the event of aserver
failure, the object will be re-
replicated to the next closest
server in the address space,

For a replicated object,
replicas are placed on the
k-1 next closest servers
in the address space.

e g 28— g
o0 %w 2
¢ 10\ ¢ 19
1 / 80
30 o 30
N0 s S 20 50 S
' -'_._.-'

ASG Data Model

Overview
Storage System Container
Collection of containers Collection of objects
e L §
O .
Record
fme==ssssssmsssmmmmmmmmmmm e s s s mmEm s e s e m Y

— record key (integer)

CScADS 2012, Snowbord

Object

Collection of forks

--

Fork

Collection of Records

record content (array of bytes)

length of the record content (integer)
— version number of the record (integer)

v

ASG Data Model

Example

write (loc,cid,oid,fid, 60,

Record data

Number of records

—

1

|dentify fork

l_l

1’ 2’ lla")

Start record

Data version

record index ‘ []

record version

contents

Container x, Object y, Fork z

CScADS 2012, Snowbord

m | 60]

ASG Data Model

Example

swrite (loc,cid,oi
write (loc,cid,ol

60,

1’ 2’
60, 4, 3,

uan)
u.testn)

—Writing 4 records with version number 3

record index ‘ = =
record version

contents

Container x, Object y, Fork z

60

61

62

63]

CScADS 2012, Snowbord

ASG Data Model

Example

swrite (loc,cid,oid,fid, 60, 1, 2, “a”)
swrite (loc,cid,oid,fid, 60, 4, 3, “test”)
write (loc,cid,oid,fid, 61, 1, 9, “hebe”)

—Writing 1 record of length 4 with version 9

record index ‘] ®m | 60|61 |62 |63 | m u L] u = [] []] >

record version 3 9 3 3

contents t |[hebe| s t

Container x, Object y, Fork z

CScADS 2012, Snowbord

Data Model: Operations

A limited set of operations:

= Write: overwrite one or more records (atomic)

= Read: retrieve one or more records (including metadata)

= Probe: only retrieve metadata (version and length etc.); No data
= Punch: Like write, but writes zero-length records

= Reset: Sets the entity back to the default state (i.e. ‘erase’)
— Note: no ‘create’

= Write, read and punch support conditional execution based on the expected
version (more about this later).

= Client generally provides version number; APl also supports auto increment.
= Write, read, punch operate on records

= Probe and reset operate on records, forks, objects and containers

= Version: Used to order transactions; No retrieval of obsolete versions

CScADS 2012, Snowbord

v

Conditional Operations

= Enables the user to provide a condition on the version of one or more of the
specified records.

= |f the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

= Currently:

eCOND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

eCOND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:

write (..., 60, 3, 2, “abc”) = 0K

CScADS 2012, Snowbord

v

Conditional Operations

= Enables the user to provide a condition on the version of one or more of the
specified records.

= |f the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

= Currently:

eCOND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

eCOND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:
write (..., 62, 1, 4, “d”) = OK

60 61 62 60 61 62
2.2 12) 22 4
a b c a b d

CScADS 2012, Snowbord

v

Conditional Operations

= Enables the user to provide a condition on the version of one or more of the
specified records.

= |f the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

= Currently:

eCOND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

eCOND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:
write (..., 60, 2, 3, “efgh”, COND ALL) = OK

60 61 62 60 61 62
2ERE — BEERE

a b d ef gh d

CScADS 2012, Snowbord

Conditional Operations

= Enables the user to provide a condition on the version of one or more of the
specified records.

= |f the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

= Currently:

eCOND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

eCOND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:
write (..., 60, 3, 4, “abc”, COND ALL) = ECOND

EOCEIE = EEE
3 3 4 3 3 4

No change

ef gh d ef gh d

CScADS 2012, Snowbord

Example
Synchronization: R-M-W using versioning

= The model does not support locking
eRead and write are atomic

eHowever: what about Read-Modify-Write?

= Conditional operations can be used to implement R-M-W

1. Read 2. Modify

read(..., COND_NONE) e
G<data' version> —> | (modify in memoryD

\ ECOND? /
o _ 2\ OK?
write (... , version +1,
COND ALL) >

3. Write

CScADS 2012, Snowbord

Done!

Y

Example
Exploiting Object Structure

= Performance of preliminary implementation is not affected by choice of fork
= Fork + record can be used as 2-dimensional record space

-Record contents additional dimension (access granularity)
= Example: (key,value) structures

Container
A
.‘ﬂ
4 /
o ./o«b
* * * o // 00
o R\
— E O J
g‘ ~— E /"
] O /
— o (W] / N
7 £ 9 >
© - fork

CScADS 2012, Snowbord

Example
Implementing extended attributes and directories

(key,value) mapping (with key a string) data structure which supports atomic insert,
overwrite, lookup and remove (rename?)

(filename) Preparation: Hash the string key, use as
*hash destination record number.

64 bit number

Insert: write-conditional with default version
. Overwrite: R-M-W
RMW - Remove: R-M-W with empty data

Lookup: unconditional read (is atomic)
-«— [Records -

‘\

-

filel+d—
file3+d—>

Note: each object can support 264 of
these data structures!

file2+d
filename+d

CScADS 2012, Snowbord

Reference Implementation

P

log

hard

link
= LY
v T

current null
I o write
-\ - -1
1-2-3-0-10-1-0
1-2-3-11-0-1-92

1-2-3-5-1-

#
#
#

i

{nfc:r_nnat:’c:n encoded
in file name

CScADS 2012, Snowbord

e

index

Implements the model focusing on
functionality and usability, not
performance, resilience or
scalability.

No external dependencies

Uses underlying FS

Hardlink support required

Write logging

Uses directory as DB, filename to
encode data

Code available at
git://git.mcs.anl.gov/asq/reference

http://git.mcs.anl.gov/asg/reference

Open Questions
(ongoing work)

= Namespaces
= Reddy Narasimha & students (Texas A&M Uni): Legacy support (POSIX)
= Cengiz Karakoyunlu (UConn) summer project @ ANL

Location-Awareness

= Do we need to expose location in the model?
= |f not: how do we offer placement control?

Auditing & Security
= Collaboration with Richard Brooks & Jill Gemmill (Clemson)
= Building on LWFS work (validation, simulation)

Provenance
= Bradley Settlemeyer (ORNL)

CScADS 2012, Snowbord

Acknowledgements

= Team at Argonne
= Phil Carns, Dave Goodell, Kevin Harms, Dries Kimpe, Rob Ross, Justin Wozniak

= Collaborators (ASG)
= ORNL: Stephen Poole, Bradley Settlemeyer

= SNL: Lee Ward, Matthew Curry, Ruth Klundt, Geoffrey Danielson
= Clemson: Jill Gemmil, Richard Brooks, Haiying Shen
= UAB: Anthony Skjellum, Matthew Farmer

= ...and people | forgot to mention here!

= More information about Triton:
= Triton: http://trac.mcs.anl.gov/projects/triton

= Object storage semantics for replicated concurrent-writer file systems
Philip Carns, Robert Ross and Samuel Lang

= Questions? dkimpe@mcs.anl.gov

CScADS 2012, Snowbord

http://trac.mcs.anl.gov/projects/triton
http://trac.mcs.anl.gov/projects/triton
mailto:dkimpe@mcs.anl.gov
mailto:dkimpe@mcs.anl.gov

