
Revisiting Data Models for

Data-Intensive Scientific Computing

Dries Kimpe dkimpe@mcs.anl.gov

Argonne National Laboratory

mailto:dkimpe@mcs.anl.gov

Overview

Introduction & Context

Short introduction to

Trident

Container Abstraction

Triton Data Model

Overview

Operations

Examples

Conclusion

Open Questions

Future work

CScADS 2012, Snowbord

Context

Many novel data-intensive storage models have emerged
(mainly from the cloud computing and internet services community)

NoSQL, Column-Store, Map-Reduce, Object-Storage, Key-Value

Why? Limitations of legacy storage models with respect to scalability, resiliency
and expressiveness.

This talk:

Present some alternative data models under exploration at Argonne.

Goal: Interact with audience to assess interest and usability.

Feel free to interrupt or ask questions at any time!

Target audience: applications/library not afraid to experiment

Ongoing work: things might change

CScADS 2012, Snowbord

Why a new data model?

Model? (!= API, != Implementation)

POSIX I/O API dates from ~1970: Plenty of research above and below POSIX
but relatively little changes to POSIX (POSIX HPC extensions?)

High-
restricted by the POSIX API.

The landscape changed: smart (object) distributed storage, application
concurrency (need for scalable synchronization primitives and metadata
operations)

 CScADS 2012, Snowbord

Known Problems

File locking & synchronization (inter-node synchronization)

Implementing MPI-IO shared file pointer

Manipulate meta data in high level I/O data formats (HDF5)

Mapping application model to the file model (flat file)

Chunking, space efficiency, unlimited dimensions, ...

Scalable metadata operations

Readdir + stat (readdirplus)

Generic namespace support

POSIX HPC Extensions (open by handle now in linux kernel)

File partitioning

N-N / N-1 / N-M writing

File Provenance

CScADS 2012, Snowbord

Model Issues Implementation Issues

Situation of this work
Related Research at Argonne

Note:

Not trying to create another
high level I/O library

Instead provide new
foundation for I/O
middleware and high level I/O
to build on.

CScADS 2012, Snowbord

In-System Storage Abstraction:

Storage Containers

CScADS 2012, Snowbord

CScADS 2012, Snowbord

Container Abstraction

Explicit location (also remote)

More restrictive than POSIX
Drop costly (unused?) features

Restricted model enables some new
features

`Direct Storage Access'
(True zero-copy)

Space reservation
(!= preallocation)

3rd party transfers

Status: Early evaluation
Implementation Available

CScADS 2012, Snowbord

Direct Storage Access

Expose container storage layout

Storage format designed for direct
access

Application transfers data

Avoid extra copy (processing data)

No complicated non-contiguous
I/O description needed.

Compare:

memory-mapped I/O (extra copy)

XIP (no write support, fs
dependent)

direct-io (alignment restrictions,
API bottleneck)

Layout returned as set of pointers
into storage.

CScADS 2012, Snowbord

Remote Container Access & Transport

Containers are a purely local
concept

No global namespace

Some applications need remote
access

Use storage hierarchy abstraction to
identify remote location.

Remote read/write

Extension: remote copy operation

Request duplication of a container
to another location

Remote source and dest (3rd party)

Global scheduling of data
movement

Implementation using IOFSL

CScADS 2012, Snowbord

System Information Library

Exposing node local storage
forces the application/library to
decide which (where) storage to
use.

For optimal performance,
topology of system needs to be
taken into account.

Library allows enumeration of
storage (and other?) properties
for a node.

Provides actions to move to the
next or previous level in the
hierarchy.

General problem very difficult!

CScADS 2012, Snowbord

Exposing The True Nature of PVFS:

Trident

CScADS 2012, Snowbord

CScADS 2012, Snowbord

PLFS on Trident

Port of PLFS to Trident
PLFS is an I/O library which transforms I/O
into a set of contiguous log writes

Research directions:

Control placement

Reduce metadata overhead

Status:
ad_plfs (ROMIO driver) complete

Starting work on PLFS port

Shawn Kim (Penn State)
[summer internship @ ANL]

CScADS 2012, Snowbord

The Advanced Storage Group:

Triton

CScADS 2012, Snowbord

Situation of this work
Advanced Storage Group (ASG)

Concept: Friendly
competition in designing an
exascale storage system

Different design choices,
but shared building blocks
simplifying exchange
(codes, ideas)

Periodical evaluation of
design decisions with
adoption of the best one.

CScADS 2012, Snowbord

Triton
Introduction

The model presented in this talk is one of
the models implemented by Triton.

(key,val), POSIX, variants

Self-healing, resilient

CScADS 2012, Snowbord

Triton: ANL effort towards development of
an exascale storage system

Comparison to T10 (object standard) OSD:

Triton is more like PanFS

Own local storage abstraction

D
et

ai
l o

f
Tr

it
o

n
 R

e
si

lie
n

cy
 S

ch
em

e

ASG Data Model
Overview

CScADS 2012, Snowbord

ASG Data Model
Example

write (loc,cid,oid,fid

CScADS 2012, Snowbord

Start record

Number of records

Data version

Record data

Identify fork

ASG Data Model
Example

write (loc,cid,oid,fid

write (loc,cid,oid,fid, 60, 4, 3

Writing 4 records with version number 3

CScADS 2012, Snowbord

ASG Data Model
Example

write (loc,cid,oid,fid, 61, 1

Writing 1 record of length 4 with version 9

CScADS 2012, Snowbord

Data Model: Operations

A limited set of operations:

Write: overwrite one or more records (atomic)

Read: retrieve one or more records (including metadata)

Probe: only retrieve metadata (version and length etc.); No data

Punch: Like write, but writes zero-length records

Reset:
Note: no

Write, read and punch support conditional execution based on the expected
version (more about this later).

Client generally provides version number; API also supports auto increment.

Write, read, punch operate on records

Probe and reset operate on records, forks, objects and containers

Version: Used to order transactions; No retrieval of obsolete versions

 CScADS 2012, Snowbord

Conditional Operations

Enables the user to provide a condition on the version of one or more of the
specified records.

If the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

Currently:

COND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

COND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:

CScADS 2012, Snowbord

abc

Conditional Operations

CScADS 2012, Snowbord

Enables the user to provide a condition on the version of one or more of the
specified records.

If the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

Currently:

COND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

COND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:

Conditional Operations

CScADS 2012, Snowbord

efgh

Enables the user to provide a condition on the version of one or more of the
specified records.

If the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

Currently:

COND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

COND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:

Conditional Operations

CScADS 2012, Snowbord

ECOND

Enables the user to provide a condition on the version of one or more of the
specified records.

If the condition is not satisfied, the operation does not retrieve or update record
contents; However, information is returned.

Currently:

COND_UNTIL: Transfer (read or write) records as long as the existing version (if any) is
strictly smaller than the specified version.

COND_ALL: Only transfer data if all existing records in the range have a version number
strictly smaller than the specified version.

Example:

No change

Example
Synchronization: R-M-W using versioning

The model does not support locking

Read and write are atomic

However: what about Read-Modify-Write?

Conditional operations can be used to implement R-M-W

CScADS 2012, Snowbord

Example
Exploiting Object Structure

Performance of preliminary implementation is not affected by choice of fork

Fork + record can be used as 2-dimensional record space
Record contents additional dimension (access granularity)

Example: (key,value) structures

CScADS 2012, Snowbord

fork

o
b

je
ct

Example
Implementing extended attributes and directories

(key,value) mapping (with key a string) data structure which supports atomic insert,

overwrite, lookup and remove (rename?)

CScADS 2012, Snowbord

Preparation: Hash the string key, use as
destination record number.

Insert: write-conditional with default version
Overwrite: R-M-W
Remove: R-M-W with empty data
Lookup: unconditional read (is atomic)

Note: each object can support 2^64 of
these data structures!

Reference Implementation

Implements the model focusing on
functionality and usability, not
performance, resilience or
scalability.

No external dependencies

Uses underlying FS

Hardlink support required

Write logging

Uses directory as DB, filename to
encode data

Code available at
git://git.mcs.anl.gov/asg/reference

CScADS 2012, Snowbord

http://git.mcs.anl.gov/asg/reference

Open Questions
(ongoing work)

Namespaces

Reddy Narasimha & students (Texas A&M Uni): Legacy support (POSIX)

Cengiz Karakoyunlu (UConn) summer project @ ANL

Location-Awareness

Do we need to expose location in the model?

If not: how do we offer placement control?

Auditing & Security

Collaboration with Richard Brooks & Jill Gemmill (Clemson)

Building on LWFS work (validation, simulation)

Provenance

Bradley Settlemeyer (ORNL)

CScADS 2012, Snowbord

Acknowledgements

Team at Argonne

Phil Carns, Dave Goodell, Kevin Harms, Dries Kimpe, Rob Ross, Justin Wozniak

Collaborators (ASG)

ORNL: Stephen Poole, Bradley Settlemeyer

SNL: Lee Ward, Matthew Curry, Ruth Klundt, Geoffrey Danielson

Clemson: Jill Gemmil, Richard Brooks, Haiying Shen

UAB: Anthony Skjellum, Matthew Farmer

!

More information about Triton:

Triton: http://trac.mcs.anl.gov/projects/triton

Object storage semantics for replicated concurrent-writer file systems
Philip Carns, Robert Ross and Samuel Lang

Questions? dkimpe@mcs.anl.gov

CScADS 2012, Snowbord

http://trac.mcs.anl.gov/projects/triton
http://trac.mcs.anl.gov/projects/triton
mailto:dkimpe@mcs.anl.gov
mailto:dkimpe@mcs.anl.gov

