Flow Visualization Research @ IDAV

Christoph Garth

CScADS Workshop on Scientific Data Analysis and Visualization for Petascale Computing August 6, 2009

Flow Illustration with Integral Surfaces

(with Hari Krishnan, Ken Joy)

Integration-Based Flow Vis

Integral Curve

Intuitive interpretation: path of a massless particle Computation in datasets: numerical integration

- Generalization: path surfaces
- Interpretation: surface spanned by a family of integral curves, originating from a common curve

Flow over a car, 38M unstructured cells

 Step 1: Compute initial approximation, points on t₁ are advected from t₀

t₀

 Step 1: Compute initial approximation, points on t₁ are advected from t₀

 t_0

• Step 2:

Apply <u>refinement predicate</u> on adjacent point triples to determine where better resolution is needed

 t_0

• Step 2:

Apply <u>refinement predicate</u> on adjacent point triples to determine where better resolution is needed

to

• Step 2:

Apply <u>refinement predicate</u> on adjacent point triples to determine where better resolution is needed

to

• Step 2:

Apply <u>refinement predicate</u> on adjacent point triples to determine where better resolution is needed

• Step 3: Insert new points

 t_0

• Step 3: Insert new points

t₀

 Repeat at Steps 2 and 3 until no further refinement is needed

t₀

 Approximate sequence of timelines going from t_i to t_{i+1}

t₀

 Approximate sequence of timelines going from t_i to t_{i+1}

 t_0

 Approximate sequence of timelines going from t_i to t_{i+1}

t₀

Result: Surface skeleton of integral curves + time lines

t₀

• Use adjacent integral curves and triangulate heuristically with shortest diagonals.

t₀

• Use adjacent integral curves and triangulate heuristically with shortest diagonals.

t₀

• Use adjacent integral curves and triangulate heuristically with shortest diagonals.

t₀

• Use adjacent integral curves and triangulate heuristically with shortest diagonals.

t₀

• Use adjacent integral curves and triangulate heuristically with shortest diagonals.

to

Proposed method: (Vis 08)

- adaptive approximation

 integral curve divergence/convergence
 surface deformation (folding, shearing)
- temporal locality
 - -allows streaming of large time-varying vector fields
- spatial locality

-only considers neighboring curves, allows parallization

Turbulent CFD simulation, 200M unstructured cells

Flow past an ellipsoid, 2.6M unstructured cells x 1000 timesteps

UDAVIS

Flow over a delta wing, 18M unstructured cells x 500 timesteps

Ongoing work (Vis 09):

Time Surfaces (seed surface) Streak Surfaces (continuous seeding from a curve)

E IDAV Institute for Data Analysis and Visualization

UCDAVIS

Performance: – require 100 - 100,000 pathlines, depending on complexity of data and surface

 – computation times (1 CPU) can range up to hours for very complex surfaces

– time spent integrating pathlines > 90%

-parallelization is in the works

We provide tools for interactive viewing, spatial + temporal navigation

(with Xavier Tricoche, Mario Hlawitschka, Ken Joy)

- Lagrangian Flow Vis look at what particles do
- Finite-Time Lyapunov Exponent

- Measures exponential separation rate between neighboring particles
- Identifies Lagrangian Coherent Structures

- Computation: dense particles + derivatives
- Interpretation of FTLE:
 - separation forward in time: indicates divergence
 - separation backward in time: indicates convergence

Time-dependent vs. time-independent FTLE fields

3D Visualization: DVR of FTLE fields using a 2D transfer function

Computation is extensive, but we use GPUs for small data, and adaptive computation for medium-sized data.

Often effective visualizations with relatively little application knowledge.

Wish list:•feature identification•feature tracking

Visualization tool: section plane FTLE + user interaction

Pathlines seeded according user brushing

Delta Wing

Section plane orthogonal to main flow direction

- Application to DT-MRI / tensor data
- Interest in coherent fiber bundles / bundle separation

joint work with X. Tricoche (Purdue), M. Hlawitschka

- Hamiltonian Systems (Fusion, Astrophysics, ...)
- Coherent Structures: Island Chain Boundaries

Standard Map

Tokamak Simulation

10⁶–10⁹ integral curves

(with Dave Pugmire, Sean Ahern, Hank Childs, Gunther Weber, Eduard Deines)

- Integrating many curves is a hard problem
 - -non-linear
 - -data-dependent
 - -requires fast interpolation in arbitrary meshes
- Strong need for parallelization
 - large data (petascale)
 - -large seed set (millions of integral curves)
 - -correct handling difficult mesh types (e.g. AMR)

- Wish list for improved integration: <u>– parallelize over both data and seed point set</u>
 - -avoid bad performance in corner cases
 - large data, small seed set
 - small data, large seed set
 - precludes any kind of static partitioning
 - handle data in existing format,
 no repartitioning or expensive up-front analysis,
 general use case
- Ongoing work: adaptive load balancing using a master-slave approach and distribution heuristics (SC09 paper: comparison of different approaches)

Ongoing: Correct handling of AMR meshes

- Problem 1: cell-centered data
 - need good interpolation scheme
 - cell-node averaging is **not** the right thing (too much smoothing)
 - dual mesh interpolation behaves much better

Correct handling of AMR meshes:

- Problem 2: discontinuities across AMR resolution boundaries
 - adaptive integration cannot handle this smoothly, or fails outright
 - "stopping" integration across boundary results in decreased numerical error

Integration should work out-of-the-box, without a user worrying about the details.

ignored discontinuities + averaging

explicit disc. handling + dual mesh

- Where can I download this?
 Nowhere, yet :-(
- Integration into Visit is underway
 - -Improved integration in Visit very soon
 - Integral Surfaces + FTLE visualization are being incorporated

Acknowledgements

John Anderson, Luke Gosink, Hari Krishnan, Alexy Agranovski, Mauricio Hess-Flores, Eduard Deines, Ken Joy, Markus Rütten, SciDAC VACET, Purdue University, University of Kaiserslautern, University of Leipzig, DLR Germany, German Research Foundation, LBNL LLNL ORNL

EXAMPLE 1 Institute for Data Analysis and Visualization

Questions?

