
Christoph Garth

CScADS Workshop on
Scientific Data Analysis and Visualization for Petascale Computing

August 6, 2009

Flow Visualization Research @ IDAV

Flow Illustration with
Integral Surfaces
(with Hari Krishnan, Ken Joy)

Integration-Based Flow Vis

Integral Curve

Intuitive interpretation: path of a massless particle
Computation in datasets: numerical integration

Integral Surfaces

• Generalization: path surfaces

• Interpretation: surface spanned by a family of
integral curves, originating from a common curve

Integral Surfaces

seeding curve

Flow over a car, 38M unstructured cells

Integral Surfaces

• Step 1: Compute initial approximation, points on t1
are advected from t0

t0

t1

Integral Surfaces

• Step 1: Compute initial approximation, points on t1
are advected from t0

t0

t1

Integral Surfaces

• Step 2:
Apply refinement predicate on adjacent point triples
to determine where better resolution is needed

t0

t1

Integral Surfaces

• Step 2:
Apply refinement predicate on adjacent point triples
to determine where better resolution is needed

t0

t1

Integral Surfaces

• Step 2:
Apply refinement predicate on adjacent point triples
to determine where better resolution is needed

t0

t1

Integral Surfaces

• Step 2:
Apply refinement predicate on adjacent point triples
to determine where better resolution is needed

t0

t1

Integral Surfaces

• Step 3:
Insert new points

t0

t1

Integral Surfaces

• Step 3:
Insert new points

t0

t1

Integral Surfaces

• Repeat at Steps 2 and 3 until no further refinement
is needed

t0

t1

Integral Surfaces

• Approximate sequence of timelines going from ti to
ti+1

t0

t1

t2

Integral Surfaces

• Approximate sequence of timelines going from ti to
ti+1

t0

t1

t2
t3

Integral Surfaces

• Approximate sequence of timelines going from ti to
ti+1

t0

t1

t2
t3

t4

Integral Surfaces

• Result: Surface skeleton of integral curves + time
lines

t0

t1

t2
t3

t4

Integral Surfaces

• Use adjacent integral curves and triangulate
heuristically with shortest diagonals.

t0

t1

t2
t3

t4

Phase 2: Surface Triangulation

• Use adjacent integral curves and triangulate
heuristically with shortest diagonals.

t0

t1

t2
t3

t4

Phase 2: Surface Triangulation

• Use adjacent integral curves and triangulate
heuristically with shortest diagonals.

t0

t1

t2
t3

t4

Phase 2: Surface Triangulation

• Use adjacent integral curves and triangulate
heuristically with shortest diagonals.

t0

t1

t2
t3

t4

Phase 2: Surface Triangulation

• Use adjacent integral curves and triangulate
heuristically with shortest diagonals.

t0

t1

t2
t3

t4

Integral Surfaces

Proposed method: (Vis 08)

• adaptive approximation
– integral curve divergence/convergence
– surface deformation (folding, shearing)

• temporal locality
– allows streaming of large time-varying vector fields

• spatial locality
– only considers neighboring curves, allows parallization

Integral Surfaces

Integral Surfaces

Vi
su

al
iza

tio
n

/ R
en

de
rin

g
op

tio
ns

tra
ns

pa
re

nt

tra
ns

pa
re

nt
 w

/ c
ol

or

am
bi

en
t o

cc
lu

sio
n

Turbulent CFD simulation, 200M unstructured cells

Integral Surfaces

Flow past an ellipsoid, 2.6M unstructured cells x 1000 timesteps

Integral Surfaces

Flow over a delta wing, 18M unstructured cells x 500 timesteps

Integral Surfaces

Ongoing work (Vis 09):

Time Surfaces (seed surface)
Streak Surfaces (continuous seeding from a curve)

(a) Edge split (b) Edge flip (c) Edge collapse

Fig. 2. Three types of surface mesh operations used to adapt the surface resolution during advection.

(a) Inverted triangles (b) Degenerate triangles (c) Volume change

Fig. 4. Degenerate cases to avoided when flipping an edge.

local quality of the mesh by maximizing the minimum angle, increas-
ing the approximation quality of the surface triangulation and making
it geometrically more well-conditioned. An edge is considered flip-
pable if its potential length after a flip decreases by at least a fixed
ratio, which we generally chose as 0.9 to balance excessive flipping
with mesh improvement. Again, to avoid degeneracies such as very
small or inverted triangles (cf. Figure 4), we compute the triangle area
and normals of the edge-adajecent triangles, and do not proceed with
the flip operation if the normals are inverted or the resulting triangles
do not surpass the small area bound. To prevent flipping of edges that
are located on relatively sharp ridges of the surface, we compute the
volume of the tetrahedron spanned by the edge vertices and the two
opposing vertices; this models the local change of volume enclosed
by the surface incurred by flipping. If this volume exceeds a thresh-
old Vmax, the edge is considered unflippable. We have observed this
additional criterion to markedly increase the representation of ridges
where the surface folds strongly.

Applying the above criteria, we traverse all edges of the triangula-
tion (except the boundary edges) and flip any edge that is considered
flippable. As in some regions, several flip operations can be required
to achieve optimal quality, we repeat this flipping traversal a small
number of times.

Fig. 5. Time surface mesh in the Ellipsoid dataset. Although the surface
has undergone strong deformation, the mesh remains in good condition.

4.3.3 Edge Collapse
In the case of strong convergence of integral curves, the triangulation
will come to contain very small triangles, and the number of vertices in
such regions becomes excessive. To improve the surface triangulation
and reduce the number of integral curves that have to be propagated
in further time steps, we perform edge collapse operations. As op-
posed to splits and flips, we perform this operation only at the end of
the current data timestep ti+1 such that we do not loose approxima-
tion accuracy when it is required to perform a split and consequently
insertion at ti.

We consider edges with a length below a prescribed minimum edge
length dmin as eligible for collapse. For each such edge, we determine
the vertex to be deleted from the triangulation by again determining
the volume change incurred by the removal of either vertex, and re-
moving the vertex that represents the smaller volume change. This pe-
nalizes the removal of edges that are located along ridge-like regions
of the surface and improves the approximation of strongly folding sur-
faces. If the volume change surpasses Vmax, the collapse is aborted. In
similarity to the split operation, we collapse eligible edges in order of
ascending edge length.

Here, we have again found that replacing an edge by a new midpoint
as chosen from quadratic error minimization or subdivision does not
yield good results, especially in regions where the surface is ridge-
shaped or otherwise non-smooth.

4.3.4 Parameters
The adaptation phase detailed above makes use of a variety of param-
eters that have to be carefully chosen to balance triangle mesh refine-
ment, coarsening, and approximation quality. We reduce the number
of parameters that have to be chosen by coupling them to dmax, using
dmin = 0.1dmax, Amin = 0.1d2

min, and Vmax = d3
min. We have applied

this heuristic in all of our experiments and have observed the result-
ing surfaces to be of good quality, as demonstrated in Figure 5 and
Section 7. Hence, the remaining parameter dmax takes the form of a
scaling parameter that must be chosen to roughly reflect the scale of
the smallest structures that the surface must resolve correctly.

4.3.5 Step Size Estimation
In order to guarantee that the surface can be adapted correctly, the
adaptation timestep ∆tsub must be chosen such that the triangulation
does not undergo irreparable changes in between adaptations. Typi-
cally, such a timestep is chosen much smaller that the dataset timestep
∆t. To avoid burdening the user with the choice of this timestep, we
select it automatically by requiring that no vertex of the triangulation
moves further that dmax from its current position. As a consequence,
no edge can grow to more than twice dmax in length, and has to be split
no more than once per adaptation step.

Using the piecewise polynomial integral curve representation de-
scribed above, this criterion is easily approximated by evaluating the
current speed of any vertex in the triangulation by evaluating the
derivative magnitude of the integral curves through interpolation. This
avoids the overhead of additional costly vector field evaluations at ev-
ery vertex position. Then, if the maximal determined vertex velocity
is denoted by vmax, we select the next adaptation time step as

∆tsub :=
dmax
vmax

.

4

(a) Edge split (b) Edge flip (c) Edge collapse

Fig. 2. Three types of surface mesh operations used to adapt the surface resolution during advection.

(a) Inverted triangles (b) Degenerate triangles (c) Volume change

Fig. 4. Degenerate cases to avoided when flipping an edge.

local quality of the mesh by maximizing the minimum angle, increas-
ing the approximation quality of the surface triangulation and making
it geometrically more well-conditioned. An edge is considered flip-
pable if its potential length after a flip decreases by at least a fixed
ratio, which we generally chose as 0.9 to balance excessive flipping
with mesh improvement. Again, to avoid degeneracies such as very
small or inverted triangles (cf. Figure 4), we compute the triangle area
and normals of the edge-adajecent triangles, and do not proceed with
the flip operation if the normals are inverted or the resulting triangles
do not surpass the small area bound. To prevent flipping of edges that
are located on relatively sharp ridges of the surface, we compute the
volume of the tetrahedron spanned by the edge vertices and the two
opposing vertices; this models the local change of volume enclosed
by the surface incurred by flipping. If this volume exceeds a thresh-
old Vmax, the edge is considered unflippable. We have observed this
additional criterion to markedly increase the representation of ridges
where the surface folds strongly.

Applying the above criteria, we traverse all edges of the triangula-
tion (except the boundary edges) and flip any edge that is considered
flippable. As in some regions, several flip operations can be required
to achieve optimal quality, we repeat this flipping traversal a small
number of times.

Fig. 5. Time surface mesh in the Ellipsoid dataset. Although the surface
has undergone strong deformation, the mesh remains in good condition.

4.3.3 Edge Collapse
In the case of strong convergence of integral curves, the triangulation
will come to contain very small triangles, and the number of vertices in
such regions becomes excessive. To improve the surface triangulation
and reduce the number of integral curves that have to be propagated
in further time steps, we perform edge collapse operations. As op-
posed to splits and flips, we perform this operation only at the end of
the current data timestep ti+1 such that we do not loose approxima-
tion accuracy when it is required to perform a split and consequently
insertion at ti.

We consider edges with a length below a prescribed minimum edge
length dmin as eligible for collapse. For each such edge, we determine
the vertex to be deleted from the triangulation by again determining
the volume change incurred by the removal of either vertex, and re-
moving the vertex that represents the smaller volume change. This pe-
nalizes the removal of edges that are located along ridge-like regions
of the surface and improves the approximation of strongly folding sur-
faces. If the volume change surpasses Vmax, the collapse is aborted. In
similarity to the split operation, we collapse eligible edges in order of
ascending edge length.

Here, we have again found that replacing an edge by a new midpoint
as chosen from quadratic error minimization or subdivision does not
yield good results, especially in regions where the surface is ridge-
shaped or otherwise non-smooth.

4.3.4 Parameters
The adaptation phase detailed above makes use of a variety of param-
eters that have to be carefully chosen to balance triangle mesh refine-
ment, coarsening, and approximation quality. We reduce the number
of parameters that have to be chosen by coupling them to dmax, using
dmin = 0.1dmax, Amin = 0.1d2

min, and Vmax = d3
min. We have applied

this heuristic in all of our experiments and have observed the result-
ing surfaces to be of good quality, as demonstrated in Figure 5 and
Section 7. Hence, the remaining parameter dmax takes the form of a
scaling parameter that must be chosen to roughly reflect the scale of
the smallest structures that the surface must resolve correctly.

4.3.5 Step Size Estimation
In order to guarantee that the surface can be adapted correctly, the
adaptation timestep ∆tsub must be chosen such that the triangulation
does not undergo irreparable changes in between adaptations. Typi-
cally, such a timestep is chosen much smaller that the dataset timestep
∆t. To avoid burdening the user with the choice of this timestep, we
select it automatically by requiring that no vertex of the triangulation
moves further that dmax from its current position. As a consequence,
no edge can grow to more than twice dmax in length, and has to be split
no more than once per adaptation step.

Using the piecewise polynomial integral curve representation de-
scribed above, this criterion is easily approximated by evaluating the
current speed of any vertex in the triangulation by evaluating the
derivative magnitude of the integral curves through interpolation. This
avoids the overhead of additional costly vector field evaluations at ev-
ery vertex position. Then, if the maximal determined vertex velocity
is denoted by vmax, we select the next adaptation time step as

∆tsub :=
dmax
vmax

.

4

Integral Surfaces

Integral Surfaces

Integral Surfaces

Performance:
– require 100 - 100,000 pathlines,

depending on complexity of data and surface

– computation times (1 CPU) can range up to hours for
very complex surfaces

– time spent integrating pathlines > 90%

– parallelization is in the works

We provide tools for interactive viewing,
spatial + temporal navigation

Lagrangian Flow Visualization
(with Xavier Tricoche, Mario Hlawitschka, Ken Joy)

Lagrangian Flow Visualization

• Lagrangian Flow Vis - look at what particles do

• Finite-Time Lyapunov Exponent

• Measures exponential separation rate between
neighboring particles

• Identifies Lagrangian Coherent Structures

Lagrangian Flow Visualization

• Computation: dense particles + derivatives

• Interpretation of FTLE:
• separation forward in time: indicates divergence
• separation backward in time: indicates convergence

Lagrangian Flow Visualization

Time-dependent vs. time-independent FTLE fields

time-
independent

time-
dependent

Lagrangian Flow Visualization

3D Visualization:
DVR of FTLE fields
using a 2D transfer
function

Computation is
extensive, but we use
GPUs for small data,
and adaptive
computation for
medium-sized data.

Lagrangian Flow Visualization

Often effective
visualizations with
relatively little
application
knowledge.

Wish list:

•feature identification
•feature tracking

Lagrangian Flow Visualization

Section plane orthogonal to main flow directionDelta Wing

Pathlines seeded
according user brushing

Visualization tool:
section plane FTLE +
user interaction

Lagrangian Flow Visualization

• Application to DT-MRI / tensor data
• Interest in coherent fiber bundles / bundle separation

B
ra

in
 S

ca
n
C

anine H
eart

joint work with X. Tricoche (Purdue), M. Hlawitschka

Lagrangian Flow Visualization

• Hamiltonian Systems (Fusion, Astrophysics, ...)
• Coherent Structures: Island Chain Boundaries

Tokamak SimulationStandard Map

106–109 integral curves

Improved Integration

(with Dave Pugmire, Sean Ahern, Hank Childs,
 Gunther Weber, Eduard Deines)

Improved Integration

• Integrating many curves is a hard problem

– non-linear
– data-dependent
– requires fast interpolation in arbitrary meshes

• Strong need for parallelization

– large data (petascale)
– large seed set (millions of integral curves)
– correct handling difficult mesh types (e.g. AMR)

Improved Integration

• Wish list for improved integration:
– parallelize over both data and seed point set
– avoid bad performance in corner cases

• large data, small seed set

• small data, large seed set

• precludes any kind of static partitioning

– handle data in existing format,
no repartitioning or expensive up-front analysis,
general use case

• Ongoing work: adaptive load balancing using a
master-slave approach and distribution heuristics
(SC09 paper: comparison of different approaches)

Improved Integration

Ongoing: Correct handling of AMR meshes

• Problem 1: cell-centered data

– need good interpolation scheme

– cell-node averaging is not the right thing
(too much smoothing)

– dual mesh interpolation behaves much better

Improved Integration

Correct handling of AMR meshes:

• Problem 2:
discontinuities across AMR resolution boundaries

– adaptive integration cannot handle this smoothly,
or fails outright

– “stopping” integration across boundary results in
decreased numerical error

Integration should work out-of-the-box, without a
user worrying about the details.

Improved Integration

ignored discontinuities + averaging explicit disc. handling + dual mesh

• Where can I download this?
– Nowhere, yet :-(

• Integration into Visit is underway

– Improved integration in Visit very soon

– Integral Surfaces + FTLE visualization are being
incorporated

Acknowledgements

John Anderson,
Luke Gosink,
Hari Krishnan,

Alexy Agranovski,
Mauricio Hess-Flores,

Eduard Deines,
Ken Joy,

Markus Rütten,
SciDAC VACET,

Purdue University,
University of Kaiserslautern,

University of Leipzig,
DLR Germany,

German Research Foundation,
LBNL
LLNL
ORNL

Thanks!

Questions?

