Challenges in the analysis of extreme-scale combustion simulation data

- J. Bennett, J. Chen, H. Kolla, H. Yu @ Sandia National Laboratories
 A. Gyulassy, V. Pascucci @ University of Utah
 - P.-T. Bremer@ Lawrence Livermore National Laboratory
 - R. Grout @ National Renewable Energy Laboratory

CScADS Workshop on Scientific Data & Analytics for Extreme Scale Computing July 30, 2012

Combustion Research Facility at Sandia National Laboratories

A DOE user facility dedicated to energy science and technology for the twenty-first century

Combustion plays an important role in energy security

- Combustion accounts for a majority of energy used in the United States
- Computer simulations provide tools for design of efficient clean burning devices
- Sound scientific understanding is necessary to develop predictive, validated multi-scale models

Direct Numerical Simulations (DNS) are used to study fundamental turbulence-chemistry interactions

Turbulence

- Entrains, advects, strains and wrinkles a flame creating more area for burning
- Causes molecular mixing of reactants

Chemical reactions

- Are enhanced with mixing to a limit \rightarrow extinction
- Create heat release

• Heat release, dilatation

Reduce turbulence intensity through density, and property changes

Simulation benchmark data generated by S3D is used for model development and validation

Combustion scientists are interested in analyzing this data in a variety of ways

Data analysis is complicated by several factors

Data size

- Billions of grid points per time step
- Hundreds of time steps written to disk

Data complexity

- Multivariate
- Turbulence is a complex phenomenon
- Length scales: microns to centimeters
- Temporal scales: nanoseconds to milliseconds

• Example: Lifted Ethylene Jet

- 1.3 bilion grid points
- 22 chemical species, vector & particle data
- 7.5 million cpu hours on 30,000 processors
- 112,500 timesteps (data stored every 375th)
- 240 TB of raw field data + 50 TB particle data

HPSS storage facility at NERSC

The move to exascale computing adds additional complexity

Existing data analysis paradigm comprises two stages Stage 1: perform simulation

Stage 2: extraction of scientific insight is a post-process on secondary resources

primary compute resources storage analysis output simulation output secondary compute resources analysis

This approach does not scale!

As a result we are seeing a shift towards a concurrent analysis paradigm

Secondary compute resources can be used to perform in-transit analysis

Hybrid in-situ + in-transit framework shows promise

timing breakdown among simulation and analytics using 4896 cores

Combining In-situ and In-transit Processing to Enable Extreme-Scale Scientific Analysis (J. Bennett, H. Abbasi, P-T Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang, and J. Chen, to appear in SC 2012)

Many research and development challenges remain

- In-situ/in-transit decomposition
- Shared data structures
- Strict time constraints
- Scheduling
- Input parameters
- Minimize communication
- Efficient data movement
- Data reduction
- Resilient analyses

Questions?

Contact:

Janine Bennett
Sandia National Laboratories

jcbenne@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

