Computational Issues in the Continuum Gyrokinetic Code GYRO

presented by: Eric Bass GSEP SciDAC project at General Atomics

CScADS Workshop Snowbird, UT July 19, 2010

Purpose: To predict transport driven by turbulence in toroidal nuclear fusion devices called tokamaks.

J. Candy, R.E. Waltz, JCP **186** 545 (2003)

http://fusion.gat.com/THEORY/gyro/

Purpose: To predict transport driven by turbulence in toroidal nuclear fusion devices called tokamaks.

Method: Solve the gyrokinetic equation on a five-dimensional phase-space grid.

- 3D real space: 2D grid + 1 spectral (toroidal n number) degree of freedom
- 2D velocity-space grid comes from averaging out fast cyclotron motion.

Purpose: To predict transport driven by turbulence in toroidal nuclear fusion devices called tokamaks.

Method: Solve the gyrokinetic equation on a five-dimensional phase-space grid.

- 3D real space: 2D grid + 1 spectral (toroidal n number) degree of freedom
- 2D velocity-space grid comes from averaging out fast cyclotron motion.

Parallelization: The 2D velocity-space grid and 1 spectral degree of freedom are distributed (separate MPI_COMM groups). Each processor follows a 2D real-space grid.

http://fusion.gat.com/THEORY/gyro/

Purpose: To predict transport driven by turbulence in toroidal nuclear fusion devices called tokamaks.

Method: Solve the gyrokinetic equation on a five-dimensional phase-space grid.

- 3D real space: 2D grid + 1 spectral (toroidal *n* number) degree of freedom
- 2D velocity-space grid comes from averaging out fast cyclotron motion.

Parallelization: The 2D velocity-space grid and 1 spectral degree of freedom are distributed (separate MPI_COMM groups). Each processor follows a 2D real-space grid.

Multiple operating modes: GYRO can follow the time evolution from initial conditions or find the eigenvalues of the full system (GKEIGEN, SLEPc/PETSc) or the much-reduced Maxwell dispersion matrix (FIELDEIGEN, spatial degrees only).

J. Candy, R.E. Waltz, JCP 186 545 (2003)

http://fusion.gat.com/THEORY/gyro/

• GYRO uses a hybrid implicit-explicit (IMEX) scheme with fixed time steps. It can also be set to use fully explicit Runge-Kutta time steps as well.

• GYRO uses a hybrid implicit-explicit (IMEX) scheme with fixed time steps. It can also be set to use fully explicit Runge-Kutta time steps as well.

• The (cyclotron averaged) fields are solved for on each processor using (usually sparse) linear algebra.

• GYRO uses a hybrid implicit-explicit (IMEX) scheme with fixed time steps. It can also be set to use fully explicit Runge-Kutta time steps as well.

• The (cyclotron averaged) fields are solved for on each processor using (usually sparse) linear algebra.

• An MPI_ALL_REDUCE produces the total field actually used in the equations of motion of the system (linear or non-linear operation).

• GYRO uses a hybrid implicit-explicit (IMEX) scheme with fixed time steps. It can also be set to use fully explicit Runge-Kutta time steps as well.

• The (cyclotron averaged) fields are solved for on each processor using (usually sparse) linear algebra.

• An MPI_ALL_REDUCE produces the total field actually used in the equations of motion of the system (linear or non-linear operation).

• In non-linear operation, MPI calls over the COMM representing the spectral degree of freedom are required to evaluate the non-linear term.

• GYRO uses a hybrid implicit-explicit (IMEX) scheme with fixed time steps. It can also be set to use fully explicit Runge-Kutta time steps as well.

• The (cyclotron averaged) fields are solved for on each processor using (usually sparse) linear algebra.

• An MPI_ALL_REDUCE produces the total field actually used in the equations of motion of the system (linear or non-linear operation).

• In non-linear operation, MPI calls over the COMM representing the spectral degree of freedom are required to evaluate the non-linear term.

• Actual time advance operations for one entire spatial cross section (at one or more velocity or spectral grid points) are handled by each processor.

GYRO is versatile and scalable.

Local, linear simulations quickly give all features of the most-unstable mode even on a desktop machine.

1-32 cores , < 1 hour

Waltz standard case flux tube

GYRO is versatile and scalable.

Local, linear simulations quickly give all features of the most-unstable mode even on a desktop machine.

1-32 cores , < 1 hour

Waltz standard case flux tube

Candy supertorus case

Non-linear simulations track multiple toroidal *n* numbers.

16-512 cores , 1-48 hours

GYRO is versatile and scalable.

Local, linear simulations quickly give all features of the most-unstable mode even on a desktop machine.

1-32 cores , < 1 hour

Candy supertorus case

Non-linear simulations track multiple toroidal *n* numbers.

16-512 cores , 1-48 hours

Waltz standard case flux tube

Massively multi-scale, non-linear simulations have disparate length and time scales and are only practical on terascale+ machines.

 ${\sim}1000\ cores$, 10 hours-7 days

ITG-ETG flux tube

Multiple nonlinear instances managed in tGYRO can efficiently use 10,000+ cores (talk by Luc Peterson)

Multiple nonlinear instances managed in tGYRO can efficiently use 10,000+ cores (talk by Luc Peterson)

Non-linear cases with high spectral resolution are highly parallelizable...

 $\phi - \langle \phi \rangle$ in a nonlinear GYRO run with driven TAE/EPM turbulence.

Multiple nonlinear instances managed in tGYRO can efficiently use 10,000+ cores (talk by Luc Peterson)

Non-linear cases with high spectral resolution are highly parallelizable...

 $\phi - \langle \phi \rangle$ in a nonlinear GYRO run with driven TAE/EPM turbulence.

max cores=2560

But, for 100% efficiency max cores=1280

...but maximum efficiency requires a corresponding increase in real-space grid density because spectral and spatial degrees of freedom are convoluted in the non-linear terms. Total calculation time is increased.

Multiple nonlinear instances managed in tGYRO can efficiently use 10,000+ cores (talk by Luc Peterson)

Non-linear cases with high spectral resolution are highly parallelizable...

 $\phi - \langle \phi \rangle$ in a nonlinear GYRO run with driven TAE/EPM turbulence.

max cores=2560

But, for 100% efficiency max cores=1280

...but maximum efficiency requires a corresponding increase in real-space grid density because spectral and spatial degrees of freedom are convoluted in the non-linear terms. Total calculation time is increased. Even spatially small cases of GKEIGEN solve 25,000×25,000 matrices with parallel processing...

Multiple nonlinear instances managed in tGYRO can efficiently use 10,000+ cores (talk by Luc Peterson)

Non-linear cases with high spectral resolution are highly parallelizable...

 $\phi - \langle \phi \rangle$ in a nonlinear GYRO run with driven TAE/EPM turbulence.

max cores=2560

But, for 100% efficiency max cores=1280

...but maximum efficiency requires a corresponding increase in real-space grid density because spectral and spatial degrees of freedom are convoluted in the non-linear terms. Total calculation time is increased. Even spatially small cases of GKEIGEN solve 25,000×25,000 matrices with parallel processing...

...but GKEIGEN cases are implemented now with GYRO's parallelization scheme. Total cores ≤ 64 .

Cases involving an energetic particle (EP) species show such bottlenecks.

Cases involving an energetic particle (EP) species show such bottlenecks.

Stiff term in the gyrokinetic equation:

$$\frac{\partial h_{a,n}}{\partial t} - i\omega_{\theta}H_{a,n} - i\omega_{d}H_{a,n} - i\omega_{E}h_{a,n} - i\omega_{*}\Psi_{a,n} + \frac{q\rho_{s,\text{unit}}}{rG_{r}}a\{\hat{h}_{a},\hat{\Psi}_{a}\} = C_{a}^{CL}[H_{a,n}]$$

Curvature drift (ω_d) term is proportional to particle energy. EP requires small time steps.

Cases involving an energetic particle (EP) species show such bottlenecks.

Stiff term in the gyrokinetic equation:

$$\frac{\partial h_{a,n}}{\partial t} - i\omega_{\theta}H_{a,n} - i\omega_{d}H_{a,n} - i\omega_{E}h_{a,n} - i\omega_{*}\Psi_{a,n} + \frac{q\rho_{s,\text{unit}}}{rG_{r}}a\{\hat{h}_{a},\hat{\Psi}_{a}\} = C_{a}^{CL}[H_{a,n}]$$

IMEX time-integration scheme used to mitigate the electron parallel advection (ω_q) term should probably be avoided for ω_d term for physics reasons.

Curvature drift (ω_d) term is proportional to particle energy. EP requires small time steps.

Cases involving an energetic particle (EP) species show such bottlenecks.

Stiff term in the gyrokinetic equation:

$$\frac{\partial h_{a,n}}{\partial t} - i\omega_{\theta}H_{a,n} - i\omega_{d}H_{a,n} - i\omega_{E}h_{a,n} - i\omega_{*}\Psi_{a,n} + \frac{q\rho_{s,\text{unit}}}{rG_{r}}a\{\hat{h}_{a},\hat{\Psi}_{a}\} = C_{a}^{CL}[H_{a,n}]$$

IMEX time-integration scheme used to mitigate the electron parallel advection (ω_q) term should probably be avoided for ω_d term for physics reasons.

Curvature drift (ω_d) term is proportional to particle energy. EP requires small time steps.

Expensive cyclotron average and field solve:

 $\Psi_{a,n}$ is a cyclotron-averaged composite field variable.

Cases involving an energetic particle (EP) species show such bottlenecks.

Stiff term in the gyrokinetic equation:

$$\frac{\partial h_{a,n}}{\partial t} - i\omega_{\theta}H_{a,n} - i\omega_{d}H_{a,n} - i\omega_{E}h_{a,n} - i\omega_{*}\Psi_{a,n} + \frac{q\rho_{s,\text{unit}}}{rG_{r}}a\{\hat{h}_{a},\hat{\Psi}_{a}\} = C_{a}^{CL}[H_{a,n}]$$

IMEX time-integration scheme used to mitigate the electron parallel advection (ω_q) term should probably be avoided for ω_d term for physics reasons.

Curvature drift (ω_d) term is proportional to particle energy. EP requires small time steps.

Expensive cyclotron average and field solve:

 $\Psi_{a,n}$ is a cyclotron-averaged composite field variable. EPs have large cyclotron orbits.

Cases involving an energetic particle (EP) species show such bottlenecks.

Stiff term in the gyrokinetic equation:

$$\frac{\partial h_{a,n}}{\partial t} - i\omega_{\theta}H_{a,n} - i\omega_{d}H_{a,n} - i\omega_{E}h_{a,n} - i\omega_{*}\Psi_{a,n} + \frac{q\rho_{s,\text{unit}}}{rG_{r}}a\{\hat{h}_{a},\hat{\Psi}_{a}\} = C_{a}^{CL}[H_{a,n}]$$

IMEX time-integration scheme used to mitigate the electron parallel advection (ω_q) term should probably be avoided for ω_d term for physics reasons.

Curvature drift (ω_d) term is proportional to particle energy. EP requires small time steps.

Expensive cyclotron average and field solve:

 $\Psi_{a,n}$ is a cyclotron-averaged composite field variable. EPs have large cyclotron orbits.

Many more grid points are coupled and the $\Psi_{a,n}$ field-solve linear algebra becomes dense.

Cases involving an energetic particle (EP) species show such bottlenecks.

Stiff term in the gyrokinetic equation:

$$\frac{\partial h_{a,n}}{\partial t} - i\omega_{\theta}H_{a,n} - i\omega_{d}H_{a,n} - i\omega_{E}h_{a,n} - i\omega_{*}\Psi_{a,n} + \frac{q\rho_{s,\text{unit}}}{rG_{r}}a\{\hat{h}_{a},\hat{\Psi}_{a}\} = C_{a}^{CL}[H_{a,n}]$$

IMEX time-integration scheme used to mitigate the electron parallel advection (ω_q) term should probably be avoided for ω_d term for physics reasons.

Curvature drift (ω_d) term is proportional to particle energy. EP requires small time steps.

Expensive cyclotron average and field solve:

 $\Psi_{a,n}$ is a cyclotron-averaged composite field variable. EPs have large cyclotron orbits.

Many more grid points are coupled and the $\Psi_{a,n}$ field-solve linear algebra becomes dense.

Dense field-solve linear algebra also occurs in multiscale turbulence cases with a dense radial grid.

Explore strategies to overcome speed bottlenecks:

Explore strategies to overcome speed bottlenecks:

• Consider alternative to LAPACK linear algebra solvers for dense algebra

Explore strategies to overcome speed bottlenecks:

- Consider alternative to LAPACK linear algebra solvers for dense algebra
- Develop a more clever way to set up the field-solve matrix in dense cases

Explore strategies to overcome speed bottlenecks:

- Consider alternative to LAPACK linear algebra solvers for dense algebra
- Develop a more clever way to set up the field-solve matrix in dense cases
- Possibly implement a new IMEX time-integration scheme for new stiff terms

Explore strategies to overcome speed bottlenecks:

- Consider alternative to LAPACK linear algebra solvers for dense algebra
- Develop a more clever way to set up the field-solve matrix in dense cases
- **Possibly** implement a new IMEX time-integration scheme for new stiff terms

Increase parallelizability:

Explore strategies to overcome speed bottlenecks:

- Consider alternative to LAPACK linear algebra solvers for dense algebra
- Develop a more clever way to set up the field-solve matrix in dense cases
- **Possibly** implement a new IMEX time-integration scheme for new stiff terms

Increase parallelizability:

• Consider strategies to distribute the spatial grid (particularly the radial grid) or the separate kinetic species.

Explore strategies to overcome speed bottlenecks:

- Consider alternative to LAPACK linear algebra solvers for dense algebra
- Develop a more clever way to set up the field-solve matrix in dense cases
- **Possibly** implement a new IMEX time-integration scheme for new stiff terms

Increase parallelizability:

- Consider strategies to distribute the spatial grid (particularly the radial grid) or the separate kinetic species.
- For eigenvalue-solving mode, distribute the time-evolution matrix over a greater number of processors (for use by SLEPc) than that suggested by the existing gyro parallelization scheme.

