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Method: Solve the gyrokinetic equation on a five-dimensional 
phase-space grid.

•  3D real space: 2D grid + 1 spectral (toroidal n number) degree of freedom
•  2D velocity-space grid comes from averaging out fast cyclotron motion.

Parallelization: The 2D velocity-space grid and 1 spectral degree of 
freedom are distributed (separate MPI_COMM groups). Each 
processor follows a 2D real-space grid.
Multiple operating modes: GYRO can follow the time evolution 
from initial conditions or find the eigenvalues of the full system 
(GKEIGEN, SLEPc/PETSc) or the much-reduced Maxwell dispersion 
matrix (FIELDEIGEN, spatial degrees only).
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can also be set to use fully explicit Runge-Kutta time steps as well.

 The (cyclotron averaged) fields are solved for on each processor using (usually 
sparse) linear algebra.

 An MPI_ALL_REDUCE produces the total field actually used in the equations of 
motion of the system (linear or non-linear operation).

 In non-linear operation, MPI calls over the COMM representing the spectral 
degree of freedom are required to evaluate the non-linear term. 

 Actual time advance operations for one entire spatial cross section (at one or 
more velocity or spectral grid points) are handled by each processor.
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GYRO is versatile and scalable.
Local, linear simulations quickly give all features of 
the most-unstable mode even on a desktop machine.

1-32 cores , < 1 hour

Non-linear simulations 
track multiple toroidal 
n numbers. 

16-512 cores , 
1-48 hours

Massively multi-scale, non-linear simulations 
have disparate length and time scales and are 
only practical on terascale+ machines.

~1000 cores , 10 hours-7 days

Waltz standard case flux tube

Candy supertorus case

ITG-ETG flux tube
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New GYRO simulations are pushing 
toward petascale territory

Non-linear cases with high spectral resolution 
are highly parallelizable...

Multiple nonlinear instances managed in tGYRO can efficiently use 10,000+ cores 
(talk by Luc Peterson)

...but maximum efficiency requires a 
corresponding increase in real-space grid 
density because spectral and spatial degrees of 
freedom are convoluted in the non-linear terms. 
Total calculation time is increased.

φ - <φ> in a nonlinear GYRO 
run with driven TAE/EPM 
turbulence.

max cores=2560

But, for 100% efficiency
max cores=1280

Even spatially small cases of GKEIGEN 
solve 25,000×25,000 matrices with 
parallel processing...

...but GKEIGEN cases are implemented 
now with GYRO’s parallelization 
scheme. Total cores ≤ 64.
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probably be avoided for ωd term for physics reasons.

Ψa,n is a cyclotron-averaged composite field 
variable. EPs have large cyclotron orbits.
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orbit

Many more grid points are coupled and the Ψa,n 
field-solve linear algebra becomes dense.

Expensive cyclotron average and field solve:

Dense field-solve linear algebra also occurs in multi-
scale turbulence cases with a dense radial grid.
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Explore strategies to overcome speed bottlenecks:
•  Consider alternative to LAPACK linear algebra solvers for dense algebra

•  Possibly implement a new IMEX time-integration scheme for new stiff terms

•  Develop a more clever way to set up the field-solve matrix in dense cases

Increase parallelizability:
•  Consider strategies to distribute the spatial grid (particularly the radial grid) 
or the separate kinetic species.

•  For eigenvalue-solving mode, distribute the time-evolution matrix over a 
greater number of processors (for use by SLEPc) than that suggested by the 
existing gyro parallelization scheme.


